summaryrefslogtreecommitdiff
path: root/src/v4l2/v4l2_compat_manager.cpp
blob: f53fb300dde8ab6259a1ff9a5740f5a1fa358981 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * V4L2 compatibility manager
 */

#include "v4l2_compat_manager.h"

#include <dlfcn.h>
#include <fcntl.h>
#include <map>
#include <string.h>
#include <sys/eventfd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <unistd.h>

#include <libcamera/base/log.h>
#include <libcamera/base/utils.h>

#include <libcamera/camera.h>
#include <libcamera/camera_manager.h>
#include <libcamera/property_ids.h>

#include "v4l2_camera_file.h"

using namespace libcamera;

LOG_DEFINE_CATEGORY(V4L2Compat)

namespace {
template<typename T>
void get_symbol(T &func, const char *name)
{
	func = reinterpret_cast<T>(dlsym(RTLD_NEXT, name));
}
} /* namespace */

V4L2CompatManager::V4L2CompatManager()
	: cm_(nullptr)
{
	get_symbol(fops_.openat, "openat64");
	get_symbol(fops_.dup, "dup");
	get_symbol(fops_.close, "close");
	get_symbol(fops_.ioctl, "ioctl");
	get_symbol(fops_.mmap, "mmap64");
	get_symbol(fops_.munmap, "munmap");
}

V4L2CompatManager::~V4L2CompatManager()
{
	files_.clear();
	mmaps_.clear();

	if (cm_) {
		proxies_.clear();
		cm_->stop();
		delete cm_;
		cm_ = nullptr;
	}
}

int V4L2CompatManager::start()
{
	cm_ = new CameraManager();

	int ret = cm_->start();
	if (ret) {
		LOG(V4L2Compat, Error) << "Failed to start camera manager: "
				       << strerror(-ret);
		delete cm_;
		cm_ = nullptr;
		return ret;
	}

	LOG(V4L2Compat, Debug) << "Started camera manager";

	/*
	 * For each Camera registered in the system, a V4L2CameraProxy gets
	 * created here to wrap a camera device.
	 */
	auto cameras = cm_->cameras();
	for (auto [index, camera] : utils::enumerate(cameras)) {
		V4L2CameraProxy *proxy = new V4L2CameraProxy(index, camera);
		proxies_.emplace_back(proxy);
	}

	return 0;
}

V4L2CompatManager *V4L2CompatManager::instance()
{
	static V4L2CompatManager instance;
	return &instance;
}

std::shared_ptr<V4L2CameraFile> V4L2CompatManager::cameraFile(int fd)
{
	auto file = files_.find(fd);
	if (file == files_.end())
		return nullptr;

	return file->second;
}

int V4L2CompatManager::getCameraIndex(int fd)
{
	struct stat statbuf;
	int ret = fstat(fd, &statbuf);
	if (ret < 0)
		return -1;

	const dev_t devnum = statbuf.st_rdev;

	/*
	 * Iterate each known camera and identify if it reports this nodes
	 * device number in its list of SystemDevices.
	 */
	auto cameras = cm_->cameras();
	for (auto [index, camera] : utils::enumerate(cameras)) {
		Span<const int64_t> devices = camera->properties()
						      .get(properties::SystemDevices)
						      .value_or(Span<int64_t>{});

		/*
		 * While there may be multiple cameras that could reference the
		 * same device node, we take a first match as a best effort for
		 * now.
		 *
		 * \todo Each camera can be accessed through any of the video
		 * device nodes that it uses. This may confuse applications.
		 * Consider reworking the V4L2 adaptation layer to instead
		 * expose each Camera instance through a single video device
		 * node (with a consistent and stable mapping). The other
		 * device nodes could possibly be hidden from the application
		 * by intercepting additional calls to the C library.
		 */
		for (const int64_t dev : devices) {
			if (dev == static_cast<int64_t>(devnum))
				return index;
		}
	}

	return -1;
}

int V4L2CompatManager::openat(int dirfd, const char *path, int oflag, mode_t mode)
{
	int fd = fops_.openat(dirfd, path, oflag, mode);
	if (fd < 0)
		return fd;

	struct stat statbuf;
	int ret = fstat(fd, &statbuf);
	if (ret < 0 || (statbuf.st_mode & S_IFMT) != S_IFCHR ||
	    major(statbuf.st_rdev) != 81)
		return fd;

	if (!cm_)
		start();

	ret = getCameraIndex(fd);
	if (ret < 0) {
		LOG(V4L2Compat, Debug) << "No camera found for " << path;
		return fd;
	}

	fops_.close(fd);

	int efd = eventfd(0, EFD_SEMAPHORE |
			     ((oflag & O_CLOEXEC) ? EFD_CLOEXEC : 0) |
			     ((oflag & O_NONBLOCK) ? EFD_NONBLOCK : 0));
	if (efd < 0)
		return efd;

	V4L2CameraProxy *proxy = proxies_[ret].get();
	files_.emplace(efd, std::make_shared<V4L2CameraFile>(dirfd, path, efd,
							     oflag & O_NONBLOCK,
							     proxy));

	LOG(V4L2Compat, Debug) << "Opened " << path << " -> fd " << efd;
	return efd;
}

int V4L2CompatManager::dup(int oldfd)
{
	int newfd = fops_.dup(oldfd);
	if (newfd < 0)
		return newfd;

	auto file = files_.find(oldfd);
	if (file != files_.end())
		files_[newfd] = file->second;

	return newfd;
}

int V4L2CompatManager::close(int fd)
{
	auto file = files_.find(fd);
	if (file != files_.end())
		files_.erase(file);

	/* We still need to close the eventfd. */
	return fops_.close(fd);
}

void *V4L2CompatManager::mmap(void *addr, size_t length, int prot, int flags,
			      int fd, off64_t offset)
{
	std::shared_ptr<V4L2CameraFile> file = cameraFile(fd);
	if (!file)
		return fops_.mmap(addr, length, prot, flags, fd, offset);

	void *map = file->proxy()->mmap(file.get(), addr, length, prot, flags,
					offset);
	if (map == MAP_FAILED)
		return map;

	mmaps_[map] = file;
	return map;
}

int V4L2CompatManager::munmap(void *addr, size_t length)
{
	auto device = mmaps_.find(addr);
	if (device == mmaps_.end())
		return fops_.munmap(addr, length);

	V4L2CameraFile *file = device->second.get();

	int ret = file->proxy()->munmap(file, addr, length);
	if (ret < 0)
		return ret;

	mmaps_.erase(device);

	return 0;
}

int V4L2CompatManager::ioctl(int fd, unsigned long request, void *arg)
{
	std::shared_ptr<V4L2CameraFile> file = cameraFile(fd);
	if (!file)
		return fops_.ioctl(fd, request, arg);

	return file->proxy()->ioctl(file.get(), request, arg);
}
ThreadMain mainThread; /** * \brief Retrieve thread-local internal data for the current thread * \return The thread-local internal data for the current thread */ ThreadData *ThreadData::current() { if (currentThreadData) return currentThreadData; /* * The main thread doesn't receive thread-local data when it is * started, set it here. */ ThreadData *data = mainThread.data_; data->tid_ = syscall(SYS_gettid); currentThreadData = data; return data; } /** * \typedef Mutex * \brief An alias for std::mutex */ /** * \typedef MutexLocker * \brief An alias for std::unique_lock<std::mutex> */ /** * \class Thread * \brief A thread of execution * * The Thread class is a wrapper around std::thread that handles integration * with the Object, Signal and EventDispatcher classes. * * Thread instances by default run an event loop until the exit() method is * called. A custom event dispatcher may be installed with * setEventDispatcher(), otherwise a poll-based event dispatcher is used. This * behaviour can be overriden by overloading the run() method. * * \context This class is \threadsafe. */ /** * \brief Create a thread */ Thread::Thread() { data_ = new ThreadData; data_->thread_ = this; } Thread::~Thread() { delete data_->dispatcher_.load(std::memory_order_relaxed); delete data_; } /** * \brief Start the thread */ void Thread::start() { MutexLocker locker(data_->mutex_); if (data_->running_) return; data_->running_ = true; data_->exitCode_ = -1; data_->exit_.store(false, std::memory_order_relaxed); thread_ = std::thread(&Thread::startThread, this); } void Thread::startThread() { struct ThreadCleaner { ThreadCleaner(Thread *thread, void (Thread::*cleaner)()) : thread_(thread), cleaner_(cleaner) { } ~ThreadCleaner() { (thread_->*cleaner_)(); } Thread *thread_; void (Thread::*cleaner_)(); }; /* * Make sure the thread is cleaned up even if the run method exits * abnormally (for instance via a direct call to pthread_cancel()). */ thread_local ThreadCleaner cleaner(this, &Thread::finishThread); data_->tid_ = syscall(SYS_gettid); currentThreadData = data_; run(); } /** * \brief Enter the event loop * * This method enter an event loop based on the event dispatcher instance for * the thread, and blocks until the exit() method is called. It is meant to be * called within the thread from the run() method and shall not be called * outside of the thread. * * \return The exit code passed to the exit() method */ int Thread::exec() { MutexLocker locker(data_->mutex_); EventDispatcher *dispatcher = eventDispatcher(); locker.unlock(); while (!data_->exit_.load(std::memory_order_acquire)) dispatcher->processEvents(); locker.lock(); return data_->exitCode_; } /** * \brief Main method of the thread * * When the thread is started with start(), it calls this method in the context * of the new thread. The run() method can be overloaded to perform custom * work. When this method returns the thread execution is stopped, and the \ref * finished signal is emitted. * * The base implementation just calls exec(). */ void Thread::run() { exec(); } void Thread::finishThread() { data_->mutex_.lock(); data_->running_ = false; data_->mutex_.unlock(); finished.emit(this); data_->cv_.notify_all(); } /** * \brief Stop the thread's event loop * \param[in] code The exit code * * This method interrupts the event loop started by the exec() method, causing * exec() to return \a code. * * Calling exit() on a thread that reimplements the run() method and doesn't * call exec() will likely have no effect. */ void Thread::exit(int code) { data_->exitCode_ = code; data_->exit_.store(true, std::memory_order_release); EventDispatcher *dispatcher = data_->dispatcher_.load(std::memory_order_relaxed); if (!dispatcher) return; dispatcher->interrupt(); } /** * \brief Wait for the thread to finish * \param[in] duration Maximum wait duration * * This function waits until the thread finishes or the \a duration has * elapsed, whichever happens first. If \a duration is equal to * utils::duration::max(), the wait never times out. If the thread is not * running the function returns immediately. * * \return True if the thread has finished, or false if the wait timed out */ bool Thread::wait(utils::duration duration) { bool finished = true; { MutexLocker locker(data_->mutex_); if (duration == utils::duration::max()) data_->cv_.wait(locker, [&]() { return !data_->running_; }); else finished = data_->cv_.wait_for(locker, duration, [&]() { return !data_->running_; }); } if (thread_.joinable()) thread_.join(); return finished; } /** * \brief Check if the thread is running * * A Thread instance is considered as running once the underlying thread has * started. This method guarantees that it returns true after the start() * method returns, and false after the wait() method returns. * * \return True if the thread is running, false otherwise */ bool Thread::isRunning() { MutexLocker locker(data_->mutex_); return data_->running_; } /** * \var Thread::finished * \brief Signal the end of thread execution */ /** * \brief Retrieve the Thread instance for the current thread * \return The Thread instance for the current thread */ Thread *Thread::current() { ThreadData *data = ThreadData::current(); return data->thread_; } /** * \brief Retrieve the ID of the current thread * * The thread ID corresponds to the Linux thread ID (TID) as returned by the * gettid system call. * * \return The ID of the current thread */ pid_t Thread::currentId() { ThreadData *data = ThreadData::current(); return data->tid_; } /** * \brief Set the event dispatcher * \param[in] dispatcher Pointer to the event dispatcher * * Threads that run an event loop require an event dispatcher to integrate * event notification and timers with the loop. Users that want to provide * their own event dispatcher shall call this method once and only once before * the thread is started with start(). If no event dispatcher is provided, a * default poll-based implementation will be used. * * The Thread takes ownership of the event dispatcher and will delete it when * the thread is destroyed. */ void Thread::setEventDispatcher(std::unique_ptr<EventDispatcher> dispatcher) { if (data_->dispatcher_.load(std::memory_order_relaxed)) { LOG(Thread, Warning) << "Event dispatcher is already set"; return; } data_->dispatcher_.store(dispatcher.release(), std::memory_order_relaxed); } /** * \brief Retrieve the event dispatcher * * This method retrieves the event dispatcher set with setEventDispatcher(). * If no dispatcher has been set, a default poll-based implementation is created * and returned, and no custom event dispatcher may be installed anymore. * * The returned event dispatcher is valid until the thread is destroyed. * * \return Pointer to the event dispatcher */ EventDispatcher *Thread::eventDispatcher() { if (!data_->dispatcher_.load(std::memory_order_relaxed)) data_->dispatcher_.store(new EventDispatcherPoll(), std::memory_order_release); return data_->dispatcher_.load(std::memory_order_relaxed); } /** * \brief Post a message to the thread for the \a receiver * \param[in] msg The message * \param[in] receiver The receiver * * This method stores the message \a msg in the message queue of the thread for * the \a receiver and wake up the thread's event loop. Message ownership is * passed to the thread, and the message will be deleted after being delivered. * * Messages are delivered through the thread's event loop. If the thread is not * running its event loop the message will not be delivered until the event * loop gets started. * * If the \a receiver is not bound to this thread the behaviour is undefined. * * \sa exec() */ void Thread::postMessage(std::unique_ptr<Message> msg, Object *receiver) { msg->receiver_ = receiver; ASSERT(data_ == receiver->thread()->data_); MutexLocker locker(data_->messages_.mutex_); data_->messages_.list_.push_back(std::move(msg)); receiver->pendingMessages_++; locker.unlock(); EventDispatcher *dispatcher = data_->dispatcher_.load(std::memory_order_acquire); if (dispatcher) dispatcher->interrupt(); } /** * \brief Remove all posted messages for the \a receiver * \param[in] receiver The receiver * * If the \a receiver is not bound to this thread the behaviour is undefined. */ void Thread::removeMessages(Object *receiver) { ASSERT(data_ == receiver->thread()->data_); MutexLocker locker(data_->messages_.mutex_); if (!receiver->pendingMessages_) return; std::vector<std::unique_ptr<Message>> toDelete; for (std::unique_ptr<Message> &msg : data_->messages_.list_) { if (!msg) continue; if (msg->receiver_ != receiver) continue; /* * Move the message to the pending deletion list to delete it * after releasing the lock. The messages list element will * contain a null pointer, and will be removed when dispatching * messages. */ toDelete.push_back(std::move(msg)); receiver->pendingMessages_--; } ASSERT(!receiver->pendingMessages_); locker.unlock(); toDelete.clear(); } /** * \brief Dispatch posted messages for this thread * \param[in] type The message type * * This function immediately dispatches all the messages previously posted for * this thread with postMessage() that match the message \a type. If the \a type * is Message::Type::None, all messages are dispatched. */ void Thread::dispatchMessages(Message::Type type) { MutexLocker locker(data_->messages_.mutex_); std::list<std::unique_ptr<Message>> &messages = data_->messages_.list_; for (auto iter = messages.begin(); iter != messages.end(); ) { std::unique_ptr<Message> &msg = *iter; if (!msg) { iter = data_->messages_.list_.erase(iter); continue; } if (type != Message::Type::None && msg->type() != type) { ++iter; continue; } std::unique_ptr<Message> message = std::move(msg); iter = data_->messages_.list_.erase(iter); Object *receiver = message->receiver_; ASSERT(data_ == receiver->thread()->data_); receiver->pendingMessages_--; locker.unlock(); receiver->message(message.get()); message.reset(); locker.lock(); } } /** * \brief Move an \a object and all its children to the thread * \param[in] object The object */ void Thread::moveObject(Object *object) { ThreadData *currentData = object->thread_->data_; ThreadData *targetData = data_; MutexLocker lockerFrom(currentData->messages_.mutex_, std::defer_lock); MutexLocker lockerTo(targetData->messages_.mutex_, std::defer_lock); std::lock(lockerFrom, lockerTo); moveObject(object, currentData, targetData); } void Thread::moveObject(Object *object, ThreadData *currentData, ThreadData *targetData) { /* Move pending messages to the message queue of the new thread. */ if (object->pendingMessages_) { unsigned int movedMessages = 0; for (std::unique_ptr<Message> &msg : currentData->messages_.list_) { if (!msg) continue; if (msg->receiver_ != object) continue; targetData->messages_.list_.push_back(std::move(msg)); movedMessages++; } if (movedMessages) { EventDispatcher *dispatcher = targetData->dispatcher_.load(std::memory_order_acquire); if (dispatcher) dispatcher->interrupt(); } } object->thread_ = this; /* Move all children. */ for (auto child : object->children_) moveObject(child, currentData, targetData); } } /* namespace libcamera */