summaryrefslogtreecommitdiff
path: root/Documentation/guides/tracing.rst
blob: ae960d85c0757e57568e7907f0a1cf872a09b1b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
.. SPDX-License-Identifier: CC-BY-SA-4.0

Tracing Guide
=============

Guide to tracing in libcamera.

Profiling vs Tracing
--------------------

Tracing is recording timestamps at specific locations. libcamera provides a
tracing facility. This guide shows how to use this tracing facility.

Tracing should not be confused with profiling, which samples execution
at periodic points in time. This can be done with other tools such as
callgrind, perf, gprof, etc., without modification to the application,
and is out of scope for this guide.

Compiling
---------

To compile libcamera with tracing support, it must be enabled through the
meson ``tracing`` option. It depends on the lttng-ust library (available in the
``liblttng-ust-dev`` package for Debian-based distributions).
By default the tracing option in meson is set to ``auto``, so if
liblttng is detected, it will be enabled by default. Conversely, if the option
is set to disabled, then libcamera will be compiled without tracing support.

Defining tracepoints
--------------------

libcamera already contains a set of tracepoints. To define additional
tracepoints, create a file
``include/libcamera/internal/tracepoints/{file}.tp``, where ``file`` is a
reasonable name related to the category of tracepoints that you wish to
define. For example, the tracepoints file for the Request object is called
``request.tp``. An entry for this file must be added in
``include/libcamera/internal/tracepoints/meson.build``.

In this tracepoints file, define your tracepoints `as mandated by lttng
<https://lttng.org/man/3/lttng-ust>`_. The header boilerplate must *not* be
included (as it will conflict with the rest of our infrastructure), and
only the tracepoint definitions (with the ``TRACEPOINT_*`` macros) should be
included.

All tracepoint providers shall be ``libcamera``. According to lttng, the
tracepoint provider should be per-project; this is the rationale for this
decision. To group tracepoint events, we recommend using
``{class_name}_{tracepoint_name}``, for example, ``request_construct`` for a
tracepoint for the constructor of the Request class.

Tracepoint arguments may take C++ objects pointers, in which case the usual
C++ namespacing rules apply. The header that contains the necessary class
definitions must be included at the top of the tracepoint provider file.

Note: the final parameter in ``TP_ARGS`` *must not* have a trailing comma, and
the parameters to ``TP_FIELDS`` are *space-separated*. Not following these will
cause compilation errors.

Using tracepoints (in libcamera)
--------------------------------

To use tracepoints in libcamera, first the header needs to be included:

``#include "libcamera/internal/tracepoints.h"``

Then to use the tracepoint:

``LIBCAMERA_TRACEPOINT({tracepoint_event}, args...)``

This macro must be used, as opposed to lttng's macros directly, because
lttng is an optional dependency of libcamera, so the code must compile and run
even when lttng is not present or when tracing is disabled.

The tracepoint provider name, as declared in the tracepoint definition, is not
included in the parameters of the tracepoint.

There are also two special tracepoints available for tracing IPA calls:

``LIBCAMERA_TRACEPOINT_IPA_BEGIN({pipeline_name}, {ipa_function})``

``LIBCAMERA_TRACEPOINT_IPA_END({pipeline_name}, {ipa_function})``

These shall be placed where an IPA function is called from the pipeline handler,
and when the pipeline handler receives the corresponding response from the IPA,
respectively. These are the tracepoints that our sample analysis script
(see "Analyzing a trace") scans for when computing statistics on IPA call time.

Using tracepoints (from an application)
---------------------------------------

As applications are not part of libcamera, but rather users of libcamera,
applications should seek their own tracing mechanisms. For ease of tracing
the application alongside tracing libcamera, it is recommended to also
`use lttng <https://lttng.org/docs/#doc-tracing-your-own-user-application>`_.

Using tracepoints (from closed-source IPA)
------------------------------------------

Similar to applications, closed-source IPAs can simply use lttng on their own,
or any other tracing mechanism if desired.

Collecting a trace
------------------

A trace can be collected fairly simply from lttng:

.. code-block:: bash

   lttng create $SESSION_NAME
   lttng enable-event -u libcamera:\*
   lttng start
   # run libcamera application
   lttng stop
   lttng view
   lttng destroy $SESSION_NAME

See the `lttng documentation <https://lttng.org/docs/>`_ for further details.

The location of the trace file is printed when running
``lttng create $SESSION_NAME``. After destroying the session, it can still be
viewed by: ``lttng view -t $PATH_TO_TRACE``, where ``$PATH_TO_TRACE`` is the
path that was printed when the session was created. This is the same path that
is used when analyzing traces programatically, as described in the next section.

Analyzing a trace
-----------------

As mentioned above, while an lttng tracing session exists and the trace is not
running, the trace output can be viewed as text by ``lttng view``.

The trace log can also be viewed as text using babeltrace2.  See the
`lttng trace analysis documentation
<https://lttng.org/docs/#doc-viewing-and-analyzing-your-traces-bt>`_
for further details.

babeltrace2 also has a C API and python bindings that can be used to process
traces. See the
`lttng python bindings documentation <https://babeltrace.org/docs/v2.0/python/bt2/>`_
and the
`lttng C API documentation <https://babeltrace.org/docs/v2.0/libbabeltrace2/>`_
for more details.

As an example, there is a script ``utils/tracepoints/analyze-ipa-trace.py``
that gathers statistics for the time taken for an IPA function call, by
measuring the time difference between pairs of events
``libcamera:ipa_call_start`` and ``libcamera:ipa_call_finish``.
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * Control handling
 */

#pragma once

#include <assert.h>
#include <map>
#include <optional>
#include <set>
#include <stdint.h>
#include <string>
#include <unordered_map>
#include <vector>

#include <libcamera/base/class.h>
#include <libcamera/base/span.h>

#include <libcamera/geometry.h>

namespace libcamera {

class ControlValidator;

enum ControlType {
	ControlTypeNone,
	ControlTypeBool,
	ControlTypeByte,
	ControlTypeInteger32,
	ControlTypeInteger64,
	ControlTypeFloat,
	ControlTypeString,
	ControlTypeRectangle,
	ControlTypeSize,
};

namespace details {

template<typename T, typename = std::void_t<>>
struct control_type {
};

template<>
struct control_type<void> {
	static constexpr ControlType value = ControlTypeNone;
	static constexpr std::size_t size = 0;
};

template<>
struct control_type<bool> {
	static constexpr ControlType value = ControlTypeBool;
	static constexpr std::size_t size = 0;
};

template<>
struct control_type<uint8_t> {
	static constexpr ControlType value = ControlTypeByte;
	static constexpr std::size_t size = 0;
};

template<>
struct control_type<int32_t> {
	static constexpr ControlType value = ControlTypeInteger32;
	static constexpr std::size_t size = 0;
};

template<>
struct control_type<int64_t> {
	static constexpr ControlType value = ControlTypeInteger64;
	static constexpr std::size_t size = 0;
};

template<>
struct control_type<float> {
	static constexpr ControlType value = ControlTypeFloat;
	static constexpr std::size_t size = 0;
};

template<>
struct control_type<std::string> {
	static constexpr ControlType value = ControlTypeString;
	static constexpr std::size_t size = 0;
};

template<>
struct control_type<Rectangle> {
	static constexpr ControlType value = ControlTypeRectangle;
	static constexpr std::size_t size = 0;
};

template<>
struct control_type<Size> {
	static constexpr ControlType value = ControlTypeSize;
	static constexpr std::size_t size = 0;
};

template<typename T, std::size_t N>
struct control_type<Span<T, N>> : public control_type<std::remove_cv_t<T>> {
	static constexpr std::size_t size = N;
};

template<typename T>
struct control_type<T, std::enable_if_t<std::is_enum_v<T>>> : public control_type<int32_t> {
};

} /* namespace details */

class ControlValue
{
public:
	ControlValue();

#ifndef __DOXYGEN__
	template<typename T, std::enable_if_t<!details::is_span<T>::value &&
					      details::control_type<T>::value &&
					      !std::is_same<std::string, std::remove_cv_t<T>>::value,
					      std::nullptr_t> = nullptr>
	ControlValue(const T &value)
		: type_(ControlTypeNone), numElements_(0)
	{
		set(details::control_type<std::remove_cv_t<T>>::value, false,
		    &value, 1, sizeof(T));
	}

	template<typename T, std::enable_if_t<details::is_span<T>::value ||
					      std::is_same<std::string, std::remove_cv_t<T>>::value,
					      std::nullptr_t> = nullptr>
#else
	template<typename T>
#endif
	ControlValue(const T &value)
		: type_(ControlTypeNone), numElements_(0)
	{
		set(details::control_type<std::remove_cv_t<T>>::value, true,
		    value.data(), value.size(), sizeof(typename T::value_type));
	}

	~ControlValue();

	ControlValue(const ControlValue &other);
	ControlValue &operator=(const ControlValue &other);

	ControlType type() const { return type_; }
	bool isNone() const { return type_ == ControlTypeNone; }
	bool isArray() const { return isArray_; }
	std::size_t numElements() const { return numElements_; }
	Span<const uint8_t> data() const;
	Span<uint8_t> data();

	std::string toString() const;

	bool operator==(const ControlValue &other) const;
	bool operator!=(const ControlValue &other) const
	{
		return !(*this == other);
	}

#ifndef __DOXYGEN__
	template<typename T, std::enable_if_t<!details::is_span<T>::value &&
					      !std::is_same<std::string, std::remove_cv_t<T>>::value,
					      std::nullptr_t> = nullptr>
	T get() const
	{
		assert(type_ == details::control_type<std::remove_cv_t<T>>::value);
		assert(!isArray_);

		return *reinterpret_cast<const T *>(data().data());
	}

	template<typename T, std::enable_if_t<details::is_span<T>::value ||
					      std::is_same<std::string, std::remove_cv_t<T>>::value,
					      std::nullptr_t> = nullptr>
#else
	template<typename T>
#endif
	T get() const
	{
		assert(type_ == details::control_type<std::remove_cv_t<T>>::value);
		assert(isArray_);

		using V = typename T::value_type;
		const V *value = reinterpret_cast<const V *>(data().data());
		return T{ value, numElements_ };
	}

#ifndef __DOXYGEN__
	template<typename T, std::enable_if_t<!details::is_span<T>::value &&
					      !std::is_same<std::string, std::remove_cv_t<T>>::value,
					      std::nullptr_t> = nullptr>
	void set(const T &value)
	{
		set(details::control_type<std::remove_cv_t<T>>::value, false,
		    reinterpret_cast<const void *>(&value), 1, sizeof(T));
	}

	template<typename T, std::enable_if_t<details::is_span<T>::value ||
					      std::is_same<std::string, std::remove_cv_t<T>>::value,
					      std::nullptr_t> = nullptr>
#else
	template<typename T>
#endif
	void set(const T &value)
	{
		set(details::control_type<std::remove_cv_t<T>>::value, true,
		    value.data(), value.size(), sizeof(typename T::value_type));
	}

	void reserve(ControlType type, bool isArray = false,
		     std::size_t numElements = 1);

private:
	ControlType type_ : 8;
	bool isArray_;
	std::size_t numElements_ : 32;
	union {
		uint64_t value_;
		void *storage_;
	};

	void release();
	void set(ControlType type, bool isArray, const void *data,
		 std::size_t numElements, std::size_t elementSize);
};

class ControlId
{
public:
	ControlId(unsigned int id, const std::string &name, ControlType type,
		  std::size_t size = 0,
		  const std::map<std::string, int32_t> &enumStrMap = {});

	unsigned int id() const { return id_; }
	const std::string &name() const { return name_; }
	ControlType type() const { return type_; }
	bool isArray() const { return size_ > 0; }
	std::size_t size() const { return size_; }
	const std::map<int32_t, std::string> &enumerators() const { return reverseMap_; }

private:
	LIBCAMERA_DISABLE_COPY_AND_MOVE(ControlId)

	unsigned int id_;
	std::string name_;
	ControlType type_;
	std::size_t size_;
	std::map<std::string, int32_t> enumStrMap_;
	std::map<int32_t, std::string> reverseMap_;
};

static inline bool operator==(unsigned int lhs, const ControlId &rhs)
{
	return lhs == rhs.id();
}

static inline bool operator!=(unsigned int lhs, const ControlId &rhs)
{
	return !(lhs == rhs);
}

static inline bool operator==(const ControlId &lhs, unsigned int rhs)
{
	return lhs.id() == rhs;
}

static inline bool operator!=(const ControlId &lhs, unsigned int rhs)
{
	return !(lhs == rhs);
}

template<typename T>
class Control : public ControlId
{
public:
	using type = T;

	Control(unsigned int id, const char *name, const std::map<std::string, int32_t> &enumStrMap = {})
		: ControlId(id, name, details::control_type<std::remove_cv_t<T>>::value,
			    details::control_type<std::remove_cv_t<T>>::size, enumStrMap)
	{
	}

private:
	LIBCAMERA_DISABLE_COPY_AND_MOVE(Control)
};

class ControlInfo
{
public:
	explicit ControlInfo(const ControlValue &min = {},
			     const ControlValue &max = {},
			     const ControlValue &def = {});
	explicit ControlInfo(Span<const ControlValue> values,
			     const ControlValue &def = {});
	explicit ControlInfo(std::set<bool> values, bool def);
	explicit ControlInfo(bool value);

	const ControlValue &min() const { return min_; }
	const ControlValue &max() const { return max_; }
	const ControlValue &def() const { return def_; }
	const std::vector<ControlValue> &values() const { return values_; }

	std::string toString() const;

	bool operator==(const ControlInfo &other) const
	{
		return min_ == other.min_ && max_ == other.max_;
	}

	bool operator!=(const ControlInfo &other) const
	{
		return !(*this == other);
	}

private:
	ControlValue min_;
	ControlValue max_;
	ControlValue def_;
	std::vector<ControlValue> values_;
};

using ControlIdMap = std::unordered_map<unsigned int, const ControlId *>;

class ControlInfoMap : private std::unordered_map<const ControlId *, ControlInfo>
{
public:
	using Map = std::unordered_map<const ControlId *, ControlInfo>;

	ControlInfoMap() = default;
	ControlInfoMap(const ControlInfoMap &other) = default;
	ControlInfoMap(std::initializer_list<Map::value_type> init,
		       const ControlIdMap &idmap);
	ControlInfoMap(Map &&info, const ControlIdMap &idmap);

	ControlInfoMap &operator=(const ControlInfoMap &other) = default;

	using Map::key_type;
	using Map::mapped_type;
	using Map::value_type;
	using Map::size_type;
	using Map::iterator;
	using Map::const_iterator;

	using Map::begin;
	using Map::cbegin;
	using Map::end;
	using Map::cend;
	using Map::at;
	using Map::empty;
	using Map::size;
	using Map::count;
	using Map::find;

	mapped_type &at(unsigned int key);
	const mapped_type &at(unsigned int key) const;
	size_type count(unsigned int key) const;
	iterator find(unsigned int key);
	const_iterator find(unsigned int key) const;

	const ControlIdMap &idmap() const { return *idmap_; }

private:
	bool validate();

	const ControlIdMap *idmap_ = nullptr;
};

class ControlList
{
private:
	using ControlListMap = std::unordered_map<unsigned int, ControlValue>;

public:
	enum class MergePolicy {
		KeepExisting = 0,
		OverwriteExisting,
	};

	ControlList();
	ControlList(const ControlIdMap &idmap, const ControlValidator *validator = nullptr);
	ControlList(const ControlInfoMap &infoMap, const ControlValidator *validator = nullptr);

	using iterator = ControlListMap::iterator;
	using const_iterator = ControlListMap::const_iterator;

	iterator begin() { return controls_.begin(); }
	iterator end() { return controls_.end(); }
	const_iterator begin() const { return controls_.begin(); }
	const_iterator end() const { return controls_.end(); }

	bool empty() const { return controls_.empty(); }
	std::size_t size() const { return controls_.size(); }

	void clear() { controls_.clear(); }
	void merge(const ControlList &source, MergePolicy policy = MergePolicy::KeepExisting);

	bool contains(unsigned int id) const;

	template<typename T>
	std::optional<T> get(const Control<T> &ctrl) const
	{
		const auto entry = controls_.find(ctrl.id());
		if (entry == controls_.end())
			return std::nullopt;

		const ControlValue &val = entry->second;
		return val.get<T>();
	}

	template<typename T, typename V>
	void set(const Control<T> &ctrl, const V &value)
	{
		ControlValue *val = find(ctrl.id());
		if (!val)
			return;

		val->set<T>(value);
	}

	template<typename T, typename V, size_t Size>
	void set(const Control<Span<T, Size>> &ctrl, const std::initializer_list<V> &value)
	{
		ControlValue *val = find(ctrl.id());
		if (!val)
			return;

		val->set(Span<const typename std::remove_cv_t<V>, Size>{ value.begin(), value.size() });
	}

	const ControlValue &get(unsigned int id) const;
	void set(unsigned int id, const ControlValue &value);

	const ControlInfoMap *infoMap() const { return infoMap_; }
	const ControlIdMap *idMap() const { return idmap_; }

private:
	const ControlValue *find(unsigned int id) const;
	ControlValue *find(unsigned int id);

	const ControlValidator *validator_;
	const ControlIdMap *idmap_;
	const ControlInfoMap *infoMap_;

	ControlListMap controls_;
};

} /* namespace libcamera */