summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/controller/rpi
diff options
context:
space:
mode:
Diffstat (limited to 'src/ipa/raspberrypi/controller/rpi')
-rw-r--r--src/ipa/raspberrypi/controller/rpi/agc.cpp797
-rw-r--r--src/ipa/raspberrypi/controller/rpi/agc.hpp139
-rw-r--r--src/ipa/raspberrypi/controller/rpi/alsc.cpp787
-rw-r--r--src/ipa/raspberrypi/controller/rpi/alsc.hpp106
-rw-r--r--src/ipa/raspberrypi/controller/rpi/awb.cpp667
-rw-r--r--src/ipa/raspberrypi/controller/rpi/awb.hpp179
-rw-r--r--src/ipa/raspberrypi/controller/rpi/black_level.cpp63
-rw-r--r--src/ipa/raspberrypi/controller/rpi/black_level.hpp30
-rw-r--r--src/ipa/raspberrypi/controller/rpi/ccm.cpp169
-rw-r--r--src/ipa/raspberrypi/controller/rpi/ccm.hpp75
-rw-r--r--src/ipa/raspberrypi/controller/rpi/contrast.cpp185
-rw-r--r--src/ipa/raspberrypi/controller/rpi/contrast.hpp50
-rw-r--r--src/ipa/raspberrypi/controller/rpi/dpc.cpp53
-rw-r--r--src/ipa/raspberrypi/controller/rpi/dpc.hpp32
-rw-r--r--src/ipa/raspberrypi/controller/rpi/focus.cpp50
-rw-r--r--src/ipa/raspberrypi/controller/rpi/focus.hpp28
-rw-r--r--src/ipa/raspberrypi/controller/rpi/geq.cpp81
-rw-r--r--src/ipa/raspberrypi/controller/rpi/geq.hpp34
-rw-r--r--src/ipa/raspberrypi/controller/rpi/lux.cpp104
-rw-r--r--src/ipa/raspberrypi/controller/rpi/lux.hpp43
-rw-r--r--src/ipa/raspberrypi/controller/rpi/noise.cpp76
-rw-r--r--src/ipa/raspberrypi/controller/rpi/noise.hpp32
-rw-r--r--src/ipa/raspberrypi/controller/rpi/sdn.cpp75
-rw-r--r--src/ipa/raspberrypi/controller/rpi/sdn.hpp32
-rw-r--r--src/ipa/raspberrypi/controller/rpi/sharpen.cpp85
-rw-r--r--src/ipa/raspberrypi/controller/rpi/sharpen.hpp34
26 files changed, 0 insertions, 4006 deletions
diff --git a/src/ipa/raspberrypi/controller/rpi/agc.cpp b/src/ipa/raspberrypi/controller/rpi/agc.cpp
deleted file mode 100644
index f6a9cb0a..00000000
--- a/src/ipa/raspberrypi/controller/rpi/agc.cpp
+++ /dev/null
@@ -1,797 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * agc.cpp - AGC/AEC control algorithm
- */
-
-#include <map>
-
-#include <linux/bcm2835-isp.h>
-
-#include <libcamera/base/log.h>
-
-#include "../awb_status.h"
-#include "../device_status.h"
-#include "../histogram.hpp"
-#include "../lux_status.h"
-#include "../metadata.hpp"
-
-#include "agc.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-using libcamera::utils::Duration;
-using namespace std::literals::chrono_literals;
-
-LOG_DEFINE_CATEGORY(RPiAgc)
-
-#define NAME "rpi.agc"
-
-#define PIPELINE_BITS 13 // seems to be a 13-bit pipeline
-
-void AgcMeteringMode::Read(boost::property_tree::ptree const &params)
-{
- int num = 0;
- for (auto &p : params.get_child("weights")) {
- if (num == AGC_STATS_SIZE)
- throw std::runtime_error("AgcConfig: too many weights");
- weights[num++] = p.second.get_value<double>();
- }
- if (num != AGC_STATS_SIZE)
- throw std::runtime_error("AgcConfig: insufficient weights");
-}
-
-static std::string
-read_metering_modes(std::map<std::string, AgcMeteringMode> &metering_modes,
- boost::property_tree::ptree const &params)
-{
- std::string first;
- for (auto &p : params) {
- AgcMeteringMode metering_mode;
- metering_mode.Read(p.second);
- metering_modes[p.first] = std::move(metering_mode);
- if (first.empty())
- first = p.first;
- }
- return first;
-}
-
-static int read_list(std::vector<double> &list,
- boost::property_tree::ptree const &params)
-{
- for (auto &p : params)
- list.push_back(p.second.get_value<double>());
- return list.size();
-}
-
-static int read_list(std::vector<Duration> &list,
- boost::property_tree::ptree const &params)
-{
- for (auto &p : params)
- list.push_back(p.second.get_value<double>() * 1us);
- return list.size();
-}
-
-void AgcExposureMode::Read(boost::property_tree::ptree const &params)
-{
- int num_shutters = read_list(shutter, params.get_child("shutter"));
- int num_ags = read_list(gain, params.get_child("gain"));
- if (num_shutters < 2 || num_ags < 2)
- throw std::runtime_error(
- "AgcConfig: must have at least two entries in exposure profile");
- if (num_shutters != num_ags)
- throw std::runtime_error(
- "AgcConfig: expect same number of exposure and gain entries in exposure profile");
-}
-
-static std::string
-read_exposure_modes(std::map<std::string, AgcExposureMode> &exposure_modes,
- boost::property_tree::ptree const &params)
-{
- std::string first;
- for (auto &p : params) {
- AgcExposureMode exposure_mode;
- exposure_mode.Read(p.second);
- exposure_modes[p.first] = std::move(exposure_mode);
- if (first.empty())
- first = p.first;
- }
- return first;
-}
-
-void AgcConstraint::Read(boost::property_tree::ptree const &params)
-{
- std::string bound_string = params.get<std::string>("bound", "");
- transform(bound_string.begin(), bound_string.end(),
- bound_string.begin(), ::toupper);
- if (bound_string != "UPPER" && bound_string != "LOWER")
- throw std::runtime_error(
- "AGC constraint type should be UPPER or LOWER");
- bound = bound_string == "UPPER" ? Bound::UPPER : Bound::LOWER;
- q_lo = params.get<double>("q_lo");
- q_hi = params.get<double>("q_hi");
- Y_target.Read(params.get_child("y_target"));
-}
-
-static AgcConstraintMode
-read_constraint_mode(boost::property_tree::ptree const &params)
-{
- AgcConstraintMode mode;
- for (auto &p : params) {
- AgcConstraint constraint;
- constraint.Read(p.second);
- mode.push_back(std::move(constraint));
- }
- return mode;
-}
-
-static std::string read_constraint_modes(
- std::map<std::string, AgcConstraintMode> &constraint_modes,
- boost::property_tree::ptree const &params)
-{
- std::string first;
- for (auto &p : params) {
- constraint_modes[p.first] = read_constraint_mode(p.second);
- if (first.empty())
- first = p.first;
- }
- return first;
-}
-
-void AgcConfig::Read(boost::property_tree::ptree const &params)
-{
- LOG(RPiAgc, Debug) << "AgcConfig";
- default_metering_mode = read_metering_modes(
- metering_modes, params.get_child("metering_modes"));
- default_exposure_mode = read_exposure_modes(
- exposure_modes, params.get_child("exposure_modes"));
- default_constraint_mode = read_constraint_modes(
- constraint_modes, params.get_child("constraint_modes"));
- Y_target.Read(params.get_child("y_target"));
- speed = params.get<double>("speed", 0.2);
- startup_frames = params.get<uint16_t>("startup_frames", 10);
- convergence_frames = params.get<unsigned int>("convergence_frames", 6);
- fast_reduce_threshold =
- params.get<double>("fast_reduce_threshold", 0.4);
- base_ev = params.get<double>("base_ev", 1.0);
- // Start with quite a low value as ramping up is easier than ramping down.
- default_exposure_time = params.get<double>("default_exposure_time", 1000) * 1us;
- default_analogue_gain = params.get<double>("default_analogue_gain", 1.0);
-}
-
-Agc::ExposureValues::ExposureValues()
- : shutter(0s), analogue_gain(0),
- total_exposure(0s), total_exposure_no_dg(0s)
-{
-}
-
-Agc::Agc(Controller *controller)
- : AgcAlgorithm(controller), metering_mode_(nullptr),
- exposure_mode_(nullptr), constraint_mode_(nullptr),
- frame_count_(0), lock_count_(0),
- last_target_exposure_(0s), last_sensitivity_(0.0),
- ev_(1.0), flicker_period_(0s),
- max_shutter_(0s), fixed_shutter_(0s), fixed_analogue_gain_(0.0)
-{
- memset(&awb_, 0, sizeof(awb_));
- // Setting status_.total_exposure_value_ to zero initially tells us
- // it's not been calculated yet (i.e. Process hasn't yet run).
- memset(&status_, 0, sizeof(status_));
- status_.ev = ev_;
-}
-
-char const *Agc::Name() const
-{
- return NAME;
-}
-
-void Agc::Read(boost::property_tree::ptree const &params)
-{
- LOG(RPiAgc, Debug) << "Agc";
- config_.Read(params);
- // Set the config's defaults (which are the first ones it read) as our
- // current modes, until someone changes them. (they're all known to
- // exist at this point)
- metering_mode_name_ = config_.default_metering_mode;
- metering_mode_ = &config_.metering_modes[metering_mode_name_];
- exposure_mode_name_ = config_.default_exposure_mode;
- exposure_mode_ = &config_.exposure_modes[exposure_mode_name_];
- constraint_mode_name_ = config_.default_constraint_mode;
- constraint_mode_ = &config_.constraint_modes[constraint_mode_name_];
- // Set up the "last shutter/gain" values, in case AGC starts "disabled".
- status_.shutter_time = config_.default_exposure_time;
- status_.analogue_gain = config_.default_analogue_gain;
-}
-
-bool Agc::IsPaused() const
-{
- return false;
-}
-
-void Agc::Pause()
-{
- fixed_shutter_ = status_.shutter_time;
- fixed_analogue_gain_ = status_.analogue_gain;
-}
-
-void Agc::Resume()
-{
- fixed_shutter_ = 0s;
- fixed_analogue_gain_ = 0;
-}
-
-unsigned int Agc::GetConvergenceFrames() const
-{
- // If shutter and gain have been explicitly set, there is no
- // convergence to happen, so no need to drop any frames - return zero.
- if (fixed_shutter_ && fixed_analogue_gain_)
- return 0;
- else
- return config_.convergence_frames;
-}
-
-void Agc::SetEv(double ev)
-{
- ev_ = ev;
-}
-
-void Agc::SetFlickerPeriod(Duration flicker_period)
-{
- flicker_period_ = flicker_period;
-}
-
-void Agc::SetMaxShutter(Duration max_shutter)
-{
- max_shutter_ = max_shutter;
-}
-
-void Agc::SetFixedShutter(Duration fixed_shutter)
-{
- fixed_shutter_ = fixed_shutter;
- // Set this in case someone calls Pause() straight after.
- status_.shutter_time = clipShutter(fixed_shutter_);
-}
-
-void Agc::SetFixedAnalogueGain(double fixed_analogue_gain)
-{
- fixed_analogue_gain_ = fixed_analogue_gain;
- // Set this in case someone calls Pause() straight after.
- status_.analogue_gain = fixed_analogue_gain;
-}
-
-void Agc::SetMeteringMode(std::string const &metering_mode_name)
-{
- metering_mode_name_ = metering_mode_name;
-}
-
-void Agc::SetExposureMode(std::string const &exposure_mode_name)
-{
- exposure_mode_name_ = exposure_mode_name;
-}
-
-void Agc::SetConstraintMode(std::string const &constraint_mode_name)
-{
- constraint_mode_name_ = constraint_mode_name;
-}
-
-void Agc::SwitchMode(CameraMode const &camera_mode,
- Metadata *metadata)
-{
- /* AGC expects the mode sensitivity always to be non-zero. */
- ASSERT(camera_mode.sensitivity);
-
- housekeepConfig();
-
- Duration fixed_shutter = clipShutter(fixed_shutter_);
- if (fixed_shutter && fixed_analogue_gain_) {
- // We're going to reset the algorithm here with these fixed values.
-
- fetchAwbStatus(metadata);
- double min_colour_gain = std::min({ awb_.gain_r, awb_.gain_g, awb_.gain_b, 1.0 });
- ASSERT(min_colour_gain != 0.0);
-
- // This is the equivalent of computeTargetExposure and applyDigitalGain.
- target_.total_exposure_no_dg = fixed_shutter * fixed_analogue_gain_;
- target_.total_exposure = target_.total_exposure_no_dg / min_colour_gain;
-
- // Equivalent of filterExposure. This resets any "history".
- filtered_ = target_;
-
- // Equivalent of divideUpExposure.
- filtered_.shutter = fixed_shutter;
- filtered_.analogue_gain = fixed_analogue_gain_;
- } else if (status_.total_exposure_value) {
- // On a mode switch, various things could happen:
- // - the exposure profile might change
- // - a fixed exposure or gain might be set
- // - the new mode's sensitivity might be different
- // We cope with the last of these by scaling the target values. After
- // that we just need to re-divide the exposure/gain according to the
- // current exposure profile, which takes care of everything else.
-
- double ratio = last_sensitivity_ / camera_mode.sensitivity;
- target_.total_exposure_no_dg *= ratio;
- target_.total_exposure *= ratio;
- filtered_.total_exposure_no_dg *= ratio;
- filtered_.total_exposure *= ratio;
-
- divideUpExposure();
- } else {
- // We come through here on startup, when at least one of the shutter
- // or gain has not been fixed. We must still write those values out so
- // that they will be applied immediately. We supply some arbitrary defaults
- // for any that weren't set.
-
- // Equivalent of divideUpExposure.
- filtered_.shutter = fixed_shutter ? fixed_shutter : config_.default_exposure_time;
- filtered_.analogue_gain = fixed_analogue_gain_ ? fixed_analogue_gain_ : config_.default_analogue_gain;
- }
-
- writeAndFinish(metadata, false);
-
- // We must remember the sensitivity of this mode for the next SwitchMode.
- last_sensitivity_ = camera_mode.sensitivity;
-}
-
-void Agc::Prepare(Metadata *image_metadata)
-{
- status_.digital_gain = 1.0;
- fetchAwbStatus(image_metadata); // always fetch it so that Process knows it's been done
-
- if (status_.total_exposure_value) {
- // Process has run, so we have meaningful values.
- DeviceStatus device_status;
- if (image_metadata->Get("device.status", device_status) == 0) {
- Duration actual_exposure = device_status.shutter_speed *
- device_status.analogue_gain;
- if (actual_exposure) {
- status_.digital_gain =
- status_.total_exposure_value /
- actual_exposure;
- LOG(RPiAgc, Debug) << "Want total exposure " << status_.total_exposure_value;
- // Never ask for a gain < 1.0, and also impose
- // some upper limit. Make it customisable?
- status_.digital_gain = std::max(
- 1.0,
- std::min(status_.digital_gain, 4.0));
- LOG(RPiAgc, Debug) << "Actual exposure " << actual_exposure;
- LOG(RPiAgc, Debug) << "Use digital_gain " << status_.digital_gain;
- LOG(RPiAgc, Debug) << "Effective exposure "
- << actual_exposure * status_.digital_gain;
- // Decide whether AEC/AGC has converged.
- updateLockStatus(device_status);
- }
- } else
- LOG(RPiAgc, Warning) << Name() << ": no device metadata";
- image_metadata->Set("agc.status", status_);
- }
-}
-
-void Agc::Process(StatisticsPtr &stats, Metadata *image_metadata)
-{
- frame_count_++;
- // First a little bit of housekeeping, fetching up-to-date settings and
- // configuration, that kind of thing.
- housekeepConfig();
- // Get the current exposure values for the frame that's just arrived.
- fetchCurrentExposure(image_metadata);
- // Compute the total gain we require relative to the current exposure.
- double gain, target_Y;
- computeGain(stats.get(), image_metadata, gain, target_Y);
- // Now compute the target (final) exposure which we think we want.
- computeTargetExposure(gain);
- // Some of the exposure has to be applied as digital gain, so work out
- // what that is. This function also tells us whether it's decided to
- // "desaturate" the image more quickly.
- bool desaturate = applyDigitalGain(gain, target_Y);
- // The results have to be filtered so as not to change too rapidly.
- filterExposure(desaturate);
- // The last thing is to divide up the exposure value into a shutter time
- // and analogue_gain, according to the current exposure mode.
- divideUpExposure();
- // Finally advertise what we've done.
- writeAndFinish(image_metadata, desaturate);
-}
-
-void Agc::updateLockStatus(DeviceStatus const &device_status)
-{
- const double ERROR_FACTOR = 0.10; // make these customisable?
- const int MAX_LOCK_COUNT = 5;
- // Reset "lock count" when we exceed this multiple of ERROR_FACTOR
- const double RESET_MARGIN = 1.5;
-
- // Add 200us to the exposure time error to allow for line quantisation.
- Duration exposure_error = last_device_status_.shutter_speed * ERROR_FACTOR + 200us;
- double gain_error = last_device_status_.analogue_gain * ERROR_FACTOR;
- Duration target_error = last_target_exposure_ * ERROR_FACTOR;
-
- // Note that we don't know the exposure/gain limits of the sensor, so
- // the values we keep requesting may be unachievable. For this reason
- // we only insist that we're close to values in the past few frames.
- if (device_status.shutter_speed > last_device_status_.shutter_speed - exposure_error &&
- device_status.shutter_speed < last_device_status_.shutter_speed + exposure_error &&
- device_status.analogue_gain > last_device_status_.analogue_gain - gain_error &&
- device_status.analogue_gain < last_device_status_.analogue_gain + gain_error &&
- status_.target_exposure_value > last_target_exposure_ - target_error &&
- status_.target_exposure_value < last_target_exposure_ + target_error)
- lock_count_ = std::min(lock_count_ + 1, MAX_LOCK_COUNT);
- else if (device_status.shutter_speed < last_device_status_.shutter_speed - RESET_MARGIN * exposure_error ||
- device_status.shutter_speed > last_device_status_.shutter_speed + RESET_MARGIN * exposure_error ||
- device_status.analogue_gain < last_device_status_.analogue_gain - RESET_MARGIN * gain_error ||
- device_status.analogue_gain > last_device_status_.analogue_gain + RESET_MARGIN * gain_error ||
- status_.target_exposure_value < last_target_exposure_ - RESET_MARGIN * target_error ||
- status_.target_exposure_value > last_target_exposure_ + RESET_MARGIN * target_error)
- lock_count_ = 0;
-
- last_device_status_ = device_status;
- last_target_exposure_ = status_.target_exposure_value;
-
- LOG(RPiAgc, Debug) << "Lock count updated to " << lock_count_;
- status_.locked = lock_count_ == MAX_LOCK_COUNT;
-}
-
-static void copy_string(std::string const &s, char *d, size_t size)
-{
- size_t length = s.copy(d, size - 1);
- d[length] = '\0';
-}
-
-void Agc::housekeepConfig()
-{
- // First fetch all the up-to-date settings, so no one else has to do it.
- status_.ev = ev_;
- status_.fixed_shutter = clipShutter(fixed_shutter_);
- status_.fixed_analogue_gain = fixed_analogue_gain_;
- status_.flicker_period = flicker_period_;
- LOG(RPiAgc, Debug) << "ev " << status_.ev << " fixed_shutter "
- << status_.fixed_shutter << " fixed_analogue_gain "
- << status_.fixed_analogue_gain;
- // Make sure the "mode" pointers point to the up-to-date things, if
- // they've changed.
- if (strcmp(metering_mode_name_.c_str(), status_.metering_mode)) {
- auto it = config_.metering_modes.find(metering_mode_name_);
- if (it == config_.metering_modes.end())
- throw std::runtime_error("Agc: no metering mode " +
- metering_mode_name_);
- metering_mode_ = &it->second;
- copy_string(metering_mode_name_, status_.metering_mode,
- sizeof(status_.metering_mode));
- }
- if (strcmp(exposure_mode_name_.c_str(), status_.exposure_mode)) {
- auto it = config_.exposure_modes.find(exposure_mode_name_);
- if (it == config_.exposure_modes.end())
- throw std::runtime_error("Agc: no exposure profile " +
- exposure_mode_name_);
- exposure_mode_ = &it->second;
- copy_string(exposure_mode_name_, status_.exposure_mode,
- sizeof(status_.exposure_mode));
- }
- if (strcmp(constraint_mode_name_.c_str(), status_.constraint_mode)) {
- auto it =
- config_.constraint_modes.find(constraint_mode_name_);
- if (it == config_.constraint_modes.end())
- throw std::runtime_error("Agc: no constraint list " +
- constraint_mode_name_);
- constraint_mode_ = &it->second;
- copy_string(constraint_mode_name_, status_.constraint_mode,
- sizeof(status_.constraint_mode));
- }
- LOG(RPiAgc, Debug) << "exposure_mode "
- << exposure_mode_name_ << " constraint_mode "
- << constraint_mode_name_ << " metering_mode "
- << metering_mode_name_;
-}
-
-void Agc::fetchCurrentExposure(Metadata *image_metadata)
-{
- std::unique_lock<Metadata> lock(*image_metadata);
- DeviceStatus *device_status =
- image_metadata->GetLocked<DeviceStatus>("device.status");
- if (!device_status)
- throw std::runtime_error("Agc: no device metadata");
- current_.shutter = device_status->shutter_speed;
- current_.analogue_gain = device_status->analogue_gain;
- AgcStatus *agc_status =
- image_metadata->GetLocked<AgcStatus>("agc.status");
- current_.total_exposure = agc_status ? agc_status->total_exposure_value : 0s;
- current_.total_exposure_no_dg = current_.shutter * current_.analogue_gain;
-}
-
-void Agc::fetchAwbStatus(Metadata *image_metadata)
-{
- awb_.gain_r = 1.0; // in case not found in metadata
- awb_.gain_g = 1.0;
- awb_.gain_b = 1.0;
- if (image_metadata->Get("awb.status", awb_) != 0)
- LOG(RPiAgc, Debug) << "Agc: no AWB status found";
-}
-
-static double compute_initial_Y(bcm2835_isp_stats *stats, AwbStatus const &awb,
- double weights[], double gain)
-{
- bcm2835_isp_stats_region *regions = stats->agc_stats;
- // Note how the calculation below means that equal weights give you
- // "average" metering (i.e. all pixels equally important).
- double R_sum = 0, G_sum = 0, B_sum = 0, pixel_sum = 0;
- for (int i = 0; i < AGC_STATS_SIZE; i++) {
- double counted = regions[i].counted;
- double r_sum = std::min(regions[i].r_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted);
- double g_sum = std::min(regions[i].g_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted);
- double b_sum = std::min(regions[i].b_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted);
- R_sum += r_sum * weights[i];
- G_sum += g_sum * weights[i];
- B_sum += b_sum * weights[i];
- pixel_sum += counted * weights[i];
- }
- if (pixel_sum == 0.0) {
- LOG(RPiAgc, Warning) << "compute_initial_Y: pixel_sum is zero";
- return 0;
- }
- double Y_sum = R_sum * awb.gain_r * .299 +
- G_sum * awb.gain_g * .587 +
- B_sum * awb.gain_b * .114;
- return Y_sum / pixel_sum / (1 << PIPELINE_BITS);
-}
-
-// We handle extra gain through EV by adjusting our Y targets. However, you
-// simply can't monitor histograms once they get very close to (or beyond!)
-// saturation, so we clamp the Y targets to this value. It does mean that EV
-// increases don't necessarily do quite what you might expect in certain
-// (contrived) cases.
-
-#define EV_GAIN_Y_TARGET_LIMIT 0.9
-
-static double constraint_compute_gain(AgcConstraint &c, Histogram &h,
- double lux, double ev_gain,
- double &target_Y)
-{
- target_Y = c.Y_target.Eval(c.Y_target.Domain().Clip(lux));
- target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain);
- double iqm = h.InterQuantileMean(c.q_lo, c.q_hi);
- return (target_Y * NUM_HISTOGRAM_BINS) / iqm;
-}
-
-void Agc::computeGain(bcm2835_isp_stats *statistics, Metadata *image_metadata,
- double &gain, double &target_Y)
-{
- struct LuxStatus lux = {};
- lux.lux = 400; // default lux level to 400 in case no metadata found
- if (image_metadata->Get("lux.status", lux) != 0)
- LOG(RPiAgc, Warning) << "Agc: no lux level found";
- Histogram h(statistics->hist[0].g_hist, NUM_HISTOGRAM_BINS);
- double ev_gain = status_.ev * config_.base_ev;
- // The initial gain and target_Y come from some of the regions. After
- // that we consider the histogram constraints.
- target_Y =
- config_.Y_target.Eval(config_.Y_target.Domain().Clip(lux.lux));
- target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain);
-
- // Do this calculation a few times as brightness increase can be
- // non-linear when there are saturated regions.
- gain = 1.0;
- for (int i = 0; i < 8; i++) {
- double initial_Y = compute_initial_Y(statistics, awb_,
- metering_mode_->weights, gain);
- double extra_gain = std::min(10.0, target_Y / (initial_Y + .001));
- gain *= extra_gain;
- LOG(RPiAgc, Debug) << "Initial Y " << initial_Y << " target " << target_Y
- << " gives gain " << gain;
- if (extra_gain < 1.01) // close enough
- break;
- }
-
- for (auto &c : *constraint_mode_) {
- double new_target_Y;
- double new_gain =
- constraint_compute_gain(c, h, lux.lux, ev_gain,
- new_target_Y);
- LOG(RPiAgc, Debug) << "Constraint has target_Y "
- << new_target_Y << " giving gain " << new_gain;
- if (c.bound == AgcConstraint::Bound::LOWER &&
- new_gain > gain) {
- LOG(RPiAgc, Debug) << "Lower bound constraint adopted";
- gain = new_gain, target_Y = new_target_Y;
- } else if (c.bound == AgcConstraint::Bound::UPPER &&
- new_gain < gain) {
- LOG(RPiAgc, Debug) << "Upper bound constraint adopted";
- gain = new_gain, target_Y = new_target_Y;
- }
- }
- LOG(RPiAgc, Debug) << "Final gain " << gain << " (target_Y " << target_Y << " ev "
- << status_.ev << " base_ev " << config_.base_ev
- << ")";
-}
-
-void Agc::computeTargetExposure(double gain)
-{
- if (status_.fixed_shutter && status_.fixed_analogue_gain) {
- // When ag and shutter are both fixed, we need to drive the
- // total exposure so that we end up with a digital gain of at least
- // 1/min_colour_gain. Otherwise we'd desaturate channels causing
- // white to go cyan or magenta.
- double min_colour_gain = std::min({ awb_.gain_r, awb_.gain_g, awb_.gain_b, 1.0 });
- ASSERT(min_colour_gain != 0.0);
- target_.total_exposure =
- status_.fixed_shutter * status_.fixed_analogue_gain / min_colour_gain;
- } else {
- // The statistics reflect the image without digital gain, so the final
- // total exposure we're aiming for is:
- target_.total_exposure = current_.total_exposure_no_dg * gain;
- // The final target exposure is also limited to what the exposure
- // mode allows.
- Duration max_shutter = status_.fixed_shutter
- ? status_.fixed_shutter
- : exposure_mode_->shutter.back();
- max_shutter = clipShutter(max_shutter);
- Duration max_total_exposure =
- max_shutter *
- (status_.fixed_analogue_gain != 0.0
- ? status_.fixed_analogue_gain
- : exposure_mode_->gain.back());
- target_.total_exposure = std::min(target_.total_exposure,
- max_total_exposure);
- }
- LOG(RPiAgc, Debug) << "Target total_exposure " << target_.total_exposure;
-}
-
-bool Agc::applyDigitalGain(double gain, double target_Y)
-{
- double min_colour_gain = std::min({ awb_.gain_r, awb_.gain_g, awb_.gain_b, 1.0 });
- ASSERT(min_colour_gain != 0.0);
- double dg = 1.0 / min_colour_gain;
- // I think this pipeline subtracts black level and rescales before we
- // get the stats, so no need to worry about it.
- LOG(RPiAgc, Debug) << "after AWB, target dg " << dg << " gain " << gain
- << " target_Y " << target_Y;
- // Finally, if we're trying to reduce exposure but the target_Y is
- // "close" to 1.0, then the gain computed for that constraint will be
- // only slightly less than one, because the measured Y can never be
- // larger than 1.0. When this happens, demand a large digital gain so
- // that the exposure can be reduced, de-saturating the image much more
- // quickly (and we then approach the correct value more quickly from
- // below).
- bool desaturate = target_Y > config_.fast_reduce_threshold &&
- gain < sqrt(target_Y);
- if (desaturate)
- dg /= config_.fast_reduce_threshold;
- LOG(RPiAgc, Debug) << "Digital gain " << dg << " desaturate? " << desaturate;
- target_.total_exposure_no_dg = target_.total_exposure / dg;
- LOG(RPiAgc, Debug) << "Target total_exposure_no_dg " << target_.total_exposure_no_dg;
- return desaturate;
-}
-
-void Agc::filterExposure(bool desaturate)
-{
- double speed = config_.speed;
- // AGC adapts instantly if both shutter and gain are directly specified
- // or we're in the startup phase.
- if ((status_.fixed_shutter && status_.fixed_analogue_gain) ||
- frame_count_ <= config_.startup_frames)
- speed = 1.0;
- if (!filtered_.total_exposure) {
- filtered_.total_exposure = target_.total_exposure;
- filtered_.total_exposure_no_dg = target_.total_exposure_no_dg;
- } else {
- // If close to the result go faster, to save making so many
- // micro-adjustments on the way. (Make this customisable?)
- if (filtered_.total_exposure < 1.2 * target_.total_exposure &&
- filtered_.total_exposure > 0.8 * target_.total_exposure)
- speed = sqrt(speed);
- filtered_.total_exposure = speed * target_.total_exposure +
- filtered_.total_exposure * (1.0 - speed);
- // When desaturing, take a big jump down in exposure_no_dg,
- // which we'll hide with digital gain.
- if (desaturate)
- filtered_.total_exposure_no_dg =
- target_.total_exposure_no_dg;
- else
- filtered_.total_exposure_no_dg =
- speed * target_.total_exposure_no_dg +
- filtered_.total_exposure_no_dg * (1.0 - speed);
- }
- // We can't let the no_dg exposure deviate too far below the
- // total exposure, as there might not be enough digital gain available
- // in the ISP to hide it (which will cause nasty oscillation).
- if (filtered_.total_exposure_no_dg <
- filtered_.total_exposure * config_.fast_reduce_threshold)
- filtered_.total_exposure_no_dg = filtered_.total_exposure *
- config_.fast_reduce_threshold;
- LOG(RPiAgc, Debug) << "After filtering, total_exposure " << filtered_.total_exposure
- << " no dg " << filtered_.total_exposure_no_dg;
-}
-
-void Agc::divideUpExposure()
-{
- // Sending the fixed shutter/gain cases through the same code may seem
- // unnecessary, but it will make more sense when extend this to cover
- // variable aperture.
- Duration exposure_value = filtered_.total_exposure_no_dg;
- Duration shutter_time;
- double analogue_gain;
- shutter_time = status_.fixed_shutter
- ? status_.fixed_shutter
- : exposure_mode_->shutter[0];
- shutter_time = clipShutter(shutter_time);
- analogue_gain = status_.fixed_analogue_gain != 0.0
- ? status_.fixed_analogue_gain
- : exposure_mode_->gain[0];
- if (shutter_time * analogue_gain < exposure_value) {
- for (unsigned int stage = 1;
- stage < exposure_mode_->gain.size(); stage++) {
- if (!status_.fixed_shutter) {
- Duration stage_shutter =
- clipShutter(exposure_mode_->shutter[stage]);
- if (stage_shutter * analogue_gain >=
- exposure_value) {
- shutter_time =
- exposure_value / analogue_gain;
- break;
- }
- shutter_time = stage_shutter;
- }
- if (status_.fixed_analogue_gain == 0.0) {
- if (exposure_mode_->gain[stage] *
- shutter_time >=
- exposure_value) {
- analogue_gain =
- exposure_value / shutter_time;
- break;
- }
- analogue_gain = exposure_mode_->gain[stage];
- }
- }
- }
- LOG(RPiAgc, Debug) << "Divided up shutter and gain are " << shutter_time << " and "
- << analogue_gain;
- // Finally adjust shutter time for flicker avoidance (require both
- // shutter and gain not to be fixed).
- if (!status_.fixed_shutter && !status_.fixed_analogue_gain &&
- status_.flicker_period) {
- int flicker_periods = shutter_time / status_.flicker_period;
- if (flicker_periods) {
- Duration new_shutter_time = flicker_periods * status_.flicker_period;
- analogue_gain *= shutter_time / new_shutter_time;
- // We should still not allow the ag to go over the
- // largest value in the exposure mode. Note that this
- // may force more of the total exposure into the digital
- // gain as a side-effect.
- analogue_gain = std::min(analogue_gain,
- exposure_mode_->gain.back());
- shutter_time = new_shutter_time;
- }
- LOG(RPiAgc, Debug) << "After flicker avoidance, shutter "
- << shutter_time << " gain " << analogue_gain;
- }
- filtered_.shutter = shutter_time;
- filtered_.analogue_gain = analogue_gain;
-}
-
-void Agc::writeAndFinish(Metadata *image_metadata, bool desaturate)
-{
- status_.total_exposure_value = filtered_.total_exposure;
- status_.target_exposure_value = desaturate ? 0s : target_.total_exposure_no_dg;
- status_.shutter_time = filtered_.shutter;
- status_.analogue_gain = filtered_.analogue_gain;
- // Write to metadata as well, in case anyone wants to update the camera
- // immediately.
- image_metadata->Set("agc.status", status_);
- LOG(RPiAgc, Debug) << "Output written, total exposure requested is "
- << filtered_.total_exposure;
- LOG(RPiAgc, Debug) << "Camera exposure update: shutter time " << filtered_.shutter
- << " analogue gain " << filtered_.analogue_gain;
-}
-
-Duration Agc::clipShutter(Duration shutter)
-{
- if (max_shutter_)
- shutter = std::min(shutter, max_shutter_);
- return shutter;
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return (Algorithm *)new Agc(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/agc.hpp b/src/ipa/raspberrypi/controller/rpi/agc.hpp
deleted file mode 100644
index c100d312..00000000
--- a/src/ipa/raspberrypi/controller/rpi/agc.hpp
+++ /dev/null
@@ -1,139 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * agc.hpp - AGC/AEC control algorithm
- */
-#pragma once
-
-#include <vector>
-#include <mutex>
-
-#include <libcamera/base/utils.h>
-
-#include "../agc_algorithm.hpp"
-#include "../agc_status.h"
-#include "../pwl.hpp"
-
-// This is our implementation of AGC.
-
-// This is the number actually set up by the firmware, not the maximum possible
-// number (which is 16).
-
-#define AGC_STATS_SIZE 15
-
-namespace RPiController {
-
-struct AgcMeteringMode {
- double weights[AGC_STATS_SIZE];
- void Read(boost::property_tree::ptree const &params);
-};
-
-struct AgcExposureMode {
- std::vector<libcamera::utils::Duration> shutter;
- std::vector<double> gain;
- void Read(boost::property_tree::ptree const &params);
-};
-
-struct AgcConstraint {
- enum class Bound { LOWER = 0, UPPER = 1 };
- Bound bound;
- double q_lo;
- double q_hi;
- Pwl Y_target;
- void Read(boost::property_tree::ptree const &params);
-};
-
-typedef std::vector<AgcConstraint> AgcConstraintMode;
-
-struct AgcConfig {
- void Read(boost::property_tree::ptree const &params);
- std::map<std::string, AgcMeteringMode> metering_modes;
- std::map<std::string, AgcExposureMode> exposure_modes;
- std::map<std::string, AgcConstraintMode> constraint_modes;
- Pwl Y_target;
- double speed;
- uint16_t startup_frames;
- unsigned int convergence_frames;
- double max_change;
- double min_change;
- double fast_reduce_threshold;
- double speed_up_threshold;
- std::string default_metering_mode;
- std::string default_exposure_mode;
- std::string default_constraint_mode;
- double base_ev;
- libcamera::utils::Duration default_exposure_time;
- double default_analogue_gain;
-};
-
-class Agc : public AgcAlgorithm
-{
-public:
- Agc(Controller *controller);
- char const *Name() const override;
- void Read(boost::property_tree::ptree const &params) override;
- // AGC handles "pausing" for itself.
- bool IsPaused() const override;
- void Pause() override;
- void Resume() override;
- unsigned int GetConvergenceFrames() const override;
- void SetEv(double ev) override;
- void SetFlickerPeriod(libcamera::utils::Duration flicker_period) override;
- void SetMaxShutter(libcamera::utils::Duration max_shutter) override;
- void SetFixedShutter(libcamera::utils::Duration fixed_shutter) override;
- void SetFixedAnalogueGain(double fixed_analogue_gain) override;
- void SetMeteringMode(std::string const &metering_mode_name) override;
- void SetExposureMode(std::string const &exposure_mode_name) override;
- void SetConstraintMode(std::string const &contraint_mode_name) override;
- void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override;
- void Prepare(Metadata *image_metadata) override;
- void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
-
-private:
- void updateLockStatus(DeviceStatus const &device_status);
- AgcConfig config_;
- void housekeepConfig();
- void fetchCurrentExposure(Metadata *image_metadata);
- void fetchAwbStatus(Metadata *image_metadata);
- void computeGain(bcm2835_isp_stats *statistics, Metadata *image_metadata,
- double &gain, double &target_Y);
- void computeTargetExposure(double gain);
- bool applyDigitalGain(double gain, double target_Y);
- void filterExposure(bool desaturate);
- void divideUpExposure();
- void writeAndFinish(Metadata *image_metadata, bool desaturate);
- libcamera::utils::Duration clipShutter(libcamera::utils::Duration shutter);
- AgcMeteringMode *metering_mode_;
- AgcExposureMode *exposure_mode_;
- AgcConstraintMode *constraint_mode_;
- uint64_t frame_count_;
- AwbStatus awb_;
- struct ExposureValues {
- ExposureValues();
-
- libcamera::utils::Duration shutter;
- double analogue_gain;
- libcamera::utils::Duration total_exposure;
- libcamera::utils::Duration total_exposure_no_dg; // without digital gain
- };
- ExposureValues current_; // values for the current frame
- ExposureValues target_; // calculate the values we want here
- ExposureValues filtered_; // these values are filtered towards target
- AgcStatus status_;
- int lock_count_;
- DeviceStatus last_device_status_;
- libcamera::utils::Duration last_target_exposure_;
- double last_sensitivity_; // sensitivity of the previous camera mode
- // Below here the "settings" that applications can change.
- std::string metering_mode_name_;
- std::string exposure_mode_name_;
- std::string constraint_mode_name_;
- double ev_;
- libcamera::utils::Duration flicker_period_;
- libcamera::utils::Duration max_shutter_;
- libcamera::utils::Duration fixed_shutter_;
- double fixed_analogue_gain_;
-};
-
-} // namespace RPiController
diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.cpp b/src/ipa/raspberrypi/controller/rpi/alsc.cpp
deleted file mode 100644
index e575c14a..00000000
--- a/src/ipa/raspberrypi/controller/rpi/alsc.cpp
+++ /dev/null
@@ -1,787 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * alsc.cpp - ALSC (auto lens shading correction) control algorithm
- */
-
-#include <math.h>
-#include <numeric>
-
-#include <libcamera/base/log.h>
-#include <libcamera/base/span.h>
-
-#include "../awb_status.h"
-#include "alsc.hpp"
-
-// Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm.
-
-using namespace RPiController;
-using namespace libcamera;
-
-LOG_DEFINE_CATEGORY(RPiAlsc)
-
-#define NAME "rpi.alsc"
-
-static const int X = ALSC_CELLS_X;
-static const int Y = ALSC_CELLS_Y;
-static const int XY = X * Y;
-static const double INSUFFICIENT_DATA = -1.0;
-
-Alsc::Alsc(Controller *controller)
- : Algorithm(controller)
-{
- async_abort_ = async_start_ = async_started_ = async_finished_ = false;
- async_thread_ = std::thread(std::bind(&Alsc::asyncFunc, this));
-}
-
-Alsc::~Alsc()
-{
- {
- std::lock_guard<std::mutex> lock(mutex_);
- async_abort_ = true;
- }
- async_signal_.notify_one();
- async_thread_.join();
-}
-
-char const *Alsc::Name() const
-{
- return NAME;
-}
-
-static void generate_lut(double *lut, boost::property_tree::ptree const &params)
-{
- double cstrength = params.get<double>("corner_strength", 2.0);
- if (cstrength <= 1.0)
- throw std::runtime_error("Alsc: corner_strength must be > 1.0");
- double asymmetry = params.get<double>("asymmetry", 1.0);
- if (asymmetry < 0)
- throw std::runtime_error("Alsc: asymmetry must be >= 0");
- double f1 = cstrength - 1, f2 = 1 + sqrt(cstrength);
- double R2 = X * Y / 4 * (1 + asymmetry * asymmetry);
- int num = 0;
- for (int y = 0; y < Y; y++) {
- for (int x = 0; x < X; x++) {
- double dy = y - Y / 2 + 0.5,
- dx = (x - X / 2 + 0.5) * asymmetry;
- double r2 = (dx * dx + dy * dy) / R2;
- lut[num++] =
- (f1 * r2 + f2) * (f1 * r2 + f2) /
- (f2 * f2); // this reproduces the cos^4 rule
- }
- }
-}
-
-static void read_lut(double *lut, boost::property_tree::ptree const &params)
-{
- int num = 0;
- const int max_num = XY;
- for (auto &p : params) {
- if (num == max_num)
- throw std::runtime_error(
- "Alsc: too many entries in LSC table");
- lut[num++] = p.second.get_value<double>();
- }
- if (num < max_num)
- throw std::runtime_error("Alsc: too few entries in LSC table");
-}
-
-static void read_calibrations(std::vector<AlscCalibration> &calibrations,
- boost::property_tree::ptree const &params,
- std::string const &name)
-{
- if (params.get_child_optional(name)) {
- double last_ct = 0;
- for (auto &p : params.get_child(name)) {
- double ct = p.second.get<double>("ct");
- if (ct <= last_ct)
- throw std::runtime_error(
- "Alsc: entries in " + name +
- " must be in increasing ct order");
- AlscCalibration calibration;
- calibration.ct = last_ct = ct;
- boost::property_tree::ptree const &table =
- p.second.get_child("table");
- int num = 0;
- for (auto it = table.begin(); it != table.end(); it++) {
- if (num == XY)
- throw std::runtime_error(
- "Alsc: too many values for ct " +
- std::to_string(ct) + " in " +
- name);
- calibration.table[num++] =
- it->second.get_value<double>();
- }
- if (num != XY)
- throw std::runtime_error(
- "Alsc: too few values for ct " +
- std::to_string(ct) + " in " + name);
- calibrations.push_back(calibration);
- LOG(RPiAlsc, Debug)
- << "Read " << name << " calibration for ct " << ct;
- }
- }
-}
-
-void Alsc::Read(boost::property_tree::ptree const &params)
-{
- config_.frame_period = params.get<uint16_t>("frame_period", 12);
- config_.startup_frames = params.get<uint16_t>("startup_frames", 10);
- config_.speed = params.get<double>("speed", 0.05);
- double sigma = params.get<double>("sigma", 0.01);
- config_.sigma_Cr = params.get<double>("sigma_Cr", sigma);
- config_.sigma_Cb = params.get<double>("sigma_Cb", sigma);
- config_.min_count = params.get<double>("min_count", 10.0);
- config_.min_G = params.get<uint16_t>("min_G", 50);
- config_.omega = params.get<double>("omega", 1.3);
- config_.n_iter = params.get<uint32_t>("n_iter", X + Y);
- config_.luminance_strength =
- params.get<double>("luminance_strength", 1.0);
- for (int i = 0; i < XY; i++)
- config_.luminance_lut[i] = 1.0;
- if (params.get_child_optional("corner_strength"))
- generate_lut(config_.luminance_lut, params);
- else if (params.get_child_optional("luminance_lut"))
- read_lut(config_.luminance_lut,
- params.get_child("luminance_lut"));
- else
- LOG(RPiAlsc, Warning)
- << "no luminance table - assume unity everywhere";
- read_calibrations(config_.calibrations_Cr, params, "calibrations_Cr");
- read_calibrations(config_.calibrations_Cb, params, "calibrations_Cb");
- config_.default_ct = params.get<double>("default_ct", 4500.0);
- config_.threshold = params.get<double>("threshold", 1e-3);
- config_.lambda_bound = params.get<double>("lambda_bound", 0.05);
-}
-
-static double get_ct(Metadata *metadata, double default_ct);
-static void get_cal_table(double ct,
- std::vector<AlscCalibration> const &calibrations,
- double cal_table[XY]);
-static void resample_cal_table(double const cal_table_in[XY],
- CameraMode const &camera_mode,
- double cal_table_out[XY]);
-static void compensate_lambdas_for_cal(double const cal_table[XY],
- double const old_lambdas[XY],
- double new_lambdas[XY]);
-static void add_luminance_to_tables(double results[3][Y][X],
- double const lambda_r[XY], double lambda_g,
- double const lambda_b[XY],
- double const luminance_lut[XY],
- double luminance_strength);
-
-void Alsc::Initialise()
-{
- frame_count2_ = frame_count_ = frame_phase_ = 0;
- first_time_ = true;
- ct_ = config_.default_ct;
- // The lambdas are initialised in the SwitchMode.
-}
-
-void Alsc::waitForAysncThread()
-{
- if (async_started_) {
- async_started_ = false;
- std::unique_lock<std::mutex> lock(mutex_);
- sync_signal_.wait(lock, [&] {
- return async_finished_;
- });
- async_finished_ = false;
- }
-}
-
-static bool compare_modes(CameraMode const &cm0, CameraMode const &cm1)
-{
- // Return true if the modes crop from the sensor significantly differently,
- // or if the user transform has changed.
- if (cm0.transform != cm1.transform)
- return true;
- int left_diff = abs(cm0.crop_x - cm1.crop_x);
- int top_diff = abs(cm0.crop_y - cm1.crop_y);
- int right_diff = fabs(cm0.crop_x + cm0.scale_x * cm0.width -
- cm1.crop_x - cm1.scale_x * cm1.width);
- int bottom_diff = fabs(cm0.crop_y + cm0.scale_y * cm0.height -
- cm1.crop_y - cm1.scale_y * cm1.height);
- // These thresholds are a rather arbitrary amount chosen to trigger
- // when carrying on with the previously calculated tables might be
- // worse than regenerating them (but without the adaptive algorithm).
- int threshold_x = cm0.sensor_width >> 4;
- int threshold_y = cm0.sensor_height >> 4;
- return left_diff > threshold_x || right_diff > threshold_x ||
- top_diff > threshold_y || bottom_diff > threshold_y;
-}
-
-void Alsc::SwitchMode(CameraMode const &camera_mode,
- [[maybe_unused]] Metadata *metadata)
-{
- // We're going to start over with the tables if there's any "significant"
- // change.
- bool reset_tables = first_time_ || compare_modes(camera_mode_, camera_mode);
-
- // Believe the colour temperature from the AWB, if there is one.
- ct_ = get_ct(metadata, ct_);
-
- // Ensure the other thread isn't running while we do this.
- waitForAysncThread();
-
- camera_mode_ = camera_mode;
-
- // We must resample the luminance table like we do the others, but it's
- // fixed so we can simply do it up front here.
- resample_cal_table(config_.luminance_lut, camera_mode_, luminance_table_);
-
- if (reset_tables) {
- // Upon every "table reset", arrange for something sensible to be
- // generated. Construct the tables for the previous recorded colour
- // temperature. In order to start over from scratch we initialise
- // the lambdas, but the rest of this code then echoes the code in
- // doAlsc, without the adaptive algorithm.
- for (int i = 0; i < XY; i++)
- lambda_r_[i] = lambda_b_[i] = 1.0;
- double cal_table_r[XY], cal_table_b[XY], cal_table_tmp[XY];
- get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp);
- resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r);
- get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp);
- resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b);
- compensate_lambdas_for_cal(cal_table_r, lambda_r_,
- async_lambda_r_);
- compensate_lambdas_for_cal(cal_table_b, lambda_b_,
- async_lambda_b_);
- add_luminance_to_tables(sync_results_, async_lambda_r_, 1.0,
- async_lambda_b_, luminance_table_,
- config_.luminance_strength);
- memcpy(prev_sync_results_, sync_results_,
- sizeof(prev_sync_results_));
- frame_phase_ = config_.frame_period; // run the algo again asap
- first_time_ = false;
- }
-}
-
-void Alsc::fetchAsyncResults()
-{
- LOG(RPiAlsc, Debug) << "Fetch ALSC results";
- async_finished_ = false;
- async_started_ = false;
- memcpy(sync_results_, async_results_, sizeof(sync_results_));
-}
-
-double get_ct(Metadata *metadata, double default_ct)
-{
- AwbStatus awb_status;
- awb_status.temperature_K = default_ct; // in case nothing found
- if (metadata->Get("awb.status", awb_status) != 0)
- LOG(RPiAlsc, Debug) << "no AWB results found, using "
- << awb_status.temperature_K;
- else
- LOG(RPiAlsc, Debug) << "AWB results found, using "
- << awb_status.temperature_K;
- return awb_status.temperature_K;
-}
-
-static void copy_stats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats,
- AlscStatus const &status)
-{
- bcm2835_isp_stats_region *input_regions = stats->awb_stats;
- double *r_table = (double *)status.r;
- double *g_table = (double *)status.g;
- double *b_table = (double *)status.b;
- for (int i = 0; i < XY; i++) {
- regions[i].r_sum = input_regions[i].r_sum / r_table[i];
- regions[i].g_sum = input_regions[i].g_sum / g_table[i];
- regions[i].b_sum = input_regions[i].b_sum / b_table[i];
- regions[i].counted = input_regions[i].counted;
- // (don't care about the uncounted value)
- }
-}
-
-void Alsc::restartAsync(StatisticsPtr &stats, Metadata *image_metadata)
-{
- LOG(RPiAlsc, Debug) << "Starting ALSC calculation";
- // Get the current colour temperature. It's all we need from the
- // metadata. Default to the last CT value (which could be the default).
- ct_ = get_ct(image_metadata, ct_);
- // We have to copy the statistics here, dividing out our best guess of
- // the LSC table that the pipeline applied to them.
- AlscStatus alsc_status;
- if (image_metadata->Get("alsc.status", alsc_status) != 0) {
- LOG(RPiAlsc, Warning)
- << "No ALSC status found for applied gains!";
- for (int y = 0; y < Y; y++)
- for (int x = 0; x < X; x++) {
- alsc_status.r[y][x] = 1.0;
- alsc_status.g[y][x] = 1.0;
- alsc_status.b[y][x] = 1.0;
- }
- }
- copy_stats(statistics_, stats, alsc_status);
- frame_phase_ = 0;
- async_started_ = true;
- {
- std::lock_guard<std::mutex> lock(mutex_);
- async_start_ = true;
- }
- async_signal_.notify_one();
-}
-
-void Alsc::Prepare(Metadata *image_metadata)
-{
- // Count frames since we started, and since we last poked the async
- // thread.
- if (frame_count_ < (int)config_.startup_frames)
- frame_count_++;
- double speed = frame_count_ < (int)config_.startup_frames
- ? 1.0
- : config_.speed;
- LOG(RPiAlsc, Debug)
- << "frame_count " << frame_count_ << " speed " << speed;
- {
- std::unique_lock<std::mutex> lock(mutex_);
- if (async_started_ && async_finished_)
- fetchAsyncResults();
- }
- // Apply IIR filter to results and program into the pipeline.
- double *ptr = (double *)sync_results_,
- *pptr = (double *)prev_sync_results_;
- for (unsigned int i = 0;
- i < sizeof(sync_results_) / sizeof(double); i++)
- pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i];
- // Put output values into status metadata.
- AlscStatus status;
- memcpy(status.r, prev_sync_results_[0], sizeof(status.r));
- memcpy(status.g, prev_sync_results_[1], sizeof(status.g));
- memcpy(status.b, prev_sync_results_[2], sizeof(status.b));
- image_metadata->Set("alsc.status", status);
-}
-
-void Alsc::Process(StatisticsPtr &stats, Metadata *image_metadata)
-{
- // Count frames since we started, and since we last poked the async
- // thread.
- if (frame_phase_ < (int)config_.frame_period)
- frame_phase_++;
- if (frame_count2_ < (int)config_.startup_frames)
- frame_count2_++;
- LOG(RPiAlsc, Debug) << "frame_phase " << frame_phase_;
- if (frame_phase_ >= (int)config_.frame_period ||
- frame_count2_ < (int)config_.startup_frames) {
- if (async_started_ == false)
- restartAsync(stats, image_metadata);
- }
-}
-
-void Alsc::asyncFunc()
-{
- while (true) {
- {
- std::unique_lock<std::mutex> lock(mutex_);
- async_signal_.wait(lock, [&] {
- return async_start_ || async_abort_;
- });
- async_start_ = false;
- if (async_abort_)
- break;
- }
- doAlsc();
- {
- std::lock_guard<std::mutex> lock(mutex_);
- async_finished_ = true;
- }
- sync_signal_.notify_one();
- }
-}
-
-void get_cal_table(double ct, std::vector<AlscCalibration> const &calibrations,
- double cal_table[XY])
-{
- if (calibrations.empty()) {
- for (int i = 0; i < XY; i++)
- cal_table[i] = 1.0;
- LOG(RPiAlsc, Debug) << "no calibrations found";
- } else if (ct <= calibrations.front().ct) {
- memcpy(cal_table, calibrations.front().table,
- XY * sizeof(double));
- LOG(RPiAlsc, Debug) << "using calibration for "
- << calibrations.front().ct;
- } else if (ct >= calibrations.back().ct) {
- memcpy(cal_table, calibrations.back().table,
- XY * sizeof(double));
- LOG(RPiAlsc, Debug) << "using calibration for "
- << calibrations.back().ct;
- } else {
- int idx = 0;
- while (ct > calibrations[idx + 1].ct)
- idx++;
- double ct0 = calibrations[idx].ct,
- ct1 = calibrations[idx + 1].ct;
- LOG(RPiAlsc, Debug)
- << "ct is " << ct << ", interpolating between "
- << ct0 << " and " << ct1;
- for (int i = 0; i < XY; i++)
- cal_table[i] =
- (calibrations[idx].table[i] * (ct1 - ct) +
- calibrations[idx + 1].table[i] * (ct - ct0)) /
- (ct1 - ct0);
- }
-}
-
-void resample_cal_table(double const cal_table_in[XY],
- CameraMode const &camera_mode, double cal_table_out[XY])
-{
- // Precalculate and cache the x sampling locations and phases to save
- // recomputing them on every row.
- int x_lo[X], x_hi[X];
- double xf[X];
- double scale_x = camera_mode.sensor_width /
- (camera_mode.width * camera_mode.scale_x);
- double x_off = camera_mode.crop_x / (double)camera_mode.sensor_width;
- double x = .5 / scale_x + x_off * X - .5;
- double x_inc = 1 / scale_x;
- for (int i = 0; i < X; i++, x += x_inc) {
- x_lo[i] = floor(x);
- xf[i] = x - x_lo[i];
- x_hi[i] = std::min(x_lo[i] + 1, X - 1);
- x_lo[i] = std::max(x_lo[i], 0);
- if (!!(camera_mode.transform & libcamera::Transform::HFlip)) {
- x_lo[i] = X - 1 - x_lo[i];
- x_hi[i] = X - 1 - x_hi[i];
- }
- }
- // Now march over the output table generating the new values.
- double scale_y = camera_mode.sensor_height /
- (camera_mode.height * camera_mode.scale_y);
- double y_off = camera_mode.crop_y / (double)camera_mode.sensor_height;
- double y = .5 / scale_y + y_off * Y - .5;
- double y_inc = 1 / scale_y;
- for (int j = 0; j < Y; j++, y += y_inc) {
- int y_lo = floor(y);
- double yf = y - y_lo;
- int y_hi = std::min(y_lo + 1, Y - 1);
- y_lo = std::max(y_lo, 0);
- if (!!(camera_mode.transform & libcamera::Transform::VFlip)) {
- y_lo = Y - 1 - y_lo;
- y_hi = Y - 1 - y_hi;
- }
- double const *row_above = cal_table_in + X * y_lo;
- double const *row_below = cal_table_in + X * y_hi;
- for (int i = 0; i < X; i++) {
- double above = row_above[x_lo[i]] * (1 - xf[i]) +
- row_above[x_hi[i]] * xf[i];
- double below = row_below[x_lo[i]] * (1 - xf[i]) +
- row_below[x_hi[i]] * xf[i];
- *(cal_table_out++) = above * (1 - yf) + below * yf;
- }
- }
-}
-
-// Calculate chrominance statistics (R/G and B/G) for each region.
-static_assert(XY == AWB_REGIONS, "ALSC/AWB statistics region mismatch");
-static void calculate_Cr_Cb(bcm2835_isp_stats_region *awb_region, double Cr[XY],
- double Cb[XY], uint32_t min_count, uint16_t min_G)
-{
- for (int i = 0; i < XY; i++) {
- bcm2835_isp_stats_region &zone = awb_region[i];
- if (zone.counted <= min_count ||
- zone.g_sum / zone.counted <= min_G) {
- Cr[i] = Cb[i] = INSUFFICIENT_DATA;
- continue;
- }
- Cr[i] = zone.r_sum / (double)zone.g_sum;
- Cb[i] = zone.b_sum / (double)zone.g_sum;
- }
-}
-
-static void apply_cal_table(double const cal_table[XY], double C[XY])
-{
- for (int i = 0; i < XY; i++)
- if (C[i] != INSUFFICIENT_DATA)
- C[i] *= cal_table[i];
-}
-
-void compensate_lambdas_for_cal(double const cal_table[XY],
- double const old_lambdas[XY],
- double new_lambdas[XY])
-{
- double min_new_lambda = std::numeric_limits<double>::max();
- for (int i = 0; i < XY; i++) {
- new_lambdas[i] = old_lambdas[i] * cal_table[i];
- min_new_lambda = std::min(min_new_lambda, new_lambdas[i]);
- }
- for (int i = 0; i < XY; i++)
- new_lambdas[i] /= min_new_lambda;
-}
-
-[[maybe_unused]] static void print_cal_table(double const C[XY])
-{
- printf("table: [\n");
- for (int j = 0; j < Y; j++) {
- for (int i = 0; i < X; i++) {
- printf("%5.3f", 1.0 / C[j * X + i]);
- if (i != X - 1 || j != Y - 1)
- printf(",");
- }
- printf("\n");
- }
- printf("]\n");
-}
-
-// Compute weight out of 1.0 which reflects how similar we wish to make the
-// colours of these two regions.
-static double compute_weight(double C_i, double C_j, double sigma)
-{
- if (C_i == INSUFFICIENT_DATA || C_j == INSUFFICIENT_DATA)
- return 0;
- double diff = (C_i - C_j) / sigma;
- return exp(-diff * diff / 2);
-}
-
-// Compute all weights.
-static void compute_W(double const C[XY], double sigma, double W[XY][4])
-{
- for (int i = 0; i < XY; i++) {
- // Start with neighbour above and go clockwise.
- W[i][0] = i >= X ? compute_weight(C[i], C[i - X], sigma) : 0;
- W[i][1] = i % X < X - 1 ? compute_weight(C[i], C[i + 1], sigma)
- : 0;
- W[i][2] =
- i < XY - X ? compute_weight(C[i], C[i + X], sigma) : 0;
- W[i][3] = i % X ? compute_weight(C[i], C[i - 1], sigma) : 0;
- }
-}
-
-// Compute M, the large but sparse matrix such that M * lambdas = 0.
-static void construct_M(double const C[XY], double const W[XY][4],
- double M[XY][4])
-{
- double epsilon = 0.001;
- for (int i = 0; i < XY; i++) {
- // Note how, if C[i] == INSUFFICIENT_DATA, the weights will all
- // be zero so the equation is still set up correctly.
- int m = !!(i >= X) + !!(i % X < X - 1) + !!(i < XY - X) +
- !!(i % X); // total number of neighbours
- // we'll divide the diagonal out straight away
- double diagonal =
- (epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) *
- C[i];
- M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) /
- diagonal
- : 0;
- M[i][1] = i % X < X - 1
- ? (W[i][1] * C[i + 1] + epsilon / m * C[i]) /
- diagonal
- : 0;
- M[i][2] = i < XY - X
- ? (W[i][2] * C[i + X] + epsilon / m * C[i]) /
- diagonal
- : 0;
- M[i][3] = i % X ? (W[i][3] * C[i - 1] + epsilon / m * C[i]) /
- diagonal
- : 0;
- }
-}
-
-// In the compute_lambda_ functions, note that the matrix coefficients for the
-// left/right neighbours are zero down the left/right edges, so we don't need
-// need to test the i value to exclude them.
-static double compute_lambda_bottom(int i, double const M[XY][4],
- double lambda[XY])
-{
- return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X] +
- M[i][3] * lambda[i - 1];
-}
-static double compute_lambda_bottom_start(int i, double const M[XY][4],
- double lambda[XY])
-{
- return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X];
-}
-static double compute_lambda_interior(int i, double const M[XY][4],
- double lambda[XY])
-{
- return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
- M[i][2] * lambda[i + X] + M[i][3] * lambda[i - 1];
-}
-static double compute_lambda_top(int i, double const M[XY][4],
- double lambda[XY])
-{
- return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
- M[i][3] * lambda[i - 1];
-}
-static double compute_lambda_top_end(int i, double const M[XY][4],
- double lambda[XY])
-{
- return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1];
-}
-
-// Gauss-Seidel iteration with over-relaxation.
-static double gauss_seidel2_SOR(double const M[XY][4], double omega,
- double lambda[XY], double lambda_bound)
-{
- const double min = 1 - lambda_bound, max = 1 + lambda_bound;
- double old_lambda[XY];
- int i;
- for (i = 0; i < XY; i++)
- old_lambda[i] = lambda[i];
- lambda[0] = compute_lambda_bottom_start(0, M, lambda);
- lambda[0] = std::clamp(lambda[0], min, max);
- for (i = 1; i < X; i++) {
- lambda[i] = compute_lambda_bottom(i, M, lambda);
- lambda[i] = std::clamp(lambda[i], min, max);
- }
- for (; i < XY - X; i++) {
- lambda[i] = compute_lambda_interior(i, M, lambda);
- lambda[i] = std::clamp(lambda[i], min, max);
- }
- for (; i < XY - 1; i++) {
- lambda[i] = compute_lambda_top(i, M, lambda);
- lambda[i] = std::clamp(lambda[i], min, max);
- }
- lambda[i] = compute_lambda_top_end(i, M, lambda);
- lambda[i] = std::clamp(lambda[i], min, max);
- // Also solve the system from bottom to top, to help spread the updates
- // better.
- lambda[i] = compute_lambda_top_end(i, M, lambda);
- lambda[i] = std::clamp(lambda[i], min, max);
- for (i = XY - 2; i >= XY - X; i--) {
- lambda[i] = compute_lambda_top(i, M, lambda);
- lambda[i] = std::clamp(lambda[i], min, max);
- }
- for (; i >= X; i--) {
- lambda[i] = compute_lambda_interior(i, M, lambda);
- lambda[i] = std::clamp(lambda[i], min, max);
- }
- for (; i >= 1; i--) {
- lambda[i] = compute_lambda_bottom(i, M, lambda);
- lambda[i] = std::clamp(lambda[i], min, max);
- }
- lambda[0] = compute_lambda_bottom_start(0, M, lambda);
- lambda[0] = std::clamp(lambda[0], min, max);
- double max_diff = 0;
- for (i = 0; i < XY; i++) {
- lambda[i] = old_lambda[i] + (lambda[i] - old_lambda[i]) * omega;
- if (fabs(lambda[i] - old_lambda[i]) > fabs(max_diff))
- max_diff = lambda[i] - old_lambda[i];
- }
- return max_diff;
-}
-
-// Normalise the values so that the smallest value is 1.
-static void normalise(double *ptr, size_t n)
-{
- double minval = ptr[0];
- for (size_t i = 1; i < n; i++)
- minval = std::min(minval, ptr[i]);
- for (size_t i = 0; i < n; i++)
- ptr[i] /= minval;
-}
-
-// Rescale the values so that the average value is 1.
-static void reaverage(Span<double> data)
-{
- double sum = std::accumulate(data.begin(), data.end(), 0.0);
- double ratio = 1 / (sum / data.size());
- for (double &d : data)
- d *= ratio;
-}
-
-static void run_matrix_iterations(double const C[XY], double lambda[XY],
- double const W[XY][4], double omega,
- int n_iter, double threshold, double lambda_bound)
-{
- double M[XY][4];
- construct_M(C, W, M);
- double last_max_diff = std::numeric_limits<double>::max();
- for (int i = 0; i < n_iter; i++) {
- double max_diff = fabs(gauss_seidel2_SOR(M, omega, lambda, lambda_bound));
- if (max_diff < threshold) {
- LOG(RPiAlsc, Debug)
- << "Stop after " << i + 1 << " iterations";
- break;
- }
- // this happens very occasionally (so make a note), though
- // doesn't seem to matter
- if (max_diff > last_max_diff)
- LOG(RPiAlsc, Debug)
- << "Iteration " << i << ": max_diff gone up "
- << last_max_diff << " to " << max_diff;
- last_max_diff = max_diff;
- }
- // We're going to normalise the lambdas so the total average is 1.
- reaverage({ lambda, XY });
-}
-
-static void add_luminance_rb(double result[XY], double const lambda[XY],
- double const luminance_lut[XY],
- double luminance_strength)
-{
- for (int i = 0; i < XY; i++)
- result[i] = lambda[i] *
- ((luminance_lut[i] - 1) * luminance_strength + 1);
-}
-
-static void add_luminance_g(double result[XY], double lambda,
- double const luminance_lut[XY],
- double luminance_strength)
-{
- for (int i = 0; i < XY; i++)
- result[i] = lambda *
- ((luminance_lut[i] - 1) * luminance_strength + 1);
-}
-
-void add_luminance_to_tables(double results[3][Y][X], double const lambda_r[XY],
- double lambda_g, double const lambda_b[XY],
- double const luminance_lut[XY],
- double luminance_strength)
-{
- add_luminance_rb((double *)results[0], lambda_r, luminance_lut,
- luminance_strength);
- add_luminance_g((double *)results[1], lambda_g, luminance_lut,
- luminance_strength);
- add_luminance_rb((double *)results[2], lambda_b, luminance_lut,
- luminance_strength);
- normalise((double *)results, 3 * XY);
-}
-
-void Alsc::doAlsc()
-{
- double Cr[XY], Cb[XY], Wr[XY][4], Wb[XY][4], cal_table_r[XY],
- cal_table_b[XY], cal_table_tmp[XY];
- // Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are
- // usable.
- calculate_Cr_Cb(statistics_, Cr, Cb, config_.min_count, config_.min_G);
- // Fetch the new calibrations (if any) for this CT. Resample them in
- // case the camera mode is not full-frame.
- get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp);
- resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r);
- get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp);
- resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b);
- // You could print out the cal tables for this image here, if you're
- // tuning the algorithm...
- // Apply any calibration to the statistics, so the adaptive algorithm
- // makes only the extra adjustments.
- apply_cal_table(cal_table_r, Cr);
- apply_cal_table(cal_table_b, Cb);
- // Compute weights between zones.
- compute_W(Cr, config_.sigma_Cr, Wr);
- compute_W(Cb, config_.sigma_Cb, Wb);
- // Run Gauss-Seidel iterations over the resulting matrix, for R and B.
- run_matrix_iterations(Cr, lambda_r_, Wr, config_.omega, config_.n_iter,
- config_.threshold, config_.lambda_bound);
- run_matrix_iterations(Cb, lambda_b_, Wb, config_.omega, config_.n_iter,
- config_.threshold, config_.lambda_bound);
- // Fold the calibrated gains into our final lambda values. (Note that on
- // the next run, we re-start with the lambda values that don't have the
- // calibration gains included.)
- compensate_lambdas_for_cal(cal_table_r, lambda_r_, async_lambda_r_);
- compensate_lambdas_for_cal(cal_table_b, lambda_b_, async_lambda_b_);
- // Fold in the luminance table at the appropriate strength.
- add_luminance_to_tables(async_results_, async_lambda_r_, 1.0,
- async_lambda_b_, luminance_table_,
- config_.luminance_strength);
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return (Algorithm *)new Alsc(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.hpp b/src/ipa/raspberrypi/controller/rpi/alsc.hpp
deleted file mode 100644
index d1dbe0d1..00000000
--- a/src/ipa/raspberrypi/controller/rpi/alsc.hpp
+++ /dev/null
@@ -1,106 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * alsc.hpp - ALSC (auto lens shading correction) control algorithm
- */
-#pragma once
-
-#include <mutex>
-#include <condition_variable>
-#include <thread>
-
-#include "../algorithm.hpp"
-#include "../alsc_status.h"
-
-namespace RPiController {
-
-// Algorithm to generate automagic LSC (Lens Shading Correction) tables.
-
-struct AlscCalibration {
- double ct;
- double table[ALSC_CELLS_X * ALSC_CELLS_Y];
-};
-
-struct AlscConfig {
- // Only repeat the ALSC calculation every "this many" frames
- uint16_t frame_period;
- // number of initial frames for which speed taken as 1.0 (maximum)
- uint16_t startup_frames;
- // IIR filter speed applied to algorithm results
- double speed;
- double sigma_Cr;
- double sigma_Cb;
- double min_count;
- uint16_t min_G;
- double omega;
- uint32_t n_iter;
- double luminance_lut[ALSC_CELLS_X * ALSC_CELLS_Y];
- double luminance_strength;
- std::vector<AlscCalibration> calibrations_Cr;
- std::vector<AlscCalibration> calibrations_Cb;
- double default_ct; // colour temperature if no metadata found
- double threshold; // iteration termination threshold
- double lambda_bound; // upper/lower bound for lambda from a value of 1
-};
-
-class Alsc : public Algorithm
-{
-public:
- Alsc(Controller *controller = NULL);
- ~Alsc();
- char const *Name() const override;
- void Initialise() override;
- void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override;
- void Read(boost::property_tree::ptree const &params) override;
- void Prepare(Metadata *image_metadata) override;
- void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
-
-private:
- // configuration is read-only, and available to both threads
- AlscConfig config_;
- bool first_time_;
- CameraMode camera_mode_;
- double luminance_table_[ALSC_CELLS_X * ALSC_CELLS_Y];
- std::thread async_thread_;
- void asyncFunc(); // asynchronous thread function
- std::mutex mutex_;
- // condvar for async thread to wait on
- std::condition_variable async_signal_;
- // condvar for synchronous thread to wait on
- std::condition_variable sync_signal_;
- // for sync thread to check if async thread finished (requires mutex)
- bool async_finished_;
- // for async thread to check if it's been told to run (requires mutex)
- bool async_start_;
- // for async thread to check if it's been told to quit (requires mutex)
- bool async_abort_;
-
- // The following are only for the synchronous thread to use:
- // for sync thread to note its has asked async thread to run
- bool async_started_;
- // counts up to frame_period before restarting the async thread
- int frame_phase_;
- // counts up to startup_frames
- int frame_count_;
- // counts up to startup_frames for Process function
- int frame_count2_;
- double sync_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X];
- double prev_sync_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X];
- void waitForAysncThread();
- // The following are for the asynchronous thread to use, though the main
- // thread can set/reset them if the async thread is known to be idle:
- void restartAsync(StatisticsPtr &stats, Metadata *image_metadata);
- // copy out the results from the async thread so that it can be restarted
- void fetchAsyncResults();
- double ct_;
- bcm2835_isp_stats_region statistics_[ALSC_CELLS_Y * ALSC_CELLS_X];
- double async_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X];
- double async_lambda_r_[ALSC_CELLS_X * ALSC_CELLS_Y];
- double async_lambda_b_[ALSC_CELLS_X * ALSC_CELLS_Y];
- void doAlsc();
- double lambda_r_[ALSC_CELLS_X * ALSC_CELLS_Y];
- double lambda_b_[ALSC_CELLS_X * ALSC_CELLS_Y];
-};
-
-} // namespace RPiController
diff --git a/src/ipa/raspberrypi/controller/rpi/awb.cpp b/src/ipa/raspberrypi/controller/rpi/awb.cpp
deleted file mode 100644
index d4c93447..00000000
--- a/src/ipa/raspberrypi/controller/rpi/awb.cpp
+++ /dev/null
@@ -1,667 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * awb.cpp - AWB control algorithm
- */
-
-#include <libcamera/base/log.h>
-
-#include "../lux_status.h"
-
-#include "awb.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-
-LOG_DEFINE_CATEGORY(RPiAwb)
-
-#define NAME "rpi.awb"
-
-#define AWB_STATS_SIZE_X DEFAULT_AWB_REGIONS_X
-#define AWB_STATS_SIZE_Y DEFAULT_AWB_REGIONS_Y
-
-// todo - the locking in this algorithm needs some tidying up as has been done
-// elsewhere (ALSC and AGC).
-
-void AwbMode::Read(boost::property_tree::ptree const &params)
-{
- ct_lo = params.get<double>("lo");
- ct_hi = params.get<double>("hi");
-}
-
-void AwbPrior::Read(boost::property_tree::ptree const &params)
-{
- lux = params.get<double>("lux");
- prior.Read(params.get_child("prior"));
-}
-
-static void read_ct_curve(Pwl &ct_r, Pwl &ct_b,
- boost::property_tree::ptree const &params)
-{
- int num = 0;
- for (auto it = params.begin(); it != params.end(); it++) {
- double ct = it->second.get_value<double>();
- assert(it == params.begin() || ct != ct_r.Domain().end);
- if (++it == params.end())
- throw std::runtime_error(
- "AwbConfig: incomplete CT curve entry");
- ct_r.Append(ct, it->second.get_value<double>());
- if (++it == params.end())
- throw std::runtime_error(
- "AwbConfig: incomplete CT curve entry");
- ct_b.Append(ct, it->second.get_value<double>());
- num++;
- }
- if (num < 2)
- throw std::runtime_error(
- "AwbConfig: insufficient points in CT curve");
-}
-
-void AwbConfig::Read(boost::property_tree::ptree const &params)
-{
- bayes = params.get<int>("bayes", 1);
- frame_period = params.get<uint16_t>("frame_period", 10);
- startup_frames = params.get<uint16_t>("startup_frames", 10);
- convergence_frames = params.get<unsigned int>("convergence_frames", 3);
- speed = params.get<double>("speed", 0.05);
- if (params.get_child_optional("ct_curve"))
- read_ct_curve(ct_r, ct_b, params.get_child("ct_curve"));
- if (params.get_child_optional("priors")) {
- for (auto &p : params.get_child("priors")) {
- AwbPrior prior;
- prior.Read(p.second);
- if (!priors.empty() && prior.lux <= priors.back().lux)
- throw std::runtime_error(
- "AwbConfig: Prior must be ordered in increasing lux value");
- priors.push_back(prior);
- }
- if (priors.empty())
- throw std::runtime_error(
- "AwbConfig: no AWB priors configured");
- }
- if (params.get_child_optional("modes")) {
- for (auto &p : params.get_child("modes")) {
- modes[p.first].Read(p.second);
- if (default_mode == nullptr)
- default_mode = &modes[p.first];
- }
- if (default_mode == nullptr)
- throw std::runtime_error(
- "AwbConfig: no AWB modes configured");
- }
- min_pixels = params.get<double>("min_pixels", 16.0);
- min_G = params.get<uint16_t>("min_G", 32);
- min_regions = params.get<uint32_t>("min_regions", 10);
- delta_limit = params.get<double>("delta_limit", 0.2);
- coarse_step = params.get<double>("coarse_step", 0.2);
- transverse_pos = params.get<double>("transverse_pos", 0.01);
- transverse_neg = params.get<double>("transverse_neg", 0.01);
- if (transverse_pos <= 0 || transverse_neg <= 0)
- throw std::runtime_error(
- "AwbConfig: transverse_pos/neg must be > 0");
- sensitivity_r = params.get<double>("sensitivity_r", 1.0);
- sensitivity_b = params.get<double>("sensitivity_b", 1.0);
- if (bayes) {
- if (ct_r.Empty() || ct_b.Empty() || priors.empty() ||
- default_mode == nullptr) {
- LOG(RPiAwb, Warning)
- << "Bayesian AWB mis-configured - switch to Grey method";
- bayes = false;
- }
- }
- fast = params.get<int>(
- "fast", bayes); // default to fast for Bayesian, otherwise slow
- whitepoint_r = params.get<double>("whitepoint_r", 0.0);
- whitepoint_b = params.get<double>("whitepoint_b", 0.0);
- if (bayes == false)
- sensitivity_r = sensitivity_b =
- 1.0; // nor do sensitivities make any sense
-}
-
-Awb::Awb(Controller *controller)
- : AwbAlgorithm(controller)
-{
- async_abort_ = async_start_ = async_started_ = async_finished_ = false;
- mode_ = nullptr;
- manual_r_ = manual_b_ = 0.0;
- first_switch_mode_ = true;
- async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this));
-}
-
-Awb::~Awb()
-{
- {
- std::lock_guard<std::mutex> lock(mutex_);
- async_abort_ = true;
- }
- async_signal_.notify_one();
- async_thread_.join();
-}
-
-char const *Awb::Name() const
-{
- return NAME;
-}
-
-void Awb::Read(boost::property_tree::ptree const &params)
-{
- config_.Read(params);
-}
-
-void Awb::Initialise()
-{
- frame_count_ = frame_phase_ = 0;
- // Put something sane into the status that we are filtering towards,
- // just in case the first few frames don't have anything meaningful in
- // them.
- if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) {
- sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000);
- sync_results_.gain_r =
- 1.0 / config_.ct_r.Eval(sync_results_.temperature_K);
- sync_results_.gain_g = 1.0;
- sync_results_.gain_b =
- 1.0 / config_.ct_b.Eval(sync_results_.temperature_K);
- } else {
- // random values just to stop the world blowing up
- sync_results_.temperature_K = 4500;
- sync_results_.gain_r = sync_results_.gain_g =
- sync_results_.gain_b = 1.0;
- }
- prev_sync_results_ = sync_results_;
- async_results_ = sync_results_;
-}
-
-bool Awb::IsPaused() const
-{
- return false;
-}
-
-void Awb::Pause()
-{
- // "Pause" by fixing everything to the most recent values.
- manual_r_ = sync_results_.gain_r = prev_sync_results_.gain_r;
- manual_b_ = sync_results_.gain_b = prev_sync_results_.gain_b;
- sync_results_.gain_g = prev_sync_results_.gain_g;
- sync_results_.temperature_K = prev_sync_results_.temperature_K;
-}
-
-void Awb::Resume()
-{
- manual_r_ = 0.0;
- manual_b_ = 0.0;
-}
-
-unsigned int Awb::GetConvergenceFrames() const
-{
- // If not in auto mode, there is no convergence
- // to happen, so no need to drop any frames - return zero.
- if (!isAutoEnabled())
- return 0;
- else
- return config_.convergence_frames;
-}
-
-void Awb::SetMode(std::string const &mode_name)
-{
- mode_name_ = mode_name;
-}
-
-void Awb::SetManualGains(double manual_r, double manual_b)
-{
- // If any of these are 0.0, we swich back to auto.
- manual_r_ = manual_r;
- manual_b_ = manual_b;
- // If not in auto mode, set these values into the sync_results which
- // means that Prepare() will adopt them immediately.
- if (!isAutoEnabled()) {
- sync_results_.gain_r = prev_sync_results_.gain_r = manual_r_;
- sync_results_.gain_g = prev_sync_results_.gain_g = 1.0;
- sync_results_.gain_b = prev_sync_results_.gain_b = manual_b_;
- }
-}
-
-void Awb::SwitchMode([[maybe_unused]] CameraMode const &camera_mode,
- Metadata *metadata)
-{
- // On the first mode switch we'll have no meaningful colour
- // temperature, so try to dead reckon one if in manual mode.
- if (!isAutoEnabled() && first_switch_mode_ && config_.bayes) {
- Pwl ct_r_inverse = config_.ct_r.Inverse();
- Pwl ct_b_inverse = config_.ct_b.Inverse();
- double ct_r = ct_r_inverse.Eval(ct_r_inverse.Domain().Clip(1 / manual_r_));
- double ct_b = ct_b_inverse.Eval(ct_b_inverse.Domain().Clip(1 / manual_b_));
- prev_sync_results_.temperature_K = (ct_r + ct_b) / 2;
- sync_results_.temperature_K = prev_sync_results_.temperature_K;
- }
- // Let other algorithms know the current white balance values.
- metadata->Set("awb.status", prev_sync_results_);
- first_switch_mode_ = false;
-}
-
-bool Awb::isAutoEnabled() const
-{
- return manual_r_ == 0.0 || manual_b_ == 0.0;
-}
-
-void Awb::fetchAsyncResults()
-{
- LOG(RPiAwb, Debug) << "Fetch AWB results";
- async_finished_ = false;
- async_started_ = false;
- // It's possible manual gains could be set even while the async
- // thread was running, so only copy the results if still in auto mode.
- if (isAutoEnabled())
- sync_results_ = async_results_;
-}
-
-void Awb::restartAsync(StatisticsPtr &stats, double lux)
-{
- LOG(RPiAwb, Debug) << "Starting AWB calculation";
- // this makes a new reference which belongs to the asynchronous thread
- statistics_ = stats;
- // store the mode as it could technically change
- auto m = config_.modes.find(mode_name_);
- mode_ = m != config_.modes.end()
- ? &m->second
- : (mode_ == nullptr ? config_.default_mode : mode_);
- lux_ = lux;
- frame_phase_ = 0;
- async_started_ = true;
- size_t len = mode_name_.copy(async_results_.mode,
- sizeof(async_results_.mode) - 1);
- async_results_.mode[len] = '\0';
- {
- std::lock_guard<std::mutex> lock(mutex_);
- async_start_ = true;
- }
- async_signal_.notify_one();
-}
-
-void Awb::Prepare(Metadata *image_metadata)
-{
- if (frame_count_ < (int)config_.startup_frames)
- frame_count_++;
- double speed = frame_count_ < (int)config_.startup_frames
- ? 1.0
- : config_.speed;
- LOG(RPiAwb, Debug)
- << "frame_count " << frame_count_ << " speed " << speed;
- {
- std::unique_lock<std::mutex> lock(mutex_);
- if (async_started_ && async_finished_)
- fetchAsyncResults();
- }
- // Finally apply IIR filter to results and put into metadata.
- memcpy(prev_sync_results_.mode, sync_results_.mode,
- sizeof(prev_sync_results_.mode));
- prev_sync_results_.temperature_K =
- speed * sync_results_.temperature_K +
- (1.0 - speed) * prev_sync_results_.temperature_K;
- prev_sync_results_.gain_r = speed * sync_results_.gain_r +
- (1.0 - speed) * prev_sync_results_.gain_r;
- prev_sync_results_.gain_g = speed * sync_results_.gain_g +
- (1.0 - speed) * prev_sync_results_.gain_g;
- prev_sync_results_.gain_b = speed * sync_results_.gain_b +
- (1.0 - speed) * prev_sync_results_.gain_b;
- image_metadata->Set("awb.status", prev_sync_results_);
- LOG(RPiAwb, Debug)
- << "Using AWB gains r " << prev_sync_results_.gain_r << " g "
- << prev_sync_results_.gain_g << " b "
- << prev_sync_results_.gain_b;
-}
-
-void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata)
-{
- // Count frames since we last poked the async thread.
- if (frame_phase_ < (int)config_.frame_period)
- frame_phase_++;
- LOG(RPiAwb, Debug) << "frame_phase " << frame_phase_;
- // We do not restart the async thread if we're not in auto mode.
- if (isAutoEnabled() &&
- (frame_phase_ >= (int)config_.frame_period ||
- frame_count_ < (int)config_.startup_frames)) {
- // Update any settings and any image metadata that we need.
- struct LuxStatus lux_status = {};
- lux_status.lux = 400; // in case no metadata
- if (image_metadata->Get("lux.status", lux_status) != 0)
- LOG(RPiAwb, Debug) << "No lux metadata found";
- LOG(RPiAwb, Debug) << "Awb lux value is " << lux_status.lux;
-
- if (async_started_ == false)
- restartAsync(stats, lux_status.lux);
- }
-}
-
-void Awb::asyncFunc()
-{
- while (true) {
- {
- std::unique_lock<std::mutex> lock(mutex_);
- async_signal_.wait(lock, [&] {
- return async_start_ || async_abort_;
- });
- async_start_ = false;
- if (async_abort_)
- break;
- }
- doAwb();
- {
- std::lock_guard<std::mutex> lock(mutex_);
- async_finished_ = true;
- }
- sync_signal_.notify_one();
- }
-}
-
-static void generate_stats(std::vector<Awb::RGB> &zones,
- bcm2835_isp_stats_region *stats, double min_pixels,
- double min_G)
-{
- for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) {
- Awb::RGB zone;
- double counted = stats[i].counted;
- if (counted >= min_pixels) {
- zone.G = stats[i].g_sum / counted;
- if (zone.G >= min_G) {
- zone.R = stats[i].r_sum / counted;
- zone.B = stats[i].b_sum / counted;
- zones.push_back(zone);
- }
- }
- }
-}
-
-void Awb::prepareStats()
-{
- zones_.clear();
- // LSC has already been applied to the stats in this pipeline, so stop
- // any LSC compensation. We also ignore config_.fast in this version.
- generate_stats(zones_, statistics_->awb_stats, config_.min_pixels,
- config_.min_G);
- // we're done with these; we may as well relinquish our hold on the
- // pointer.
- statistics_.reset();
- // apply sensitivities, so values appear to come from our "canonical"
- // sensor.
- for (auto &zone : zones_)
- zone.R *= config_.sensitivity_r,
- zone.B *= config_.sensitivity_b;
-}
-
-double Awb::computeDelta2Sum(double gain_r, double gain_b)
-{
- // Compute the sum of the squared colour error (non-greyness) as it
- // appears in the log likelihood equation.
- double delta2_sum = 0;
- for (auto &z : zones_) {
- double delta_r = gain_r * z.R - 1 - config_.whitepoint_r;
- double delta_b = gain_b * z.B - 1 - config_.whitepoint_b;
- double delta2 = delta_r * delta_r + delta_b * delta_b;
- //LOG(RPiAwb, Debug) << "delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2;
- delta2 = std::min(delta2, config_.delta_limit);
- delta2_sum += delta2;
- }
- return delta2_sum;
-}
-
-Pwl Awb::interpolatePrior()
-{
- // Interpolate the prior log likelihood function for our current lux
- // value.
- if (lux_ <= config_.priors.front().lux)
- return config_.priors.front().prior;
- else if (lux_ >= config_.priors.back().lux)
- return config_.priors.back().prior;
- else {
- int idx = 0;
- // find which two we lie between
- while (config_.priors[idx + 1].lux < lux_)
- idx++;
- double lux0 = config_.priors[idx].lux,
- lux1 = config_.priors[idx + 1].lux;
- return Pwl::Combine(config_.priors[idx].prior,
- config_.priors[idx + 1].prior,
- [&](double /*x*/, double y0, double y1) {
- return y0 + (y1 - y0) *
- (lux_ - lux0) / (lux1 - lux0);
- });
- }
-}
-
-static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B,
- Pwl::Point const &C)
-{
- // Given 3 points on a curve, find the extremum of the function in that
- // interval by fitting a quadratic.
- const double eps = 1e-3;
- Pwl::Point CA = C - A, BA = B - A;
- double denominator = 2 * (BA.y * CA.x - CA.y * BA.x);
- if (abs(denominator) > eps) {
- double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x;
- double result = numerator / denominator + A.x;
- return std::max(A.x, std::min(C.x, result));
- }
- // has degenerated to straight line segment
- return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x);
-}
-
-double Awb::coarseSearch(Pwl const &prior)
-{
- points_.clear(); // assume doesn't deallocate memory
- size_t best_point = 0;
- double t = mode_->ct_lo;
- int span_r = 0, span_b = 0;
- // Step down the CT curve evaluating log likelihood.
- while (true) {
- double r = config_.ct_r.Eval(t, &span_r);
- double b = config_.ct_b.Eval(t, &span_b);
- double gain_r = 1 / r, gain_b = 1 / b;
- double delta2_sum = computeDelta2Sum(gain_r, gain_b);
- double prior_log_likelihood =
- prior.Eval(prior.Domain().Clip(t));
- double final_log_likelihood = delta2_sum - prior_log_likelihood;
- LOG(RPiAwb, Debug)
- << "t: " << t << " gain_r " << gain_r << " gain_b "
- << gain_b << " delta2_sum " << delta2_sum
- << " prior " << prior_log_likelihood << " final "
- << final_log_likelihood;
- points_.push_back(Pwl::Point(t, final_log_likelihood));
- if (points_.back().y < points_[best_point].y)
- best_point = points_.size() - 1;
- if (t == mode_->ct_hi)
- break;
- // for even steps along the r/b curve scale them by the current t
- t = std::min(t + t / 10 * config_.coarse_step,
- mode_->ct_hi);
- }
- t = points_[best_point].x;
- LOG(RPiAwb, Debug) << "Coarse search found CT " << t;
- // We have the best point of the search, but refine it with a quadratic
- // interpolation around its neighbours.
- if (points_.size() > 2) {
- unsigned long bp = std::min(best_point, points_.size() - 2);
- best_point = std::max(1UL, bp);
- t = interpolate_quadatric(points_[best_point - 1],
- points_[best_point],
- points_[best_point + 1]);
- LOG(RPiAwb, Debug)
- << "After quadratic refinement, coarse search has CT "
- << t;
- }
- return t;
-}
-
-void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
-{
- int span_r = -1, span_b = -1;
- config_.ct_r.Eval(t, &span_r);
- config_.ct_b.Eval(t, &span_b);
- double step = t / 10 * config_.coarse_step * 0.1;
- int nsteps = 5;
- double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) -
- config_.ct_r.Eval(t - nsteps * step, &span_r);
- double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) -
- config_.ct_b.Eval(t - nsteps * step, &span_b);
- Pwl::Point transverse(b_diff, -r_diff);
- if (transverse.Len2() < 1e-6)
- return;
- // unit vector orthogonal to the b vs. r function (pointing outwards
- // with r and b increasing)
- transverse = transverse / transverse.Len();
- double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0;
- double transverse_range =
- config_.transverse_neg + config_.transverse_pos;
- const int MAX_NUM_DELTAS = 12;
- // a transverse step approximately every 0.01 r/b units
- int num_deltas = floor(transverse_range * 100 + 0.5) + 1;
- num_deltas = num_deltas < 3 ? 3 :
- (num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas);
- // Step down CT curve. March a bit further if the transverse range is
- // large.
- nsteps += num_deltas;
- for (int i = -nsteps; i <= nsteps; i++) {
- double t_test = t + i * step;
- double prior_log_likelihood =
- prior.Eval(prior.Domain().Clip(t_test));
- double r_curve = config_.ct_r.Eval(t_test, &span_r);
- double b_curve = config_.ct_b.Eval(t_test, &span_b);
- // x will be distance off the curve, y the log likelihood there
- Pwl::Point points[MAX_NUM_DELTAS];
- int best_point = 0;
- // Take some measurements transversely *off* the CT curve.
- for (int j = 0; j < num_deltas; j++) {
- points[j].x = -config_.transverse_neg +
- (transverse_range * j) / (num_deltas - 1);
- Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) +
- transverse * points[j].x;
- double r_test = rb_test.x, b_test = rb_test.y;
- double gain_r = 1 / r_test, gain_b = 1 / b_test;
- double delta2_sum = computeDelta2Sum(gain_r, gain_b);
- points[j].y = delta2_sum - prior_log_likelihood;
- LOG(RPiAwb, Debug)
- << "At t " << t_test << " r " << r_test << " b "
- << b_test << ": " << points[j].y;
- if (points[j].y < points[best_point].y)
- best_point = j;
- }
- // We have NUM_DELTAS points transversely across the CT curve,
- // now let's do a quadratic interpolation for the best result.
- best_point = std::max(1, std::min(best_point, num_deltas - 2));
- Pwl::Point rb_test =
- Pwl::Point(r_curve, b_curve) +
- transverse *
- interpolate_quadatric(points[best_point - 1],
- points[best_point],
- points[best_point + 1]);
- double r_test = rb_test.x, b_test = rb_test.y;
- double gain_r = 1 / r_test, gain_b = 1 / b_test;
- double delta2_sum = computeDelta2Sum(gain_r, gain_b);
- double final_log_likelihood = delta2_sum - prior_log_likelihood;
- LOG(RPiAwb, Debug)
- << "Finally "
- << t_test << " r " << r_test << " b " << b_test << ": "
- << final_log_likelihood
- << (final_log_likelihood < best_log_likelihood ? " BEST" : "");
- if (best_t == 0 || final_log_likelihood < best_log_likelihood)
- best_log_likelihood = final_log_likelihood,
- best_t = t_test, best_r = r_test, best_b = b_test;
- }
- t = best_t, r = best_r, b = best_b;
- LOG(RPiAwb, Debug)
- << "Fine search found t " << t << " r " << r << " b " << b;
-}
-
-void Awb::awbBayes()
-{
- // May as well divide out G to save computeDelta2Sum from doing it over
- // and over.
- for (auto &z : zones_)
- z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1);
- // Get the current prior, and scale according to how many zones are
- // valid... not entirely sure about this.
- Pwl prior = interpolatePrior();
- prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y);
- prior.Map([](double x, double y) {
- LOG(RPiAwb, Debug) << "(" << x << "," << y << ")";
- });
- double t = coarseSearch(prior);
- double r = config_.ct_r.Eval(t);
- double b = config_.ct_b.Eval(t);
- LOG(RPiAwb, Debug)
- << "After coarse search: r " << r << " b " << b << " (gains r "
- << 1 / r << " b " << 1 / b << ")";
- // Not entirely sure how to handle the fine search yet. Mostly the
- // estimated CT is already good enough, but the fine search allows us to
- // wander transverely off the CT curve. Under some illuminants, where
- // there may be more or less green light, this may prove beneficial,
- // though I probably need more real datasets before deciding exactly how
- // this should be controlled and tuned.
- fineSearch(t, r, b, prior);
- LOG(RPiAwb, Debug)
- << "After fine search: r " << r << " b " << b << " (gains r "
- << 1 / r << " b " << 1 / b << ")";
- // Write results out for the main thread to pick up. Remember to adjust
- // the gains from the ones that the "canonical sensor" would require to
- // the ones needed by *this* sensor.
- async_results_.temperature_K = t;
- async_results_.gain_r = 1.0 / r * config_.sensitivity_r;
- async_results_.gain_g = 1.0;
- async_results_.gain_b = 1.0 / b * config_.sensitivity_b;
-}
-
-void Awb::awbGrey()
-{
- LOG(RPiAwb, Debug) << "Grey world AWB";
- // Make a separate list of the derivatives for each of red and blue, so
- // that we can sort them to exclude the extreme gains. We could
- // consider some variations, such as normalising all the zones first, or
- // doing an L2 average etc.
- std::vector<RGB> &derivs_R(zones_);
- std::vector<RGB> derivs_B(derivs_R);
- std::sort(derivs_R.begin(), derivs_R.end(),
- [](RGB const &a, RGB const &b) {
- return a.G * b.R < b.G * a.R;
- });
- std::sort(derivs_B.begin(), derivs_B.end(),
- [](RGB const &a, RGB const &b) {
- return a.G * b.B < b.G * a.B;
- });
- // Average the middle half of the values.
- int discard = derivs_R.size() / 4;
- RGB sum_R(0, 0, 0), sum_B(0, 0, 0);
- for (auto ri = derivs_R.begin() + discard,
- bi = derivs_B.begin() + discard;
- ri != derivs_R.end() - discard; ri++, bi++)
- sum_R += *ri, sum_B += *bi;
- double gain_r = sum_R.G / (sum_R.R + 1),
- gain_b = sum_B.G / (sum_B.B + 1);
- async_results_.temperature_K = 4500; // don't know what it is
- async_results_.gain_r = gain_r;
- async_results_.gain_g = 1.0;
- async_results_.gain_b = gain_b;
-}
-
-void Awb::doAwb()
-{
- prepareStats();
- LOG(RPiAwb, Debug) << "Valid zones: " << zones_.size();
- if (zones_.size() > config_.min_regions) {
- if (config_.bayes)
- awbBayes();
- else
- awbGrey();
- LOG(RPiAwb, Debug)
- << "CT found is "
- << async_results_.temperature_K
- << " with gains r " << async_results_.gain_r
- << " and b " << async_results_.gain_b;
- }
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return (Algorithm *)new Awb(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/awb.hpp b/src/ipa/raspberrypi/controller/rpi/awb.hpp
deleted file mode 100644
index ac3dca6f..00000000
--- a/src/ipa/raspberrypi/controller/rpi/awb.hpp
+++ /dev/null
@@ -1,179 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * awb.hpp - AWB control algorithm
- */
-#pragma once
-
-#include <mutex>
-#include <condition_variable>
-#include <thread>
-
-#include "../awb_algorithm.hpp"
-#include "../pwl.hpp"
-#include "../awb_status.h"
-
-namespace RPiController {
-
-// Control algorithm to perform AWB calculations.
-
-struct AwbMode {
- void Read(boost::property_tree::ptree const &params);
- double ct_lo; // low CT value for search
- double ct_hi; // high CT value for search
-};
-
-struct AwbPrior {
- void Read(boost::property_tree::ptree const &params);
- double lux; // lux level
- Pwl prior; // maps CT to prior log likelihood for this lux level
-};
-
-struct AwbConfig {
- AwbConfig() : default_mode(nullptr) {}
- void Read(boost::property_tree::ptree const &params);
- // Only repeat the AWB calculation every "this many" frames
- uint16_t frame_period;
- // number of initial frames for which speed taken as 1.0 (maximum)
- uint16_t startup_frames;
- unsigned int convergence_frames; // approx number of frames to converge
- double speed; // IIR filter speed applied to algorithm results
- bool fast; // "fast" mode uses a 16x16 rather than 32x32 grid
- Pwl ct_r; // function maps CT to r (= R/G)
- Pwl ct_b; // function maps CT to b (= B/G)
- // table of illuminant priors at different lux levels
- std::vector<AwbPrior> priors;
- // AWB "modes" (determines the search range)
- std::map<std::string, AwbMode> modes;
- AwbMode *default_mode; // mode used if no mode selected
- // minimum proportion of pixels counted within AWB region for it to be
- // "useful"
- double min_pixels;
- // minimum G value of those pixels, to be regarded a "useful"
- uint16_t min_G;
- // number of AWB regions that must be "useful" in order to do the AWB
- // calculation
- uint32_t min_regions;
- // clamp on colour error term (so as not to penalise non-grey excessively)
- double delta_limit;
- // step size control in coarse search
- double coarse_step;
- // how far to wander off CT curve towards "more purple"
- double transverse_pos;
- // how far to wander off CT curve towards "more green"
- double transverse_neg;
- // red sensitivity ratio (set to canonical sensor's R/G divided by this
- // sensor's R/G)
- double sensitivity_r;
- // blue sensitivity ratio (set to canonical sensor's B/G divided by this
- // sensor's B/G)
- double sensitivity_b;
- // The whitepoint (which we normally "aim" for) can be moved.
- double whitepoint_r;
- double whitepoint_b;
- bool bayes; // use Bayesian algorithm
-};
-
-class Awb : public AwbAlgorithm
-{
-public:
- Awb(Controller *controller = NULL);
- ~Awb();
- char const *Name() const override;
- void Initialise() override;
- void Read(boost::property_tree::ptree const &params) override;
- // AWB handles "pausing" for itself.
- bool IsPaused() const override;
- void Pause() override;
- void Resume() override;
- unsigned int GetConvergenceFrames() const override;
- void SetMode(std::string const &name) override;
- void SetManualGains(double manual_r, double manual_b) override;
- void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override;
- void Prepare(Metadata *image_metadata) override;
- void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
- struct RGB {
- RGB(double _R = 0, double _G = 0, double _B = 0)
- : R(_R), G(_G), B(_B)
- {
- }
- double R, G, B;
- RGB &operator+=(RGB const &other)
- {
- R += other.R, G += other.G, B += other.B;
- return *this;
- }
- };
-
-private:
- bool isAutoEnabled() const;
- // configuration is read-only, and available to both threads
- AwbConfig config_;
- std::thread async_thread_;
- void asyncFunc(); // asynchronous thread function
- std::mutex mutex_;
- // condvar for async thread to wait on
- std::condition_variable async_signal_;
- // condvar for synchronous thread to wait on
- std::condition_variable sync_signal_;
- // for sync thread to check if async thread finished (requires mutex)
- bool async_finished_;
- // for async thread to check if it's been told to run (requires mutex)
- bool async_start_;
- // for async thread to check if it's been told to quit (requires mutex)
- bool async_abort_;
-
- // The following are only for the synchronous thread to use:
- // for sync thread to note its has asked async thread to run
- bool async_started_;
- // counts up to frame_period before restarting the async thread
- int frame_phase_;
- int frame_count_; // counts up to startup_frames
- AwbStatus sync_results_;
- AwbStatus prev_sync_results_;
- std::string mode_name_;
- // The following are for the asynchronous thread to use, though the main
- // thread can set/reset them if the async thread is known to be idle:
- void restartAsync(StatisticsPtr &stats, double lux);
- // copy out the results from the async thread so that it can be restarted
- void fetchAsyncResults();
- StatisticsPtr statistics_;
- AwbMode *mode_;
- double lux_;
- AwbStatus async_results_;
- void doAwb();
- void awbBayes();
- void awbGrey();
- void prepareStats();
- double computeDelta2Sum(double gain_r, double gain_b);
- Pwl interpolatePrior();
- double coarseSearch(Pwl const &prior);
- void fineSearch(double &t, double &r, double &b, Pwl const &prior);
- std::vector<RGB> zones_;
- std::vector<Pwl::Point> points_;
- // manual r setting
- double manual_r_;
- // manual b setting
- double manual_b_;
- bool first_switch_mode_; // is this the first call to SwitchMode?
-};
-
-static inline Awb::RGB operator+(Awb::RGB const &a, Awb::RGB const &b)
-{
- return Awb::RGB(a.R + b.R, a.G + b.G, a.B + b.B);
-}
-static inline Awb::RGB operator-(Awb::RGB const &a, Awb::RGB const &b)
-{
- return Awb::RGB(a.R - b.R, a.G - b.G, a.B - b.B);
-}
-static inline Awb::RGB operator*(double d, Awb::RGB const &rgb)
-{
- return Awb::RGB(d * rgb.R, d * rgb.G, d * rgb.B);
-}
-static inline Awb::RGB operator*(Awb::RGB const &rgb, double d)
-{
- return d * rgb;
-}
-
-} // namespace RPiController
diff --git a/src/ipa/raspberrypi/controller/rpi/black_level.cpp b/src/ipa/raspberrypi/controller/rpi/black_level.cpp
deleted file mode 100644
index 6b3497f1..00000000
--- a/src/ipa/raspberrypi/controller/rpi/black_level.cpp
+++ /dev/null
@@ -1,63 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * black_level.cpp - black level control algorithm
- */
-
-#include <math.h>
-#include <stdint.h>
-
-#include <libcamera/base/log.h>
-
-#include "../black_level_status.h"
-
-#include "black_level.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-
-LOG_DEFINE_CATEGORY(RPiBlackLevel)
-
-#define NAME "rpi.black_level"
-
-BlackLevel::BlackLevel(Controller *controller)
- : Algorithm(controller)
-{
-}
-
-char const *BlackLevel::Name() const
-{
- return NAME;
-}
-
-void BlackLevel::Read(boost::property_tree::ptree const &params)
-{
- uint16_t black_level = params.get<uint16_t>(
- "black_level", 4096); // 64 in 10 bits scaled to 16 bits
- black_level_r_ = params.get<uint16_t>("black_level_r", black_level);
- black_level_g_ = params.get<uint16_t>("black_level_g", black_level);
- black_level_b_ = params.get<uint16_t>("black_level_b", black_level);
- LOG(RPiBlackLevel, Debug)
- << " Read black levels red " << black_level_r_
- << " green " << black_level_g_
- << " blue " << black_level_b_;
-}
-
-void BlackLevel::Prepare(Metadata *image_metadata)
-{
- // Possibly we should think about doing this in a switch_mode or
- // something?
- struct BlackLevelStatus status;
- status.black_level_r = black_level_r_;
- status.black_level_g = black_level_g_;
- status.black_level_b = black_level_b_;
- image_metadata->Set("black_level.status", status);
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return new BlackLevel(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/black_level.hpp b/src/ipa/raspberrypi/controller/rpi/black_level.hpp
deleted file mode 100644
index 65ec4d0e..00000000
--- a/src/ipa/raspberrypi/controller/rpi/black_level.hpp
+++ /dev/null
@@ -1,30 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * black_level.hpp - black level control algorithm
- */
-#pragma once
-
-#include "../algorithm.hpp"
-#include "../black_level_status.h"
-
-// This is our implementation of the "black level algorithm".
-
-namespace RPiController {
-
-class BlackLevel : public Algorithm
-{
-public:
- BlackLevel(Controller *controller);
- char const *Name() const override;
- void Read(boost::property_tree::ptree const &params) override;
- void Prepare(Metadata *image_metadata) override;
-
-private:
- double black_level_r_;
- double black_level_g_;
- double black_level_b_;
-};
-
-} // namespace RPiController
diff --git a/src/ipa/raspberrypi/controller/rpi/ccm.cpp b/src/ipa/raspberrypi/controller/rpi/ccm.cpp
deleted file mode 100644
index 821a4c7c..00000000
--- a/src/ipa/raspberrypi/controller/rpi/ccm.cpp
+++ /dev/null
@@ -1,169 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * ccm.cpp - CCM (colour correction matrix) control algorithm
- */
-
-#include <libcamera/base/log.h>
-
-#include "../awb_status.h"
-#include "../ccm_status.h"
-#include "../lux_status.h"
-#include "../metadata.hpp"
-
-#include "ccm.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-
-LOG_DEFINE_CATEGORY(RPiCcm)
-
-// This algorithm selects a CCM (Colour Correction Matrix) according to the
-// colour temperature estimated by AWB (interpolating between known matricies as
-// necessary). Additionally the amount of colour saturation can be controlled
-// both according to the current estimated lux level and according to a
-// saturation setting that is exposed to applications.
-
-#define NAME "rpi.ccm"
-
-Matrix::Matrix()
-{
- memset(m, 0, sizeof(m));
-}
-Matrix::Matrix(double m0, double m1, double m2, double m3, double m4, double m5,
- double m6, double m7, double m8)
-{
- m[0][0] = m0, m[0][1] = m1, m[0][2] = m2, m[1][0] = m3, m[1][1] = m4,
- m[1][2] = m5, m[2][0] = m6, m[2][1] = m7, m[2][2] = m8;
-}
-void Matrix::Read(boost::property_tree::ptree const &params)
-{
- double *ptr = (double *)m;
- int n = 0;
- for (auto it = params.begin(); it != params.end(); it++) {
- if (n++ == 9)
- throw std::runtime_error("Ccm: too many values in CCM");
- *ptr++ = it->second.get_value<double>();
- }
- if (n < 9)
- throw std::runtime_error("Ccm: too few values in CCM");
-}
-
-Ccm::Ccm(Controller *controller)
- : CcmAlgorithm(controller), saturation_(1.0) {}
-
-char const *Ccm::Name() const
-{
- return NAME;
-}
-
-void Ccm::Read(boost::property_tree::ptree const &params)
-{
- if (params.get_child_optional("saturation"))
- config_.saturation.Read(params.get_child("saturation"));
- for (auto &p : params.get_child("ccms")) {
- CtCcm ct_ccm;
- ct_ccm.ct = p.second.get<double>("ct");
- ct_ccm.ccm.Read(p.second.get_child("ccm"));
- if (!config_.ccms.empty() &&
- ct_ccm.ct <= config_.ccms.back().ct)
- throw std::runtime_error(
- "Ccm: CCM not in increasing colour temperature order");
- config_.ccms.push_back(std::move(ct_ccm));
- }
- if (config_.ccms.empty())
- throw std::runtime_error("Ccm: no CCMs specified");
-}
-
-void Ccm::SetSaturation(double saturation)
-{
- saturation_ = saturation;
-}
-
-void Ccm::Initialise() {}
-
-template<typename T>
-static bool get_locked(Metadata *metadata, std::string const &tag, T &value)
-{
- T *ptr = metadata->GetLocked<T>(tag);
- if (ptr == nullptr)
- return false;
- value = *ptr;
- return true;
-}
-
-Matrix calculate_ccm(std::vector<CtCcm> const &ccms, double ct)
-{
- if (ct <= ccms.front().ct)
- return ccms.front().ccm;
- else if (ct >= ccms.back().ct)
- return ccms.back().ccm;
- else {
- int i = 0;
- for (; ct > ccms[i].ct; i++)
- ;
- double lambda =
- (ct - ccms[i - 1].ct) / (ccms[i].ct - ccms[i - 1].ct);
- return lambda * ccms[i].ccm + (1.0 - lambda) * ccms[i - 1].ccm;
- }
-}
-
-Matrix apply_saturation(Matrix const &ccm, double saturation)
-{
- Matrix RGB2Y(0.299, 0.587, 0.114, -0.169, -0.331, 0.500, 0.500, -0.419,
- -0.081);
- Matrix Y2RGB(1.000, 0.000, 1.402, 1.000, -0.345, -0.714, 1.000, 1.771,
- 0.000);
- Matrix S(1, 0, 0, 0, saturation, 0, 0, 0, saturation);
- return Y2RGB * S * RGB2Y * ccm;
-}
-
-void Ccm::Prepare(Metadata *image_metadata)
-{
- bool awb_ok = false, lux_ok = false;
- struct AwbStatus awb = {};
- awb.temperature_K = 4000; // in case no metadata
- struct LuxStatus lux = {};
- lux.lux = 400; // in case no metadata
- {
- // grab mutex just once to get everything
- std::lock_guard<Metadata> lock(*image_metadata);
- awb_ok = get_locked(image_metadata, "awb.status", awb);
- lux_ok = get_locked(image_metadata, "lux.status", lux);
- }
- if (!awb_ok)
- LOG(RPiCcm, Warning) << "no colour temperature found";
- if (!lux_ok)
- LOG(RPiCcm, Warning) << "no lux value found";
- Matrix ccm = calculate_ccm(config_.ccms, awb.temperature_K);
- double saturation = saturation_;
- struct CcmStatus ccm_status;
- ccm_status.saturation = saturation;
- if (!config_.saturation.Empty())
- saturation *= config_.saturation.Eval(
- config_.saturation.Domain().Clip(lux.lux));
- ccm = apply_saturation(ccm, saturation);
- for (int j = 0; j < 3; j++)
- for (int i = 0; i < 3; i++)
- ccm_status.matrix[j * 3 + i] =
- std::max(-8.0, std::min(7.9999, ccm.m[j][i]));
- LOG(RPiCcm, Debug)
- << "colour temperature " << awb.temperature_K << "K";
- LOG(RPiCcm, Debug)
- << "CCM: " << ccm_status.matrix[0] << " " << ccm_status.matrix[1]
- << " " << ccm_status.matrix[2] << " "
- << ccm_status.matrix[3] << " " << ccm_status.matrix[4]
- << " " << ccm_status.matrix[5] << " "
- << ccm_status.matrix[6] << " " << ccm_status.matrix[7]
- << " " << ccm_status.matrix[8];
- image_metadata->Set("ccm.status", ccm_status);
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return (Algorithm *)new Ccm(controller);
- ;
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/ccm.hpp b/src/ipa/raspberrypi/controller/rpi/ccm.hpp
deleted file mode 100644
index 330ed51f..00000000
--- a/src/ipa/raspberrypi/controller/rpi/ccm.hpp
+++ /dev/null
@@ -1,75 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * ccm.hpp - CCM (colour correction matrix) control algorithm
- */
-#pragma once
-
-#include <vector>
-
-#include "../ccm_algorithm.hpp"
-#include "../pwl.hpp"
-
-namespace RPiController {
-
-// Algorithm to calculate colour matrix. Should be placed after AWB.
-
-struct Matrix {
- Matrix(double m0, double m1, double m2, double m3, double m4, double m5,
- double m6, double m7, double m8);
- Matrix();
- double m[3][3];
- void Read(boost::property_tree::ptree const &params);
-};
-static inline Matrix operator*(double d, Matrix const &m)
-{
- return Matrix(m.m[0][0] * d, m.m[0][1] * d, m.m[0][2] * d,
- m.m[1][0] * d, m.m[1][1] * d, m.m[1][2] * d,
- m.m[2][0] * d, m.m[2][1] * d, m.m[2][2] * d);
-}
-static inline Matrix operator*(Matrix const &m1, Matrix const &m2)
-{
- Matrix m;
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- m.m[i][j] = m1.m[i][0] * m2.m[0][j] +
- m1.m[i][1] * m2.m[1][j] +
- m1.m[i][2] * m2.m[2][j];
- return m;
-}
-static inline Matrix operator+(Matrix const &m1, Matrix const &m2)
-{
- Matrix m;
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- m.m[i][j] = m1.m[i][j] + m2.m[i][j];
- return m;
-}
-
-struct CtCcm {
- double ct;
- Matrix ccm;
-};
-
-struct CcmConfig {
- std::vector<CtCcm> ccms;
- Pwl saturation;
-};
-
-class Ccm : public CcmAlgorithm
-{
-public:
- Ccm(Controller *controller = NULL);
- char const *Name() const override;
- void Read(boost::property_tree::ptree const &params) override;
- void SetSaturation(double saturation) override;
- void Initialise() override;
- void Prepare(Metadata *image_metadata) override;
-
-private:
- CcmConfig config_;
- double saturation_;
-};
-
-} // namespace RPiController
diff --git a/src/ipa/raspberrypi/controller/rpi/contrast.cpp b/src/ipa/raspberrypi/controller/rpi/contrast.cpp
deleted file mode 100644
index ae55aad5..00000000
--- a/src/ipa/raspberrypi/controller/rpi/contrast.cpp
+++ /dev/null
@@ -1,185 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * contrast.cpp - contrast (gamma) control algorithm
- */
-#include <stdint.h>
-
-#include <libcamera/base/log.h>
-
-#include "../contrast_status.h"
-#include "../histogram.hpp"
-
-#include "contrast.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-
-LOG_DEFINE_CATEGORY(RPiContrast)
-
-// This is a very simple control algorithm which simply retrieves the results of
-// AGC and AWB via their "status" metadata, and applies digital gain to the
-// colour channels in accordance with those instructions. We take care never to
-// apply less than unity gains, as that would cause fully saturated pixels to go
-// off-white.
-
-#define NAME "rpi.contrast"
-
-Contrast::Contrast(Controller *controller)
- : ContrastAlgorithm(controller), brightness_(0.0), contrast_(1.0)
-{
-}
-
-char const *Contrast::Name() const
-{
- return NAME;
-}
-
-void Contrast::Read(boost::property_tree::ptree const &params)
-{
- // enable adaptive enhancement by default
- config_.ce_enable = params.get<int>("ce_enable", 1);
- // the point near the bottom of the histogram to move
- config_.lo_histogram = params.get<double>("lo_histogram", 0.01);
- // where in the range to try and move it to
- config_.lo_level = params.get<double>("lo_level", 0.015);
- // but don't move by more than this
- config_.lo_max = params.get<double>("lo_max", 500);
- // equivalent values for the top of the histogram...
- config_.hi_histogram = params.get<double>("hi_histogram", 0.95);
- config_.hi_level = params.get<double>("hi_level", 0.95);
- config_.hi_max = params.get<double>("hi_max", 2000);
- config_.gamma_curve.Read(params.get_child("gamma_curve"));
-}
-
-void Contrast::SetBrightness(double brightness)
-{
- brightness_ = brightness;
-}
-
-void Contrast::SetContrast(double contrast)
-{
- contrast_ = contrast;
-}
-
-static void fill_in_status(ContrastStatus &status, double brightness,
- double contrast, Pwl &gamma_curve)
-{
- status.brightness = brightness;
- status.contrast = contrast;
- for (int i = 0; i < CONTRAST_NUM_POINTS - 1; i++) {
- int x = i < 16 ? i * 1024
- : (i < 24 ? (i - 16) * 2048 + 16384
- : (i - 24) * 4096 + 32768);
- status.points[i].x = x;
- status.points[i].y = std::min(65535.0, gamma_curve.Eval(x));
- }
- status.points[CONTRAST_NUM_POINTS - 1].x = 65535;
- status.points[CONTRAST_NUM_POINTS - 1].y = 65535;
-}
-
-void Contrast::Initialise()
-{
- // Fill in some default values as Prepare will run before Process gets
- // called.
- fill_in_status(status_, brightness_, contrast_, config_.gamma_curve);
-}
-
-void Contrast::Prepare(Metadata *image_metadata)
-{
- std::unique_lock<std::mutex> lock(mutex_);
- image_metadata->Set("contrast.status", status_);
-}
-
-Pwl compute_stretch_curve(Histogram const &histogram,
- ContrastConfig const &config)
-{
- Pwl enhance;
- enhance.Append(0, 0);
- // If the start of the histogram is rather empty, try to pull it down a
- // bit.
- double hist_lo = histogram.Quantile(config.lo_histogram) *
- (65536 / NUM_HISTOGRAM_BINS);
- double level_lo = config.lo_level * 65536;
- LOG(RPiContrast, Debug)
- << "Move histogram point " << hist_lo << " to " << level_lo;
- hist_lo = std::max(
- level_lo,
- std::min(65535.0, std::min(hist_lo, level_lo + config.lo_max)));
- LOG(RPiContrast, Debug)
- << "Final values " << hist_lo << " -> " << level_lo;
- enhance.Append(hist_lo, level_lo);
- // Keep the mid-point (median) in the same place, though, to limit the
- // apparent amount of global brightness shift.
- double mid = histogram.Quantile(0.5) * (65536 / NUM_HISTOGRAM_BINS);
- enhance.Append(mid, mid);
-
- // If the top to the histogram is empty, try to pull the pixel values
- // there up.
- double hist_hi = histogram.Quantile(config.hi_histogram) *
- (65536 / NUM_HISTOGRAM_BINS);
- double level_hi = config.hi_level * 65536;
- LOG(RPiContrast, Debug)
- << "Move histogram point " << hist_hi << " to " << level_hi;
- hist_hi = std::min(
- level_hi,
- std::max(0.0, std::max(hist_hi, level_hi - config.hi_max)));
- LOG(RPiContrast, Debug)
- << "Final values " << hist_hi << " -> " << level_hi;
- enhance.Append(hist_hi, level_hi);
- enhance.Append(65535, 65535);
- return enhance;
-}
-
-Pwl apply_manual_contrast(Pwl const &gamma_curve, double brightness,
- double contrast)
-{
- Pwl new_gamma_curve;
- LOG(RPiContrast, Debug)
- << "Manual brightness " << brightness << " contrast " << contrast;
- gamma_curve.Map([&](double x, double y) {
- new_gamma_curve.Append(
- x, std::max(0.0, std::min(65535.0,
- (y - 32768) * contrast +
- 32768 + brightness)));
- });
- return new_gamma_curve;
-}
-
-void Contrast::Process(StatisticsPtr &stats,
- [[maybe_unused]] Metadata *image_metadata)
-{
- Histogram histogram(stats->hist[0].g_hist, NUM_HISTOGRAM_BINS);
- // We look at the histogram and adjust the gamma curve in the following
- // ways: 1. Adjust the gamma curve so as to pull the start of the
- // histogram down, and possibly push the end up.
- Pwl gamma_curve = config_.gamma_curve;
- if (config_.ce_enable) {
- if (config_.lo_max != 0 || config_.hi_max != 0)
- gamma_curve = compute_stretch_curve(histogram, config_)
- .Compose(gamma_curve);
- // We could apply other adjustments (e.g. partial equalisation)
- // based on the histogram...?
- }
- // 2. Finally apply any manually selected brightness/contrast
- // adjustment.
- if (brightness_ != 0 || contrast_ != 1.0)
- gamma_curve = apply_manual_contrast(gamma_curve, brightness_,
- contrast_);
- // And fill in the status for output. Use more points towards the bottom
- // of the curve.
- ContrastStatus status;
- fill_in_status(status, brightness_, contrast_, gamma_curve);
- {
- std::unique_lock<std::mutex> lock(mutex_);
- status_ = status;
- }
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return (Algorithm *)new Contrast(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/contrast.hpp b/src/ipa/raspberrypi/controller/rpi/contrast.hpp
deleted file mode 100644
index 85624539..00000000
--- a/src/ipa/raspberrypi/controller/rpi/contrast.hpp
+++ /dev/null
@@ -1,50 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * contrast.hpp - contrast (gamma) control algorithm
- */
-#pragma once
-
-#include <mutex>
-
-#include "../contrast_algorithm.hpp"
-#include "../pwl.hpp"
-
-namespace RPiController {
-
-// Back End algorithm to appaly correct digital gain. Should be placed after
-// Back End AWB.
-
-struct ContrastConfig {
- bool ce_enable;
- double lo_histogram;
- double lo_level;
- double lo_max;
- double hi_histogram;
- double hi_level;
- double hi_max;
- Pwl gamma_curve;
-};
-
-class Contrast : public ContrastAlgorithm
-{
-public:
- Contrast(Controller *controller = NULL);
- char const *Name() const override;
- void Read(boost::property_tree::ptree const &params) override;
- void SetBrightness(double brightness) override;
- void SetContrast(double contrast) override;
- void Initialise() override;
- void Prepare(Metadata *image_metadata) override;
- void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
-
-private:
- ContrastConfig config_;
- double brightness_;
- double contrast_;
- ContrastStatus status_;
- std::mutex mutex_;
-};
-
-} // namespace RPiController
diff --git a/src/ipa/raspberrypi/controller/rpi/dpc.cpp b/src/ipa/raspberrypi/controller/rpi/dpc.cpp
deleted file mode 100644
index 110f5056..00000000
--- a/src/ipa/raspberrypi/controller/rpi/dpc.cpp
+++ /dev/null
@@ -1,53 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * dpc.cpp - DPC (defective pixel correction) control algorithm
- */
-
-#include <libcamera/base/log.h>
-
-#include "dpc.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-
-LOG_DEFINE_CATEGORY(RPiDpc)
-
-// We use the lux status so that we can apply stronger settings in darkness (if
-// necessary).
-
-#define NAME "rpi.dpc"
-
-Dpc::Dpc(Controller *controller)
- : Algorithm(controller)
-{
-}
-
-char const *Dpc::Name() const
-{
- return NAME;
-}
-
-void Dpc::Read(boost::property_tree::ptree const &params)
-{
- config_.strength = params.get<int>("strength", 1);
- if (config_.strength < 0 || config_.strength > 2)
- throw std::runtime_error("Dpc: bad strength value");
-}
-
-void Dpc::Prepare(Metadata *image_metadata)
-{
- DpcStatus dpc_status = {};
- // Should we vary this with lux level or analogue gain? TBD.
- dpc_status.strength = config_.strength;
- LOG(RPiDpc, Debug) << "strength " << dpc_status.strength;
- image_metadata->Set("dpc.status", dpc_status);
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return (Algorithm *)new Dpc(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/dpc.hpp b/src/ipa/raspberrypi/controller/rpi/dpc.hpp
deleted file mode 100644
index d90285c4..00000000
--- a/src/ipa/raspberrypi/controller/rpi/dpc.hpp
+++ /dev/null
@@ -1,32 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * dpc.hpp - DPC (defective pixel correction) control algorithm
- */
-#pragma once
-
-#include "../algorithm.hpp"
-#include "../dpc_status.h"
-
-namespace RPiController {
-
-// Back End algorithm to apply appropriate GEQ settings.
-
-struct DpcConfig {
- int strength;
-};
-
-class Dpc : public Algorithm
-{
-public:
- Dpc(Controller *controller);
- char const *Name() const override;
- void Read(boost::property_tree::ptree const &params) override;
- void Prepare(Metadata *image_metadata) override;
-
-private:
- DpcConfig config_;
-};
-
-} // namespace RPiController
diff --git a/src/ipa/raspberrypi/controller/rpi/focus.cpp b/src/ipa/raspberrypi/controller/rpi/focus.cpp
deleted file mode 100644
index a87ec802..00000000
--- a/src/ipa/raspberrypi/controller/rpi/focus.cpp
+++ /dev/null
@@ -1,50 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2020, Raspberry Pi (Trading) Limited
- *
- * focus.cpp - focus algorithm
- */
-#include <stdint.h>
-
-#include <libcamera/base/log.h>
-
-#include "../focus_status.h"
-#include "focus.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-
-LOG_DEFINE_CATEGORY(RPiFocus)
-
-#define NAME "rpi.focus"
-
-Focus::Focus(Controller *controller)
- : Algorithm(controller)
-{
-}
-
-char const *Focus::Name() const
-{
- return NAME;
-}
-
-void Focus::Process(StatisticsPtr &stats, Metadata *image_metadata)
-{
- FocusStatus status;
- unsigned int i;
- for (i = 0; i < FOCUS_REGIONS; i++)
- status.focus_measures[i] = stats->focus_stats[i].contrast_val[1][1] / 1000;
- status.num = i;
- image_metadata->Set("focus.status", status);
-
- LOG(RPiFocus, Debug)
- << "Focus contrast measure: "
- << (status.focus_measures[5] + status.focus_measures[6]) / 10;
-}
-
-/* Register algorithm with the system. */
-static Algorithm *Create(Controller *controller)
-{
- return new Focus(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/focus.hpp b/src/ipa/raspberrypi/controller/rpi/focus.hpp
deleted file mode 100644
index 131b1d0f..00000000
--- a/src/ipa/raspberrypi/controller/rpi/focus.hpp
+++ /dev/null
@@ -1,28 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2020, Raspberry Pi (Trading) Limited
- *
- * focus.hpp - focus algorithm
- */
-#pragma once
-
-#include "../algorithm.hpp"
-#include "../metadata.hpp"
-
-/*
- * The "focus" algorithm. All it does it print out a version of the
- * focus contrast measure; there is no actual auto-focus mechanism to
- * control.
- */
-
-namespace RPiController {
-
-class Focus : public Algorithm
-{
-public:
- Focus(Controller *controller);
- char const *Name() const override;
- void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
-};
-
-} /* namespace RPiController */
diff --git a/src/ipa/raspberrypi/controller/rpi/geq.cpp b/src/ipa/raspberrypi/controller/rpi/geq.cpp
deleted file mode 100644
index 4530cb75..00000000
--- a/src/ipa/raspberrypi/controller/rpi/geq.cpp
+++ /dev/null
@@ -1,81 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * geq.cpp - GEQ (green equalisation) control algorithm
- */
-
-#include <libcamera/base/log.h>
-
-#include "../device_status.h"
-#include "../lux_status.h"
-#include "../pwl.hpp"
-
-#include "geq.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-
-LOG_DEFINE_CATEGORY(RPiGeq)
-
-// We use the lux status so that we can apply stronger settings in darkness (if
-// necessary).
-
-#define NAME "rpi.geq"
-
-Geq::Geq(Controller *controller)
- : Algorithm(controller)
-{
-}
-
-char const *Geq::Name() const
-{
- return NAME;
-}
-
-void Geq::Read(boost::property_tree::ptree const &params)
-{
- config_.offset = params.get<uint16_t>("offset", 0);
- config_.slope = params.get<double>("slope", 0.0);
- if (config_.slope < 0.0 || config_.slope >= 1.0)
- throw std::runtime_error("Geq: bad slope value");
- if (params.get_child_optional("strength"))
- config_.strength.Read(params.get_child("strength"));
-}
-
-void Geq::Prepare(Metadata *image_metadata)
-{
- LuxStatus lux_status = {};
- lux_status.lux = 400;
- if (image_metadata->Get("lux.status", lux_status))
- LOG(RPiGeq, Warning) << "no lux data found";
- DeviceStatus device_status;
- device_status.analogue_gain = 1.0; // in case not found
- if (image_metadata->Get("device.status", device_status))
- LOG(RPiGeq, Warning)
- << "no device metadata - use analogue gain of 1x";
- GeqStatus geq_status = {};
- double strength =
- config_.strength.Empty()
- ? 1.0
- : config_.strength.Eval(config_.strength.Domain().Clip(
- lux_status.lux));
- strength *= device_status.analogue_gain;
- double offset = config_.offset * strength;
- double slope = config_.slope * strength;
- geq_status.offset = std::min(65535.0, std::max(0.0, offset));
- geq_status.slope = std::min(.99999, std::max(0.0, slope));
- LOG(RPiGeq, Debug)
- << "offset " << geq_status.offset << " slope "
- << geq_status.slope << " (analogue gain "
- << device_status.analogue_gain << " lux "
- << lux_status.lux << ")";
- image_metadata->Set("geq.status", geq_status);
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return (Algorithm *)new Geq(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/geq.hpp b/src/ipa/raspberrypi/controller/rpi/geq.hpp
deleted file mode 100644
index 8ba3046b..00000000
--- a/src/ipa/raspberrypi/controller/rpi/geq.hpp
+++ /dev/null
@@ -1,34 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * geq.hpp - GEQ (green equalisation) control algorithm
- */
-#pragma once
-
-#include "../algorithm.hpp"
-#include "../geq_status.h"
-
-namespace RPiController {
-
-// Back End algorithm to apply appropriate GEQ settings.
-
-struct GeqConfig {
- uint16_t offset;
- double slope;
- Pwl strength; // lux to strength factor
-};
-
-class Geq : public Algorithm
-{
-public:
- Geq(Controller *controller);
- char const *Name() const override;
- void Read(boost::property_tree::ptree const &params) override;
- void Prepare(Metadata *image_metadata) override;
-
-private:
- GeqConfig config_;
-};
-
-} // namespace RPiController
diff --git a/src/ipa/raspberrypi/controller/rpi/lux.cpp b/src/ipa/raspberrypi/controller/rpi/lux.cpp
deleted file mode 100644
index 4d145b6f..00000000
--- a/src/ipa/raspberrypi/controller/rpi/lux.cpp
+++ /dev/null
@@ -1,104 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * lux.cpp - Lux control algorithm
- */
-#include <math.h>
-
-#include <linux/bcm2835-isp.h>
-
-#include <libcamera/base/log.h>
-
-#include "../device_status.h"
-
-#include "lux.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-using namespace std::literals::chrono_literals;
-
-LOG_DEFINE_CATEGORY(RPiLux)
-
-#define NAME "rpi.lux"
-
-Lux::Lux(Controller *controller)
- : Algorithm(controller)
-{
- // Put in some defaults as there will be no meaningful values until
- // Process has run.
- status_.aperture = 1.0;
- status_.lux = 400;
-}
-
-char const *Lux::Name() const
-{
- return NAME;
-}
-
-void Lux::Read(boost::property_tree::ptree const &params)
-{
- reference_shutter_speed_ =
- params.get<double>("reference_shutter_speed") * 1.0us;
- reference_gain_ = params.get<double>("reference_gain");
- reference_aperture_ = params.get<double>("reference_aperture", 1.0);
- reference_Y_ = params.get<double>("reference_Y");
- reference_lux_ = params.get<double>("reference_lux");
- current_aperture_ = reference_aperture_;
-}
-
-void Lux::SetCurrentAperture(double aperture)
-{
- current_aperture_ = aperture;
-}
-
-void Lux::Prepare(Metadata *image_metadata)
-{
- std::unique_lock<std::mutex> lock(mutex_);
- image_metadata->Set("lux.status", status_);
-}
-
-void Lux::Process(StatisticsPtr &stats, Metadata *image_metadata)
-{
- DeviceStatus device_status;
- if (image_metadata->Get("device.status", device_status) == 0) {
- double current_gain = device_status.analogue_gain;
- double current_aperture = device_status.aperture.value_or(current_aperture_);
- uint64_t sum = 0;
- uint32_t num = 0;
- uint32_t *bin = stats->hist[0].g_hist;
- const int num_bins = sizeof(stats->hist[0].g_hist) /
- sizeof(stats->hist[0].g_hist[0]);
- for (int i = 0; i < num_bins; i++)
- sum += bin[i] * (uint64_t)i, num += bin[i];
- // add .5 to reflect the mid-points of bins
- double current_Y = sum / (double)num + .5;
- double gain_ratio = reference_gain_ / current_gain;
- double shutter_speed_ratio =
- reference_shutter_speed_ / device_status.shutter_speed;
- double aperture_ratio = reference_aperture_ / current_aperture;
- double Y_ratio = current_Y * (65536 / num_bins) / reference_Y_;
- double estimated_lux = shutter_speed_ratio * gain_ratio *
- aperture_ratio * aperture_ratio *
- Y_ratio * reference_lux_;
- LuxStatus status;
- status.lux = estimated_lux;
- status.aperture = current_aperture;
- LOG(RPiLux, Debug) << ": estimated lux " << estimated_lux;
- {
- std::unique_lock<std::mutex> lock(mutex_);
- status_ = status;
- }
- // Overwrite the metadata here as well, so that downstream
- // algorithms get the latest value.
- image_metadata->Set("lux.status", status);
- } else
- LOG(RPiLux, Warning) << ": no device metadata";
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return (Algorithm *)new Lux(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/lux.hpp b/src/ipa/raspberrypi/controller/rpi/lux.hpp
deleted file mode 100644
index 3ebd35d1..00000000
--- a/src/ipa/raspberrypi/controller/rpi/lux.hpp
+++ /dev/null
@@ -1,43 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * lux.hpp - Lux control algorithm
- */
-#pragma once
-
-#include <mutex>
-
-#include <libcamera/base/utils.h>
-
-#include "../lux_status.h"
-#include "../algorithm.hpp"
-
-// This is our implementation of the "lux control algorithm".
-
-namespace RPiController {
-
-class Lux : public Algorithm
-{
-public:
- Lux(Controller *controller);
- char const *Name() const override;
- void Read(boost::property_tree::ptree const &params) override;
- void Prepare(Metadata *image_metadata) override;
- void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
- void SetCurrentAperture(double aperture);
-
-private:
- // These values define the conditions of the reference image, against
- // which we compare the new image.
- libcamera::utils::Duration reference_shutter_speed_;
- double reference_gain_;
- double reference_aperture_; // units of 1/f
- double reference_Y_; // out of 65536
- double reference_lux_;
- double current_aperture_;
- LuxStatus status_;
- std::mutex mutex_;
-};
-
-} // namespace RPiController
diff --git a/src/ipa/raspberrypi/controller/rpi/noise.cpp b/src/ipa/raspberrypi/controller/rpi/noise.cpp
deleted file mode 100644
index 63cad639..00000000
--- a/src/ipa/raspberrypi/controller/rpi/noise.cpp
+++ /dev/null
@@ -1,76 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * noise.cpp - Noise control algorithm
- */
-
-#include <math.h>
-
-#include <libcamera/base/log.h>
-
-#include "../device_status.h"
-#include "../noise_status.h"
-
-#include "noise.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-
-LOG_DEFINE_CATEGORY(RPiNoise)
-
-#define NAME "rpi.noise"
-
-Noise::Noise(Controller *controller)
- : Algorithm(controller), mode_factor_(1.0)
-{
-}
-
-char const *Noise::Name() const
-{
- return NAME;
-}
-
-void Noise::SwitchMode(CameraMode const &camera_mode,
- [[maybe_unused]] Metadata *metadata)
-{
- // For example, we would expect a 2x2 binned mode to have a "noise
- // factor" of sqrt(2x2) = 2. (can't be less than one, right?)
- mode_factor_ = std::max(1.0, camera_mode.noise_factor);
-}
-
-void Noise::Read(boost::property_tree::ptree const &params)
-{
- reference_constant_ = params.get<double>("reference_constant");
- reference_slope_ = params.get<double>("reference_slope");
-}
-
-void Noise::Prepare(Metadata *image_metadata)
-{
- struct DeviceStatus device_status;
- device_status.analogue_gain = 1.0; // keep compiler calm
- if (image_metadata->Get("device.status", device_status) == 0) {
- // There is a slight question as to exactly how the noise
- // profile, specifically the constant part of it, scales. For
- // now we assume it all scales the same, and we'll revisit this
- // if it proves substantially wrong. NOTE: we may also want to
- // make some adjustments based on the camera mode (such as
- // binning), if we knew how to discover it...
- double factor = sqrt(device_status.analogue_gain) / mode_factor_;
- struct NoiseStatus status;
- status.noise_constant = reference_constant_ * factor;
- status.noise_slope = reference_slope_ * factor;
- image_metadata->Set("noise.status", status);
- LOG(RPiNoise, Debug)
- << "constant " << status.noise_constant
- << " slope " << status.noise_slope;
- } else
- LOG(RPiNoise, Warning) << " no metadata";
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return new Noise(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/noise.hpp b/src/ipa/raspberrypi/controller/rpi/noise.hpp
deleted file mode 100644
index 1c9de5c8..00000000
--- a/src/ipa/raspberrypi/controller/rpi/noise.hpp
+++ /dev/null
@@ -1,32 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * noise.hpp - Noise control algorithm
- */
-#pragma once
-
-#include "../algorithm.hpp"
-#include "../noise_status.h"
-
-// This is our implementation of the "noise algorithm".
-
-namespace RPiController {
-
-class Noise : public Algorithm
-{
-public:
- Noise(Controller *controller);
- char const *Name() const override;
- void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override;
- void Read(boost::property_tree::ptree const &params) override;
- void Prepare(Metadata *image_metadata) override;
-
-private:
- // the noise profile for analogue gain of 1.0
- double reference_constant_;
- double reference_slope_;
- double mode_factor_;
-};
-
-} // namespace RPiController
diff --git a/src/ipa/raspberrypi/controller/rpi/sdn.cpp b/src/ipa/raspberrypi/controller/rpi/sdn.cpp
deleted file mode 100644
index 93845509..00000000
--- a/src/ipa/raspberrypi/controller/rpi/sdn.cpp
+++ /dev/null
@@ -1,75 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019-2021, Raspberry Pi (Trading) Limited
- *
- * sdn.cpp - SDN (spatial denoise) control algorithm
- */
-
-#include <libcamera/base/log.h>
-
-#include "../denoise_status.h"
-#include "../noise_status.h"
-
-#include "sdn.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-
-LOG_DEFINE_CATEGORY(RPiSdn)
-
-// Calculate settings for the spatial denoise block using the noise profile in
-// the image metadata.
-
-#define NAME "rpi.sdn"
-
-Sdn::Sdn(Controller *controller)
- : DenoiseAlgorithm(controller), mode_(DenoiseMode::ColourOff)
-{
-}
-
-char const *Sdn::Name() const
-{
- return NAME;
-}
-
-void Sdn::Read(boost::property_tree::ptree const &params)
-{
- deviation_ = params.get<double>("deviation", 3.2);
- strength_ = params.get<double>("strength", 0.75);
-}
-
-void Sdn::Initialise() {}
-
-void Sdn::Prepare(Metadata *image_metadata)
-{
- struct NoiseStatus noise_status = {};
- noise_status.noise_slope = 3.0; // in case no metadata
- if (image_metadata->Get("noise.status", noise_status) != 0)
- LOG(RPiSdn, Warning) << "no noise profile found";
- LOG(RPiSdn, Debug)
- << "Noise profile: constant " << noise_status.noise_constant
- << " slope " << noise_status.noise_slope;
- struct DenoiseStatus status;
- status.noise_constant = noise_status.noise_constant * deviation_;
- status.noise_slope = noise_status.noise_slope * deviation_;
- status.strength = strength_;
- status.mode = static_cast<std::underlying_type_t<DenoiseMode>>(mode_);
- image_metadata->Set("denoise.status", status);
- LOG(RPiSdn, Debug)
- << "programmed constant " << status.noise_constant
- << " slope " << status.noise_slope
- << " strength " << status.strength;
-}
-
-void Sdn::SetMode(DenoiseMode mode)
-{
- // We only distinguish between off and all other modes.
- mode_ = mode;
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return (Algorithm *)new Sdn(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/sdn.hpp b/src/ipa/raspberrypi/controller/rpi/sdn.hpp
deleted file mode 100644
index 2371ce04..00000000
--- a/src/ipa/raspberrypi/controller/rpi/sdn.hpp
+++ /dev/null
@@ -1,32 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * sdn.hpp - SDN (spatial denoise) control algorithm
- */
-#pragma once
-
-#include "../algorithm.hpp"
-#include "../denoise_algorithm.hpp"
-
-namespace RPiController {
-
-// Algorithm to calculate correct spatial denoise (SDN) settings.
-
-class Sdn : public DenoiseAlgorithm
-{
-public:
- Sdn(Controller *controller = NULL);
- char const *Name() const override;
- void Read(boost::property_tree::ptree const &params) override;
- void Initialise() override;
- void Prepare(Metadata *image_metadata) override;
- void SetMode(DenoiseMode mode) override;
-
-private:
- double deviation_;
- double strength_;
- DenoiseMode mode_;
-};
-
-} // namespace RPiController
diff --git a/src/ipa/raspberrypi/controller/rpi/sharpen.cpp b/src/ipa/raspberrypi/controller/rpi/sharpen.cpp
deleted file mode 100644
index 18825a43..00000000
--- a/src/ipa/raspberrypi/controller/rpi/sharpen.cpp
+++ /dev/null
@@ -1,85 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * sharpen.cpp - sharpening control algorithm
- */
-
-#include <math.h>
-
-#include <libcamera/base/log.h>
-
-#include "../sharpen_status.h"
-
-#include "sharpen.hpp"
-
-using namespace RPiController;
-using namespace libcamera;
-
-LOG_DEFINE_CATEGORY(RPiSharpen)
-
-#define NAME "rpi.sharpen"
-
-Sharpen::Sharpen(Controller *controller)
- : SharpenAlgorithm(controller), user_strength_(1.0)
-{
-}
-
-char const *Sharpen::Name() const
-{
- return NAME;
-}
-
-void Sharpen::SwitchMode(CameraMode const &camera_mode,
- [[maybe_unused]] Metadata *metadata)
-{
- // can't be less than one, right?
- mode_factor_ = std::max(1.0, camera_mode.noise_factor);
-}
-
-void Sharpen::Read(boost::property_tree::ptree const &params)
-{
- threshold_ = params.get<double>("threshold", 1.0);
- strength_ = params.get<double>("strength", 1.0);
- limit_ = params.get<double>("limit", 1.0);
- LOG(RPiSharpen, Debug)
- << "Read threshold " << threshold_
- << " strength " << strength_
- << " limit " << limit_;
-}
-
-void Sharpen::SetStrength(double strength)
-{
- // Note that this function is how an application sets the overall
- // sharpening "strength". We call this the "user strength" field
- // as there already is a strength_ field - being an internal gain
- // parameter that gets passed to the ISP control code. Negative
- // values are not allowed - coerce them to zero (no sharpening).
- user_strength_ = std::max(0.0, strength);
-}
-
-void Sharpen::Prepare(Metadata *image_metadata)
-{
- // The user_strength_ affects the algorithm's internal gain directly, but
- // we adjust the limit and threshold less aggressively. Using a sqrt
- // function is an arbitrary but gentle way of accomplishing this.
- double user_strength_sqrt = sqrt(user_strength_);
- struct SharpenStatus status;
- // Binned modes seem to need the sharpening toned down with this
- // pipeline, thus we use the mode_factor here. Also avoid
- // divide-by-zero with the user_strength_sqrt.
- status.threshold = threshold_ * mode_factor_ /
- std::max(0.01, user_strength_sqrt);
- status.strength = strength_ / mode_factor_ * user_strength_;
- status.limit = limit_ / mode_factor_ * user_strength_sqrt;
- // Finally, report any application-supplied parameters that were used.
- status.user_strength = user_strength_;
- image_metadata->Set("sharpen.status", status);
-}
-
-// Register algorithm with the system.
-static Algorithm *Create(Controller *controller)
-{
- return new Sharpen(controller);
-}
-static RegisterAlgorithm reg(NAME, &Create);
diff --git a/src/ipa/raspberrypi/controller/rpi/sharpen.hpp b/src/ipa/raspberrypi/controller/rpi/sharpen.hpp
deleted file mode 100644
index 13a076a8..00000000
--- a/src/ipa/raspberrypi/controller/rpi/sharpen.hpp
+++ /dev/null
@@ -1,34 +0,0 @@
-/* SPDX-License-Identifier: BSD-2-Clause */
-/*
- * Copyright (C) 2019, Raspberry Pi (Trading) Limited
- *
- * sharpen.hpp - sharpening control algorithm
- */
-#pragma once
-
-#include "../sharpen_algorithm.hpp"
-#include "../sharpen_status.h"
-
-// This is our implementation of the "sharpen algorithm".
-
-namespace RPiController {
-
-class Sharpen : public SharpenAlgorithm
-{
-public:
- Sharpen(Controller *controller);
- char const *Name() const override;
- void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override;
- void Read(boost::property_tree::ptree const &params) override;
- void SetStrength(double strength) override;
- void Prepare(Metadata *image_metadata) override;
-
-private:
- double threshold_;
- double strength_;
- double limit_;
- double mode_factor_;
- double user_strength_;
-};
-
-} // namespace RPiController