summaryrefslogtreecommitdiff
path: root/src/ipa/rkisp1/rkisp1.cpp
blob: d95d902adff3e2449e4e2ee9a7790fa1d80ea82b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * rkisp1.cpp - RkISP1 Image Processing Algorithms
 */

#include <algorithm>
#include <math.h>
#include <queue>
#include <stdint.h>
#include <string.h>
#include <sys/mman.h>

#include <linux/rkisp1-config.h>

#include <libcamera/buffer.h>
#include <libcamera/control_ids.h>
#include <libcamera/ipa/ipa_interface.h>
#include <libcamera/ipa/ipa_module_info.h>
#include <libcamera/ipa/rkisp1.h>
#include <libcamera/request.h>

#include <libipa/ipa_interface_wrapper.h>

#include "libcamera/internal/log.h"

namespace libcamera {

LOG_DEFINE_CATEGORY(IPARkISP1)

class IPARkISP1 : public IPAInterface
{
public:
	int init([[maybe_unused]] const IPASettings &settings) override
	{
		return 0;
	}
	int start() override { return 0; }
	void stop() override {}

	void configure(const CameraSensorInfo &info,
		       const std::map<unsigned int, IPAStream> &streamConfig,
		       const std::map<unsigned int, const ControlInfoMap &> &entityControls,
		       const IPAOperationData &ipaConfig,
		       IPAOperationData *response) override;
	void mapBuffers(const std::vector<IPABuffer> &buffers) override;
	void unmapBuffers(const std::vector<unsigned int> &ids) override;
	void processEvent(const IPAOperationData &event) override;

private:
	void queueRequest(unsigned int frame, rkisp1_isp_params_cfg *params,
			  const ControlList &controls);
	void updateStatistics(unsigned int frame,
			      const rkisp1_stat_buffer *stats);

	void setControls(unsigned int frame);
	void metadataReady(unsigned int frame, unsigned int aeState);

	std::map<unsigned int, FrameBuffer> buffers_;
	std::map<unsigned int, void *> buffersMemory_;

	ControlInfoMap ctrls_;

	/* Camera sensor controls. */
	bool autoExposure_;
	uint32_t exposure_;
	uint32_t minExposure_;
	uint32_t maxExposure_;
	uint32_t gain_;
	uint32_t minGain_;
	uint32_t maxGain_;
};

/**
 * \todo The RkISP1 pipeline currently provides an empty CameraSensorInfo
 * if the connected sensor does not provide enough information to properly
 * assemble one. Make sure the reported sensor information are relevant
 * before accessing them.
 */
void IPARkISP1::configure([[maybe_unused]] const CameraSensorInfo &info,
			  [[maybe_unused]] const std::map<unsigned int, IPAStream> &streamConfig,
			  const std::map<unsigned int, const ControlInfoMap &> &entityControls,
			  [[maybe_unused]] const IPAOperationData &ipaConfig,
			  [[maybe_unused]] IPAOperationData *result)
{
	if (entityControls.empty())
		return;

	ctrls_ = entityControls.at(0);

	const auto itExp = ctrls_.find(V4L2_CID_EXPOSURE);
	if (itExp == ctrls_.end()) {
		LOG(IPARkISP1, Error) << "Can't find exposure control";
		return;
	}

	const auto itGain = ctrls_.find(V4L2_CID_ANALOGUE_GAIN);
	if (itGain == ctrls_.end()) {
		LOG(IPARkISP1, Error) << "Can't find gain control";
		return;
	}

	autoExposure_ = true;

	minExposure_ = std::max<uint32_t>(itExp->second.min().get<int32_t>(), 1);
	maxExposure_ = itExp->second.max().get<int32_t>();
	exposure_ = minExposure_;

	minGain_ = std::max<uint32_t>(itGain->second.min().get<int32_t>(), 1);
	maxGain_ = itGain->second.max().get<int32_t>();
	gain_ = minGain_;

	LOG(IPARkISP1, Info)
		<< "Exposure: " << minExposure_ << "-" << maxExposure_
		<< " Gain: " << minGain_ << "-" << maxGain_;

	setControls(0);
}

void IPARkISP1::mapBuffers(const std::vector<IPABuffer> &buffers)
{
	for (const IPABuffer &buffer : buffers) {
		auto elem = buffers_.emplace(std::piecewise_construct,
					     std::forward_as_tuple(buffer.id),
					     std::forward_as_tuple(buffer.planes));
		const FrameBuffer &fb = elem.first->second;

		/*
		 * \todo Provide a helper to mmap() buffers (possibly exposed
		 * to applications).
		 */
		buffersMemory_[buffer.id] = mmap(NULL,
						 fb.planes()[0].length,
						 PROT_READ | PROT_WRITE,
						 MAP_SHARED,
						 fb.planes()[0].fd.fd(),
						 0);

		if (buffersMemory_[buffer.id] == MAP_FAILED) {
			int ret = -errno;
			LOG(IPARkISP1, Fatal) << "Failed to mmap buffer: "
					      << strerror(-ret);
		}
	}
}

void IPARkISP1::unmapBuffers(const std::vector<unsigned int> &ids)
{
	for (unsigned int id : ids) {
		const auto fb = buffers_.find(id);
		if (fb == buffers_.end())
			continue;

		munmap(buffersMemory_[id], fb->second.planes()[0].length);
		buffersMemory_.erase(id);
		buffers_.erase(id);
	}
}

void IPARkISP1::processEvent(const IPAOperationData &event)
{
	switch (event.operation) {
	case RKISP1_IPA_EVENT_SIGNAL_STAT_BUFFER: {
		unsigned int frame = event.data[0];
		unsigned int bufferId = event.data[1];

		const rkisp1_stat_buffer *stats =
			static_cast<rkisp1_stat_buffer *>(buffersMemory_[bufferId]);

		updateStatistics(frame, stats);
		break;
	}
	case RKISP1_IPA_EVENT_QUEUE_REQUEST: {
		unsigned int frame = event.data[0];
		unsigned int bufferId = event.data[1];

		rkisp1_isp_params_cfg *params =
			static_cast<rkisp1_isp_params_cfg *>(buffersMemory_[bufferId]);

		queueRequest(frame, params, event.controls[0]);
		break;
	}
	default:
		LOG(IPARkISP1, Error) << "Unknown event " << event.operation;
		break;
	}
}

void IPARkISP1::queueRequest(unsigned int frame, rkisp1_isp_params_cfg *params,
			     const ControlList &controls)
{
	/* Prepare parameters buffer. */
	memset(params, 0, sizeof(*params));

	/* Auto Exposure on/off. */
	if (controls.contains(controls::AeEnable)) {
		autoExposure_ = controls.get(controls::AeEnable);
		if (autoExposure_)
			params->module_ens = CIFISP_MODULE_AEC;

		params->module_en_update = CIFISP_MODULE_AEC;
	}

	IPAOperationData op;
	op.operation = RKISP1_IPA_ACTION_PARAM_FILLED;

	queueFrameAction.emit(frame, op);
}

void IPARkISP1::updateStatistics(unsigned int frame,
				 const rkisp1_stat_buffer *stats)
{
	const cifisp_stat *params = &stats->params;
	unsigned int aeState = 0;

	if (stats->meas_type & CIFISP_STAT_AUTOEXP) {
		const cifisp_ae_stat *ae = &params->ae;

		const unsigned int target = 60;

		unsigned int value = 0;
		unsigned int num = 0;
		for (int i = 0; i < CIFISP_AE_MEAN_MAX; i++) {
			if (ae->exp_mean[i] <= 15)
				continue;

			value += ae->exp_mean[i];
			num++;
		}
		value /= num;

		double factor = (double)target / value;

		if (frame % 3 == 0) {
			double exposure;

			exposure = factor * exposure_ * gain_ / minGain_;
			exposure_ = std::clamp<uint64_t>((uint64_t)exposure,
							 minExposure_,
							 maxExposure_);

			exposure = exposure / exposure_ * minGain_;
			gain_ = std::clamp<uint64_t>((uint64_t)exposure,
						     minGain_, maxGain_);

			setControls(frame + 1);
		}

		aeState = fabs(factor - 1.0f) < 0.05f ? 2 : 1;
	}

	metadataReady(frame, aeState);
}

void IPARkISP1::setControls(unsigned int frame)
{
	IPAOperationData op;
	op.operation = RKISP1_IPA_ACTION_V4L2_SET;

	ControlList ctrls(ctrls_);
	ctrls.set(V4L2_CID_EXPOSURE, static_cast<int32_t>(exposure_));
	ctrls.set(V4L2_CID_ANALOGUE_GAIN, static_cast<int32_t>(gain_));
	op.controls.push_back(ctrls);

	queueFrameAction.emit(frame, op);
}

void IPARkISP1::metadataReady(unsigned int frame, unsigned int aeState)
{
	ControlList ctrls(controls::controls);

	if (aeState)
		ctrls.set(controls::AeLocked, aeState == 2);

	IPAOperationData op;
	op.operation = RKISP1_IPA_ACTION_METADATA;
	op.controls.push_back(ctrls);

	queueFrameAction.emit(frame, op);
}

/*
 * External IPA module interface
 */

extern "C" {
const struct IPAModuleInfo ipaModuleInfo = {
	IPA_MODULE_API_VERSION,
	1,
	"PipelineHandlerRkISP1",
	"rkisp1",
};

struct ipa_context *ipaCreate()
{
	return new IPAInterfaceWrapper(std::make_unique<IPARkISP1>());
}
}

} /* namespace libcamera */
>std::vector<bool> vecBool = { true, true, false, false, true, false }; std::vector<std::string> vecString = { "foo", "bar", "baz" }; std::vector<ControlInfoMap> vecControlInfoMap = { camera_->controls(), Controls, }; std::vector<uint8_t> buf; std::vector<SharedFD> fds; if (testVectorSerdes(vecUint8) != TestPass) return TestFail; if (testVectorSerdes(vecUint16) != TestPass) return TestFail; if (testVectorSerdes(vecUint32) != TestPass) return TestFail; if (testVectorSerdes(vecUint64) != TestPass) return TestFail; if (testVectorSerdes(vecInt8) != TestPass) return TestFail; if (testVectorSerdes(vecInt16) != TestPass) return TestFail; if (testVectorSerdes(vecInt32) != TestPass) return TestFail; if (testVectorSerdes(vecInt64) != TestPass) return TestFail; if (testVectorSerdes(vecFloat) != TestPass) return TestFail; if (testVectorSerdes(vecDouble) != TestPass) return TestFail; if (testVectorSerdes(vecBool) != TestPass) return TestFail; if (testVectorSerdes(vecString) != TestPass) return TestFail; if (testVectorSerdes(vecControlInfoMap, &cs) != TestPass) return TestFail; return TestPass; } int testMap() { ControlSerializer cs(ControlSerializer::Role::Proxy); /* * Realistically, only string and integral keys. * Test simple, complex, and nested compound value. */ std::map<uint64_t, std::string> mapUintStr = { { 101, "foo" }, { 102, "bar" }, { 103, "baz" } }; std::map<int64_t, std::string> mapIntStr = { { 101, "foo" }, { -102, "bar" }, { -103, "baz" } }; std::map<std::string, std::string> mapStrStr = { { "a", "foo" }, { "b", "bar" }, { "c", "baz" } }; std::map<uint64_t, ControlInfoMap> mapUintCIM = { { 201, camera_->controls() }, { 202, Controls } }; std::map<int64_t, ControlInfoMap> mapIntCIM = { { 201, camera_->controls() }, { -202, Controls } }; std::map<std::string, ControlInfoMap> mapStrCIM = { { "a", camera_->controls() }, { "b", Controls } }; std::map<uint64_t, std::vector<uint8_t>> mapUintBVec = { { 301, { 1, 2, 3 } }, { 302, { 4, 5, 6 } }, { 303, { 7, 8, 9 } } }; std::map<int64_t, std::vector<uint8_t>> mapIntBVec = { { 301, { 1, 2, 3 } }, { -302, { 4, 5, 6} }, { -303, { 7, 8, 9 } } }; std::map<std::string, std::vector<uint8_t>> mapStrBVec = { { "a", { 1, 2, 3 } }, { "b", { 4, 5, 6 } }, { "c", { 7, 8, 9 } } }; std::vector<uint8_t> buf; std::vector<SharedFD> fds; if (testMapSerdes(mapUintStr) != TestPass) return TestFail; if (testMapSerdes(mapIntStr) != TestPass) return TestFail; if (testMapSerdes(mapStrStr) != TestPass) return TestFail; if (testMapSerdes(mapUintCIM, &cs) != TestPass) return TestFail; if (testMapSerdes(mapIntCIM, &cs) != TestPass) return TestFail; if (testMapSerdes(mapStrCIM, &cs) != TestPass) return TestFail; if (testMapSerdes(mapUintBVec) != TestPass) return TestFail; if (testMapSerdes(mapIntBVec) != TestPass) return TestFail; if (testMapSerdes(mapStrBVec) != TestPass) return TestFail; return TestPass; } int testPod() { uint32_t u32min = std::numeric_limits<uint32_t>::min(); uint32_t u32max = std::numeric_limits<uint32_t>::max(); uint32_t u32one = 1; int32_t i32min = std::numeric_limits<int32_t>::min(); int32_t i32max = std::numeric_limits<int32_t>::max(); int32_t i32one = 1; uint64_t u64min = std::numeric_limits<uint64_t>::min(); uint64_t u64max = std::numeric_limits<uint64_t>::max(); uint64_t u64one = 1; int64_t i64min = std::numeric_limits<int64_t>::min(); int64_t i64max = std::numeric_limits<int64_t>::max(); int64_t i64one = 1; float flow = std::numeric_limits<float>::lowest(); float fmin = std::numeric_limits<float>::min(); float fmax = std::numeric_limits<float>::max(); float falmostOne = 1 + 1.0e-37; double dlow = std::numeric_limits<double>::lowest(); double dmin = std::numeric_limits<double>::min(); double dmax = std::numeric_limits<double>::max(); double dalmostOne = 1 + 1.0e-307; bool t = true; bool f = false; std::stringstream ss; for (unsigned int i = 0; i < (1 << 11); i++) ss << "0123456789"; std::string strLong = ss.str(); std::string strEmpty = ""; std::vector<uint8_t> buf; std::vector<SharedFD> fds; if (testPodSerdes(u32min) != TestPass) return TestFail; if (testPodSerdes(u32max) != TestPass) return TestFail; if (testPodSerdes(u32one) != TestPass) return TestFail; if (testPodSerdes(i32min) != TestPass) return TestFail; if (testPodSerdes(i32max) != TestPass) return TestFail; if (testPodSerdes(i32one) != TestPass) return TestFail; if (testPodSerdes(u64min) != TestPass) return TestFail; if (testPodSerdes(u64max) != TestPass) return TestFail; if (testPodSerdes(u64one) != TestPass) return TestFail; if (testPodSerdes(i64min) != TestPass) return TestFail; if (testPodSerdes(i64max) != TestPass) return TestFail; if (testPodSerdes(i64one) != TestPass) return TestFail; if (testPodSerdes(flow) != TestPass) return TestFail; if (testPodSerdes(fmin) != TestPass) return TestFail; if (testPodSerdes(fmax) != TestPass) return TestFail; if (testPodSerdes(falmostOne) != TestPass) return TestFail; if (testPodSerdes(dlow) != TestPass) return TestFail; if (testPodSerdes(dmin) != TestPass) return TestFail; if (testPodSerdes(dmax) != TestPass) return TestFail; if (testPodSerdes(dalmostOne) != TestPass) return TestFail; if (testPodSerdes(t) != TestPass) return TestFail; if (testPodSerdes(f) != TestPass) return TestFail; if (testPodSerdes(strLong) != TestPass) return TestFail; if (testPodSerdes(strEmpty) != TestPass) return TestFail; return TestPass; } }; TEST_REGISTER(IPADataSerializerTest)