diff options
Diffstat (limited to 'utils/tuning')
44 files changed, 3401 insertions, 0 deletions
diff --git a/utils/tuning/README.rst b/utils/tuning/README.rst new file mode 100644 index 00000000..89a1d61e --- /dev/null +++ b/utils/tuning/README.rst @@ -0,0 +1,20 @@ +.. SPDX-License-Identifier: CC-BY-SA-4.0 + +libcamera tuning tools +====================== + +.. Note:: The tuning tools are still very much work in progress. If in doubt, + please ask on the mailing list. + +.. todo:: + Write documentation + +Installation of dependencies +---------------------------- + +:: + # Using a venv + python3 -m venv venv + . ./venv/bin/activate + pip3 install -r requirements.txt + diff --git a/utils/tuning/config-example.yaml b/utils/tuning/config-example.yaml new file mode 100644 index 00000000..1b7f52cd --- /dev/null +++ b/utils/tuning/config-example.yaml @@ -0,0 +1,12 @@ +general: + disable: [] + plot: [] + alsc: + do_alsc_colour: 1 + luminance_strength: 0.5 + awb: + greyworld: 0 + macbeth: + small: 1 + show: 0 +# blacklevel: 32
\ No newline at end of file diff --git a/utils/tuning/libtuning/__init__.py b/utils/tuning/libtuning/__init__.py new file mode 100644 index 00000000..93049976 --- /dev/null +++ b/utils/tuning/libtuning/__init__.py @@ -0,0 +1,13 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> + +from libtuning.utils import * +from libtuning.libtuning import * + +from libtuning.image import * +from libtuning.macbeth import * + +from libtuning.average import * +from libtuning.gradient import * +from libtuning.smoothing import * diff --git a/utils/tuning/libtuning/average.py b/utils/tuning/libtuning/average.py new file mode 100644 index 00000000..c41075a1 --- /dev/null +++ b/utils/tuning/libtuning/average.py @@ -0,0 +1,21 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# Wrapper for numpy averaging functions to enable duck-typing + +import numpy as np + + +# @brief Wrapper for np averaging functions so that they can be duck-typed +class Average(object): + def __init__(self): + pass + + def average(self, np_array): + raise NotImplementedError + + +class Mean(Average): + def average(self, np_array): + return np.mean(np_array) diff --git a/utils/tuning/libtuning/ctt_awb.py b/utils/tuning/libtuning/ctt_awb.py new file mode 100644 index 00000000..240f37e6 --- /dev/null +++ b/utils/tuning/libtuning/ctt_awb.py @@ -0,0 +1,378 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# +# camera tuning tool for AWB + +import logging + +import matplotlib.pyplot as plt +from bisect import bisect_left +from scipy.optimize import fmin +import numpy as np + +from .image import Image + +logger = logging.getLogger(__name__) + +""" +obtain piecewise linear approximation for colour curve +""" +def awb(imgs, cal_cr_list, cal_cb_list, plot): + """ + condense alsc calibration tables into one dictionary + """ + if cal_cr_list is None: + colour_cals = None + else: + colour_cals = {} + for cr, cb in zip(cal_cr_list, cal_cb_list): + cr_tab = cr['table'] + cb_tab = cb['table'] + """ + normalise tables so min value is 1 + """ + cr_tab = cr_tab/np.min(cr_tab) + cb_tab = cb_tab/np.min(cb_tab) + colour_cals[cr['ct']] = [cr_tab, cb_tab] + """ + obtain data from greyscale macbeth patches + """ + rb_raw = [] + rbs_hat = [] + for Img in imgs: + logger.info(f'Processing {Img.name}') + """ + get greyscale patches with alsc applied if alsc enabled. + Note: if alsc is disabled then colour_cals will be set to None and the + function will just return the greyscale patches + """ + r_patchs, b_patchs, g_patchs = get_alsc_patches(Img, colour_cals) + """ + calculate ratio of r, b to g + """ + r_g = np.mean(r_patchs/g_patchs) + b_g = np.mean(b_patchs/g_patchs) + logger.info(f' r : {r_g:.4f} b : {b_g:.4f}') + """ + The curve tends to be better behaved in so-called hatspace. + R, B, G represent the individual channels. The colour curve is plotted in + r, b space, where: + r = R/G + b = B/G + This will be referred to as dehatspace... (sorry) + Hatspace is defined as: + r_hat = R/(R+B+G) + b_hat = B/(R+B+G) + To convert from dehatspace to hastpace (hat operation): + r_hat = r/(1+r+b) + b_hat = b/(1+r+b) + To convert from hatspace to dehatspace (dehat operation): + r = r_hat/(1-r_hat-b_hat) + b = b_hat/(1-r_hat-b_hat) + Proof is left as an excercise to the reader... + Throughout the code, r and b are sometimes referred to as r_g and b_g + as a reminder that they are ratios + """ + r_g_hat = r_g/(1+r_g+b_g) + b_g_hat = b_g/(1+r_g+b_g) + logger.info(f' r_hat : {r_g_hat:.4f} b_hat : {b_g_hat:.4f}') + rbs_hat.append((r_g_hat, b_g_hat, Img.color)) + rb_raw.append((r_g, b_g)) + + logger.info('Finished processing images') + """ + sort all lits simultaneously by r_hat + """ + rbs_zip = list(zip(rbs_hat, rb_raw)) + rbs_zip.sort(key=lambda x: x[0][0]) + rbs_hat, rb_raw = list(zip(*rbs_zip)) + """ + unzip tuples ready for processing + """ + rbs_hat = list(zip(*rbs_hat)) + rb_raw = list(zip(*rb_raw)) + """ + fit quadratic fit to r_g hat and b_g_hat + """ + a, b, c = np.polyfit(rbs_hat[0], rbs_hat[1], 2) + logger.info('Fit quadratic curve in hatspace') + """ + the algorithm now approximates the shortest distance from each point to the + curve in dehatspace. Since the fit is done in hatspace, it is easier to + find the actual shortest distance in hatspace and use the projection back + into dehatspace as an overestimate. + The distance will be used for two things: + 1) In the case that colour temperature does not strictly decrease with + increasing r/g, the closest point to the line will be chosen out of an + increasing pair of colours. + + 2) To calculate transverse negative an dpositive, the maximum positive + and negative distance from the line are chosen. This benefits from the + overestimate as the transverse pos/neg are upper bound values. + """ + """ + define fit function + """ + def f(x): + return a*x**2 + b*x + c + """ + iterate over points (R, B are x and y coordinates of points) and calculate + distance to line in dehatspace + """ + dists = [] + for i, (R, B) in enumerate(zip(rbs_hat[0], rbs_hat[1])): + """ + define function to minimise as square distance between datapoint and + point on curve. Squaring is monotonic so minimising radius squared is + equivalent to minimising radius + """ + def f_min(x): + y = f(x) + return((x-R)**2+(y-B)**2) + """ + perform optimisation with scipy.optmisie.fmin + """ + x_hat = fmin(f_min, R, disp=0)[0] + y_hat = f(x_hat) + """ + dehat + """ + x = x_hat/(1-x_hat-y_hat) + y = y_hat/(1-x_hat-y_hat) + rr = R/(1-R-B) + bb = B/(1-R-B) + """ + calculate euclidean distance in dehatspace + """ + dist = ((x-rr)**2+(y-bb)**2)**0.5 + """ + return negative if point is below the fit curve + """ + if (x+y) > (rr+bb): + dist *= -1 + dists.append(dist) + logger.info('Found closest point on fit line to each point in dehatspace') + """ + calculate wiggle factors in awb. 10% added since this is an upper bound + """ + transverse_neg = - np.min(dists) * 1.1 + transverse_pos = np.max(dists) * 1.1 + logger.info(f'Transverse pos : {transverse_pos:.5f}') + logger.info(f'Transverse neg : {transverse_neg:.5f}') + """ + set minimum transverse wiggles to 0.1 . + Wiggle factors dictate how far off of the curve the algorithm searches. 0.1 + is a suitable minimum that gives better results for lighting conditions not + within calibration dataset. Anything less will generalise poorly. + """ + if transverse_pos < 0.01: + transverse_pos = 0.01 + logger.info('Forced transverse pos to 0.01') + if transverse_neg < 0.01: + transverse_neg = 0.01 + logger.info('Forced transverse neg to 0.01') + + """ + generate new b_hat values at each r_hat according to fit + """ + r_hat_fit = np.array(rbs_hat[0]) + b_hat_fit = a*r_hat_fit**2 + b*r_hat_fit + c + """ + transform from hatspace to dehatspace + """ + r_fit = r_hat_fit/(1-r_hat_fit-b_hat_fit) + b_fit = b_hat_fit/(1-r_hat_fit-b_hat_fit) + c_fit = np.round(rbs_hat[2], 0) + """ + round to 4dp + """ + r_fit = np.where((1000*r_fit) % 1 <= 0.05, r_fit+0.0001, r_fit) + r_fit = np.where((1000*r_fit) % 1 >= 0.95, r_fit-0.0001, r_fit) + b_fit = np.where((1000*b_fit) % 1 <= 0.05, b_fit+0.0001, b_fit) + b_fit = np.where((1000*b_fit) % 1 >= 0.95, b_fit-0.0001, b_fit) + r_fit = np.round(r_fit, 4) + b_fit = np.round(b_fit, 4) + """ + The following code ensures that colour temperature decreases with + increasing r/g + """ + """ + iterate backwards over list for easier indexing + """ + i = len(c_fit) - 1 + while i > 0: + if c_fit[i] > c_fit[i-1]: + logger.info('Colour temperature increase found') + logger.info(f'{c_fit[i - 1]} K at r = {r_fit[i - 1]} to ') + logger.info(f'{c_fit[i]} K at r = {r_fit[i]}') + """ + if colour temperature increases then discard point furthest from + the transformed fit (dehatspace) + """ + error_1 = abs(dists[i-1]) + error_2 = abs(dists[i]) + logger.info('Distances from fit:') + logger.info(f'{c_fit[i]} K : {error_1:.5f}') + logger.info(f'{c_fit[i - 1]} K : {error_2:.5f}') + """ + find bad index + note that in python false = 0 and true = 1 + """ + bad = i - (error_1 < error_2) + logger.info(f'Point at {c_fit[bad]} K deleted as ') + logger.info('it is furthest from fit') + """ + delete bad point + """ + r_fit = np.delete(r_fit, bad) + b_fit = np.delete(b_fit, bad) + c_fit = np.delete(c_fit, bad).astype(np.uint16) + """ + note that if a point has been discarded then the length has decreased + by one, meaning that decreasing the index by one will reassess the kept + point against the next point. It is therefore possible, in theory, for + two adjacent points to be discarded, although probably rare + """ + i -= 1 + + """ + return formatted ct curve, ordered by increasing colour temperature + """ + ct_curve = list(np.array(list(zip(b_fit, r_fit, c_fit))).flatten())[::-1] + logger.info('Final CT curve:') + for i in range(len(ct_curve)//3): + j = 3*i + logger.info(f' ct: {ct_curve[j]} ') + logger.info(f' r: {ct_curve[j + 1]} ') + logger.info(f' b: {ct_curve[j + 2]} ') + + """ + plotting code for debug + """ + if plot: + x = np.linspace(np.min(rbs_hat[0]), np.max(rbs_hat[0]), 100) + y = a*x**2 + b*x + c + plt.subplot(2, 1, 1) + plt.title('hatspace') + plt.plot(rbs_hat[0], rbs_hat[1], ls='--', color='blue') + plt.plot(x, y, color='green', ls='-') + plt.scatter(rbs_hat[0], rbs_hat[1], color='red') + for i, ct in enumerate(rbs_hat[2]): + plt.annotate(str(ct), (rbs_hat[0][i], rbs_hat[1][i])) + plt.xlabel('$\\hat{r}$') + plt.ylabel('$\\hat{b}$') + """ + optional set axes equal to shortest distance so line really does + looks perpendicular and everybody is happy + """ + # ax = plt.gca() + # ax.set_aspect('equal') + plt.grid() + plt.subplot(2, 1, 2) + plt.title('dehatspace - indoors?') + plt.plot(r_fit, b_fit, color='blue') + plt.scatter(rb_raw[0], rb_raw[1], color='green') + plt.scatter(r_fit, b_fit, color='red') + for i, ct in enumerate(c_fit): + plt.annotate(str(ct), (r_fit[i], b_fit[i])) + plt.xlabel('$r$') + plt.ylabel('$b$') + """ + optional set axes equal to shortest distance so line really does + looks perpendicular and everybody is happy + """ + # ax = plt.gca() + # ax.set_aspect('equal') + plt.subplots_adjust(hspace=0.5) + plt.grid() + plt.show() + """ + end of plotting code + """ + return(ct_curve, np.round(transverse_pos, 5), np.round(transverse_neg, 5)) + + +""" +obtain greyscale patches and perform alsc colour correction +""" +def get_alsc_patches(Img, colour_cals, grey=True): + """ + get patch centre coordinates, image colour and the actual + patches for each channel, remembering to subtract blacklevel + If grey then only greyscale patches considered + """ + patches = Img.patches + if grey: + cen_coords = Img.cen_coords[3::4] + col = Img.color + r_patchs = patches[0][3::4] - Img.blacklevel_16 + b_patchs = patches[3][3::4] - Img.blacklevel_16 + """ + note two green channels are averages + """ + g_patchs = (patches[1][3::4]+patches[2][3::4])/2 - Img.blacklevel_16 + else: + cen_coords = Img.cen_coords + col = Img.color + r_patchs = patches[0] - Img.blacklevel_16 + b_patchs = patches[3] - Img.blacklevel_16 + g_patchs = (patches[1]+patches[2])/2 - Img.blacklevel_16 + + if colour_cals is None: + return r_patchs, b_patchs, g_patchs + """ + find where image colour fits in alsc colour calibration tables + """ + cts = list(colour_cals.keys()) + pos = bisect_left(cts, col) + """ + if img colour is below minimum or above maximum alsc calibration colour, simply + pick extreme closest to img colour + """ + if pos % len(cts) == 0: + """ + this works because -0 = 0 = first and -1 = last index + """ + col_tabs = np.array(colour_cals[cts[-pos//len(cts)]]) + """ + else, perform linear interpolation between existing alsc colour + calibration tables + """ + else: + bef = cts[pos-1] + aft = cts[pos] + da = col-bef + db = aft-col + bef_tabs = np.array(colour_cals[bef]) + aft_tabs = np.array(colour_cals[aft]) + col_tabs = (bef_tabs*db + aft_tabs*da)/(da+db) + col_tabs = np.reshape(col_tabs, (2, 12, 16)) + """ + calculate dx, dy used to calculate alsc table + """ + w, h = Img.w/2, Img.h/2 + dx, dy = int(-(-(w-1)//16)), int(-(-(h-1)//12)) + """ + make list of pairs of gains for each patch by selecting the correct value + in alsc colour calibration table + """ + patch_gains = [] + for cen in cen_coords: + x, y = cen[0]//dx, cen[1]//dy + # We could probably do with some better spatial interpolation here? + col_gains = (col_tabs[0][y][x], col_tabs[1][y][x]) + patch_gains.append(col_gains) + + """ + multiply the r and b channels in each patch by the respective gain, finally + performing the alsc colour correction + """ + for i, gains in enumerate(patch_gains): + r_patchs[i] = r_patchs[i] * gains[0] + b_patchs[i] = b_patchs[i] * gains[1] + + """ + return greyscale patches, g channel and correct r, b channels + """ + return r_patchs, b_patchs, g_patchs diff --git a/utils/tuning/libtuning/ctt_ccm.py b/utils/tuning/libtuning/ctt_ccm.py new file mode 100644 index 00000000..2e87a667 --- /dev/null +++ b/utils/tuning/libtuning/ctt_ccm.py @@ -0,0 +1,408 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# +# camera tuning tool for CCM (colour correction matrix) + +import logging + +import numpy as np +from scipy.optimize import minimize + +from . import ctt_colors as colors +from .image import Image +from .ctt_awb import get_alsc_patches +from .utils import visualise_macbeth_chart + +logger = logging.getLogger(__name__) + +""" +takes 8-bit macbeth chart values, degammas and returns 16 bit +""" + +''' +This program has many options from which to derive the color matrix from. +The first is average. This minimises the average delta E across all patches of +the macbeth chart. Testing across all cameras yeilded this as the most color +accurate and vivid. Other options are avalible however. +Maximum minimises the maximum Delta E of the patches. It iterates through till +a minimum maximum is found (so that there is +not one patch that deviates wildly.) +This yields generally good results but overall the colors are less accurate +Have a fiddle with maximum and see what you think. +The final option allows you to select the patches for which to average across. +This means that you can bias certain patches, for instance if you want the +reds to be more accurate. +''' + +matrix_selection_types = ["average", "maximum", "patches"] +typenum = 0 # select from array above, 0 = average, 1 = maximum, 2 = patches +test_patches = [1, 2, 5, 8, 9, 12, 14] + +''' +Enter patches to test for. Can also be entered twice if you +would like twice as much bias on one patch. +''' + + +def degamma(x): + x = x / ((2 ** 8) - 1) # takes 255 and scales it down to one + x = np.where(x < 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4) + x = x * ((2 ** 16) - 1) # takes one and scales up to 65535, 16 bit color + return x + + +def gamma(x): + # Take 3 long array of color values and gamma them + return [((colour / 255) ** (1 / 2.4) * 1.055 - 0.055) * 255 for colour in x] + + +""" +FInds colour correction matrices for list of images +""" + + +def ccm(imgs, cal_cr_list, cal_cb_list): + global matrix_selection_types, typenum + """ + standard macbeth chart colour values + """ + m_rgb = np.array([ # these are in RGB + [116, 81, 67], # dark skin + [199, 147, 129], # light skin + [91, 122, 156], # blue sky + [90, 108, 64], # foliage + [130, 128, 176], # blue flower + [92, 190, 172], # bluish green + [224, 124, 47], # orange + [68, 91, 170], # purplish blue + [198, 82, 97], # moderate red + [94, 58, 106], # purple + [159, 189, 63], # yellow green + [230, 162, 39], # orange yellow + [35, 63, 147], # blue + [67, 149, 74], # green + [180, 49, 57], # red + [238, 198, 20], # yellow + [193, 84, 151], # magenta + [0, 136, 170], # cyan (goes out of gamut) + [245, 245, 243], # white 9.5 + [200, 202, 202], # neutral 8 + [161, 163, 163], # neutral 6.5 + [121, 121, 122], # neutral 5 + [82, 84, 86], # neutral 3.5 + [49, 49, 51] # black 2 + ]) + """ + convert reference colours from srgb to rgb + """ + m_srgb = degamma(m_rgb) # now in 16 bit color. + + # Produce array of LAB values for ideal color chart + m_lab = [colors.RGB_to_LAB(color / 256) for color in m_srgb] + + """ + reorder reference values to match how patches are ordered + """ + m_srgb = np.array([m_srgb[i::6] for i in range(6)]).reshape((24, 3)) + m_lab = np.array([m_lab[i::6] for i in range(6)]).reshape((24, 3)) + m_rgb = np.array([m_rgb[i::6] for i in range(6)]).reshape((24, 3)) + """ + reformat alsc correction tables or set colour_cals to None if alsc is + deactivated + """ + if cal_cr_list is None: + colour_cals = None + else: + colour_cals = {} + for cr, cb in zip(cal_cr_list, cal_cb_list): + cr_tab = cr['table'] + cb_tab = cb['table'] + """ + normalise tables so min value is 1 + """ + cr_tab = cr_tab / np.min(cr_tab) + cb_tab = cb_tab / np.min(cb_tab) + colour_cals[cr['ct']] = [cr_tab, cb_tab] + + """ + for each image, perform awb and alsc corrections. + Then calculate the colour correction matrix for that image, recording the + ccm and the colour tempertaure. + """ + ccm_tab = {} + for Img in imgs: + logger.info('Processing image: ' + Img.name) + """ + get macbeth patches with alsc applied if alsc enabled. + Note: if alsc is disabled then colour_cals will be set to None and no + the function will simply return the macbeth patches + """ + r, b, g = get_alsc_patches(Img, colour_cals, grey=False) + # 256 values for each patch of sRGB values + + """ + do awb + Note: awb is done by measuring the macbeth chart in the image, rather + than from the awb calibration. This is done so the awb will be perfect + and the ccm matrices will be more accurate. + """ + r_greys, b_greys, g_greys = r[3::4], b[3::4], g[3::4] + r_g = np.mean(r_greys / g_greys) + b_g = np.mean(b_greys / g_greys) + r = r / r_g + b = b / b_g + """ + normalise brightness wrt reference macbeth colours and then average + each channel for each patch + """ + gain = np.mean(m_srgb) / np.mean((r, g, b)) + logger.info(f'Gain with respect to standard colours: {gain:.3f}') + r = np.mean(gain * r, axis=1) + b = np.mean(gain * b, axis=1) + g = np.mean(gain * g, axis=1) + """ + calculate ccm matrix + """ + # ==== All of below should in sRGB ===## + sumde = 0 + ccm = do_ccm(r, g, b, m_srgb) + # This is the initial guess that our optimisation code works with. + original_ccm = ccm + r1 = ccm[0] + r2 = ccm[1] + g1 = ccm[3] + g2 = ccm[4] + b1 = ccm[6] + b2 = ccm[7] + ''' + COLOR MATRIX LOOKS AS BELOW + R1 R2 R3 Rval Outr + G1 G2 G3 * Gval = G + B1 B2 B3 Bval B + Will be optimising 6 elements and working out the third element using 1-r1-r2 = r3 + ''' + + x0 = [r1, r2, g1, g2, b1, b2] + ''' + We use our old CCM as the initial guess for the program to find the + optimised matrix + ''' + result = minimize(guess, x0, args=(r, g, b, m_lab), tol=0.01) + ''' + This produces a color matrix which has the lowest delta E possible, + based off the input data. Note it is impossible for this to reach + zero since the input data is imperfect + ''' + + [r1, r2, g1, g2, b1, b2] = result.x + # The new, optimised color correction matrix values + # This is the optimised Color Matrix (preserving greys by summing rows up to 1) + optimised_ccm = [r1, r2, (1 - r1 - r2), g1, g2, (1 - g1 - g2), b1, b2, (1 - b1 - b2)] + + logger.info(f'Optimized Matrix: {np.round(optimised_ccm, 4)}') + logger.info(f'Old Matrix: {np.round(ccm, 4)}') + + formatted_ccm = np.array(original_ccm).reshape((3, 3)) + + ''' + below is a whole load of code that then applies the latest color + matrix, and returns LAB values for color. This can then be used + to calculate the final delta E + ''' + optimised_ccm_rgb = [] # Original Color Corrected Matrix RGB / LAB + optimised_ccm_lab = [] + + formatted_optimised_ccm = np.array(optimised_ccm).reshape((3, 3)) + after_gamma_rgb = [] + after_gamma_lab = [] + + for RGB in zip(r, g, b): + ccm_applied_rgb = np.dot(formatted_ccm, (np.array(RGB) / 256)) + optimised_ccm_rgb.append(gamma(ccm_applied_rgb)) + optimised_ccm_lab.append(colors.RGB_to_LAB(ccm_applied_rgb)) + + optimised_ccm_applied_rgb = np.dot(formatted_optimised_ccm, np.array(RGB) / 256) + after_gamma_rgb.append(gamma(optimised_ccm_applied_rgb)) + after_gamma_lab.append(colors.RGB_to_LAB(optimised_ccm_applied_rgb)) + ''' + Gamma After RGB / LAB - not used in calculations, only used for visualisation + We now want to spit out some data that shows + how the optimisation has improved the color matrices + ''' + logger.info("Here are the Improvements") + + # CALCULATE WORST CASE delta e + old_worst_delta_e = 0 + before_average = transform_and_evaluate(formatted_ccm, r, g, b, m_lab) + new_worst_delta_e = 0 + after_average = transform_and_evaluate(formatted_optimised_ccm, r, g, b, m_lab) + for i in range(24): + old_delta_e = deltae(optimised_ccm_lab[i], m_lab[i]) # Current Old Delta E + new_delta_e = deltae(after_gamma_lab[i], m_lab[i]) # Current New Delta E + if old_delta_e > old_worst_delta_e: + old_worst_delta_e = old_delta_e + if new_delta_e > new_worst_delta_e: + new_worst_delta_e = new_delta_e + + logger.info(f'delta E optimized: average: {after_average:.2f} max:{new_worst_delta_e:.2f}') + logger.info(f'delta E old: average: {before_average:.2f} max:{old_worst_delta_e:.2f}') + + visualise_macbeth_chart(m_rgb, optimised_ccm_rgb, after_gamma_rgb, str(Img.color) + str(matrix_selection_types[typenum])) + ''' + The program will also save some visualisations of improvements. + Very pretty to look at. Top rectangle is ideal, Left square is + before optimisation, right square is after. + ''' + + """ + if a ccm has already been calculated for that temperature then don't + overwrite but save both. They will then be averaged later on + """ # Now going to use optimised color matrix, optimised_ccm + if Img.color in ccm_tab.keys(): + ccm_tab[Img.color].append(optimised_ccm) + else: + ccm_tab[Img.color] = [optimised_ccm] + + logger.info('Finished processing images') + """ + average any ccms that share a colour temperature + """ + for k, v in ccm_tab.items(): + tab = np.mean(v, axis=0) + tab = np.where((10000 * tab) % 1 <= 0.05, tab + 0.00001, tab) + tab = np.where((10000 * tab) % 1 >= 0.95, tab - 0.00001, tab) + ccm_tab[k] = list(np.round(tab, 5)) + logger.info(f'Matrix calculated for colour temperature of {k} K') + + """ + return all ccms with respective colour temperature in the correct format, + sorted by their colour temperature + """ + sorted_ccms = sorted(ccm_tab.items(), key=lambda kv: kv[0]) + ccms = [] + for i in sorted_ccms: + ccms.append({ + 'ct': i[0], + 'ccm': i[1] + }) + return ccms + + +def guess(x0, r, g, b, m_lab): # provides a method of numerical feedback for the optimisation code + [r1, r2, g1, g2, b1, b2] = x0 + ccm = np.array([r1, r2, (1 - r1 - r2), + g1, g2, (1 - g1 - g2), + b1, b2, (1 - b1 - b2)]).reshape((3, 3)) # format the matrix correctly + return transform_and_evaluate(ccm, r, g, b, m_lab) + + +def transform_and_evaluate(ccm, r, g, b, m_lab): # Transforms colors to LAB and applies the correction matrix + # create list of matrix changed colors + realrgb = [] + for RGB in zip(r, g, b): + rgb_post_ccm = np.dot(ccm, np.array(RGB) / 256) # This is RGB values after the color correction matrix has been applied + realrgb.append(colors.RGB_to_LAB(rgb_post_ccm)) + # now compare that with m_lab and return numeric result, averaged for each patch + return (sumde(realrgb, m_lab) / 24) # returns an average result of delta E + + +def sumde(listA, listB): + global typenum, test_patches + sumde = 0 + maxde = 0 + patchde = [] # Create array of the delta E values for each patch. useful for optimisation of certain patches + for listA_item, listB_item in zip(listA, listB): + if maxde < (deltae(listA_item, listB_item)): + maxde = deltae(listA_item, listB_item) + patchde.append(deltae(listA_item, listB_item)) + sumde += deltae(listA_item, listB_item) + ''' + The different options specified at the start allow for + the maximum to be returned, average or specific patches + ''' + if typenum == 0: + return sumde + if typenum == 1: + return maxde + if typenum == 2: + output = sum([patchde[test_patch] for test_patch in test_patches]) + # Selects only certain patches and returns the output for them + return output + + +""" +calculates the ccm for an individual image. +ccms are calculated in rgb space, and are fit by hand. Although it is a 3x3 +matrix, each row must add up to 1 in order to conserve greyness, simplifying +calculation. +The initial CCM is calculated in RGB, and then optimised in LAB color space +This simplifies the initial calculation but then gets us the accuracy of +using LAB color space. +""" + + +def do_ccm(r, g, b, m_srgb): + rb = r-b + gb = g-b + rb_2s = (rb * rb) + rb_gbs = (rb * gb) + gb_2s = (gb * gb) + + r_rbs = rb * (m_srgb[..., 0] - b) + r_gbs = gb * (m_srgb[..., 0] - b) + g_rbs = rb * (m_srgb[..., 1] - b) + g_gbs = gb * (m_srgb[..., 1] - b) + b_rbs = rb * (m_srgb[..., 2] - b) + b_gbs = gb * (m_srgb[..., 2] - b) + + """ + Obtain least squares fit + """ + rb_2 = np.sum(rb_2s) + gb_2 = np.sum(gb_2s) + rb_gb = np.sum(rb_gbs) + r_rb = np.sum(r_rbs) + r_gb = np.sum(r_gbs) + g_rb = np.sum(g_rbs) + g_gb = np.sum(g_gbs) + b_rb = np.sum(b_rbs) + b_gb = np.sum(b_gbs) + + det = rb_2 * gb_2 - rb_gb * rb_gb + + """ + Raise error if matrix is singular... + This shouldn't really happen with real data but if it does just take new + pictures and try again, not much else to be done unfortunately... + """ + if det < 0.001: + raise ArithmeticError + + r_a = (gb_2 * r_rb - rb_gb * r_gb) / det + r_b = (rb_2 * r_gb - rb_gb * r_rb) / det + """ + Last row can be calculated by knowing the sum must be 1 + """ + r_c = 1 - r_a - r_b + + g_a = (gb_2 * g_rb - rb_gb * g_gb) / det + g_b = (rb_2 * g_gb - rb_gb * g_rb) / det + g_c = 1 - g_a - g_b + + b_a = (gb_2 * b_rb - rb_gb * b_gb) / det + b_b = (rb_2 * b_gb - rb_gb * b_rb) / det + b_c = 1 - b_a - b_b + + """ + format ccm + """ + ccm = [r_a, r_b, r_c, g_a, g_b, g_c, b_a, b_b, b_c] + + return ccm + + +def deltae(colorA, colorB): + return ((colorA[0] - colorB[0]) ** 2 + (colorA[1] - colorB[1]) ** 2 + (colorA[2] - colorB[2]) ** 2) ** 0.5 + # return ((colorA[1]-colorB[1]) * * 2 + (colorA[2]-colorB[2]) * * 2) * * 0.5 + # UNCOMMENT IF YOU WANT TO NEGLECT LUMINANCE FROM CALCULATION OF DELTA E diff --git a/utils/tuning/libtuning/ctt_colors.py b/utils/tuning/libtuning/ctt_colors.py new file mode 100644 index 00000000..cb4d236b --- /dev/null +++ b/utils/tuning/libtuning/ctt_colors.py @@ -0,0 +1,30 @@ +# Program to convert from RGB to LAB color space +def RGB_to_LAB(RGB): # where RGB is a 1x3 array. e.g RGB = [100, 255, 230] + num = 0 + XYZ = [0, 0, 0] + # converted all the three R, G, B to X, Y, Z + X = RGB[0] * 0.4124 + RGB[1] * 0.3576 + RGB[2] * 0.1805 + Y = RGB[0] * 0.2126 + RGB[1] * 0.7152 + RGB[2] * 0.0722 + Z = RGB[0] * 0.0193 + RGB[1] * 0.1192 + RGB[2] * 0.9505 + + XYZ[0] = X / 255 * 100 + XYZ[1] = Y / 255 * 100 # XYZ Must be in range 0 -> 100, so scale down from 255 + XYZ[2] = Z / 255 * 100 + XYZ[0] = XYZ[0] / 95.047 # ref_X = 95.047 Observer= 2°, Illuminant= D65 + XYZ[1] = XYZ[1] / 100.0 # ref_Y = 100.000 + XYZ[2] = XYZ[2] / 108.883 # ref_Z = 108.883 + num = 0 + for value in XYZ: + if value > 0.008856: + value = value ** (0.3333333333333333) + else: + value = (7.787 * value) + (16 / 116) + XYZ[num] = value + num = num + 1 + + # L, A, B, values calculated below + L = (116 * XYZ[1]) - 16 + a = 500 * (XYZ[0] - XYZ[1]) + b = 200 * (XYZ[1] - XYZ[2]) + + return [L, a, b] diff --git a/utils/tuning/libtuning/ctt_ransac.py b/utils/tuning/libtuning/ctt_ransac.py new file mode 100644 index 00000000..01bba302 --- /dev/null +++ b/utils/tuning/libtuning/ctt_ransac.py @@ -0,0 +1,71 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# +# camera tuning tool RANSAC selector for Macbeth chart locator + +import numpy as np + +scale = 2 + + +""" +constructs normalised macbeth chart corners for ransac algorithm +""" +def get_square_verts(c_err=0.05, scale=scale): + """ + define macbeth chart corners + """ + b_bord_x, b_bord_y = scale*8.5, scale*13 + s_bord = 6*scale + side = 41*scale + x_max = side*6 + 5*s_bord + 2*b_bord_x + y_max = side*4 + 3*s_bord + 2*b_bord_y + c1 = (0, 0) + c2 = (0, y_max) + c3 = (x_max, y_max) + c4 = (x_max, 0) + mac_norm = np.array((c1, c2, c3, c4), np.float32) + mac_norm = np.array([mac_norm]) + + square_verts = [] + square_0 = np.array(((0, 0), (0, side), + (side, side), (side, 0)), np.float32) + offset_0 = np.array((b_bord_x, b_bord_y), np.float32) + c_off = side * c_err + offset_cont = np.array(((c_off, c_off), (c_off, -c_off), + (-c_off, -c_off), (-c_off, c_off)), np.float32) + square_0 += offset_0 + square_0 += offset_cont + """ + define macbeth square corners + """ + for i in range(6): + shift_i = np.array(((i*side, 0), (i*side, 0), + (i*side, 0), (i*side, 0)), np.float32) + shift_bord = np.array(((i*s_bord, 0), (i*s_bord, 0), + (i*s_bord, 0), (i*s_bord, 0)), np.float32) + square_i = square_0 + shift_i + shift_bord + for j in range(4): + shift_j = np.array(((0, j*side), (0, j*side), + (0, j*side), (0, j*side)), np.float32) + shift_bord = np.array(((0, j*s_bord), + (0, j*s_bord), (0, j*s_bord), + (0, j*s_bord)), np.float32) + square_j = square_i + shift_j + shift_bord + square_verts.append(square_j) + # print('square_verts') + # print(square_verts) + return np.array(square_verts, np.float32), mac_norm + + +def get_square_centres(c_err=0.05, scale=scale): + """ + define macbeth square centres + """ + verts, mac_norm = get_square_verts(c_err, scale=scale) + + centres = np.mean(verts, axis=1) + # print('centres') + # print(centres) + return np.array(centres, np.float32) diff --git a/utils/tuning/libtuning/generators/__init__.py b/utils/tuning/libtuning/generators/__init__.py new file mode 100644 index 00000000..f28b6149 --- /dev/null +++ b/utils/tuning/libtuning/generators/__init__.py @@ -0,0 +1,6 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> + +from libtuning.generators.raspberrypi_output import RaspberryPiOutput +from libtuning.generators.yaml_output import YamlOutput diff --git a/utils/tuning/libtuning/generators/generator.py b/utils/tuning/libtuning/generators/generator.py new file mode 100644 index 00000000..77a8ba4a --- /dev/null +++ b/utils/tuning/libtuning/generators/generator.py @@ -0,0 +1,15 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# Base class for a generator to convert dict to tuning file + +from pathlib import Path + + +class Generator(object): + def __init__(self): + pass + + def write(self, output_path: Path, output_dict: dict, output_order: list): + raise NotImplementedError diff --git a/utils/tuning/libtuning/generators/raspberrypi_output.py b/utils/tuning/libtuning/generators/raspberrypi_output.py new file mode 100644 index 00000000..47b49059 --- /dev/null +++ b/utils/tuning/libtuning/generators/raspberrypi_output.py @@ -0,0 +1,114 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright 2022 Raspberry Pi Ltd +# +# Generate tuning file in Raspberry Pi's json format +# +# (Copied from ctt_pretty_print_json.py) + +from .generator import Generator + +import json +from pathlib import Path +import textwrap + + +class Encoder(json.JSONEncoder): + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.indentation_level = 0 + self.hard_break = 120 + self.custom_elems = { + 'table': 16, + 'luminance_lut': 16, + 'ct_curve': 3, + 'ccm': 3, + 'gamma_curve': 2, + 'y_target': 2, + 'prior': 2 + } + + def encode(self, o, node_key=None): + if isinstance(o, (list, tuple)): + # Check if we are a flat list of numbers. + if not any(isinstance(el, (list, tuple, dict)) for el in o): + s = ', '.join(json.dumps(el) for el in o) + if node_key in self.custom_elems.keys(): + # Special case handling to specify number of elements in a row for tables, ccm, etc. + self.indentation_level += 1 + sl = s.split(', ') + num = self.custom_elems[node_key] + chunk = [self.indent_str + ', '.join(sl[x:x + num]) for x in range(0, len(sl), num)] + t = ',\n'.join(chunk) + self.indentation_level -= 1 + output = f'\n{self.indent_str}[\n{t}\n{self.indent_str}]' + elif len(s) > self.hard_break - len(self.indent_str): + # Break a long list with wraps. + self.indentation_level += 1 + t = textwrap.fill(s, self.hard_break, break_long_words=False, + initial_indent=self.indent_str, subsequent_indent=self.indent_str) + self.indentation_level -= 1 + output = f'\n{self.indent_str}[\n{t}\n{self.indent_str}]' + else: + # Smaller lists can remain on a single line. + output = f' [ {s} ]' + return output + else: + # Sub-structures in the list case. + self.indentation_level += 1 + output = [self.indent_str + self.encode(el) for el in o] + self.indentation_level -= 1 + output = ',\n'.join(output) + return f' [\n{output}\n{self.indent_str}]' + + elif isinstance(o, dict): + self.indentation_level += 1 + output = [] + for k, v in o.items(): + if isinstance(v, dict) and len(v) == 0: + # Empty config block special case. + output.append(self.indent_str + f'{json.dumps(k)}: {{ }}') + else: + # Only linebreak if the next node is a config block. + sep = f'\n{self.indent_str}' if isinstance(v, dict) else '' + output.append(self.indent_str + f'{json.dumps(k)}:{sep}{self.encode(v, k)}') + output = ',\n'.join(output) + self.indentation_level -= 1 + return f'{{\n{output}\n{self.indent_str}}}' + + else: + return ' ' + json.dumps(o) + + @property + def indent_str(self) -> str: + return ' ' * self.indentation_level * self.indent + + def iterencode(self, o, **kwargs): + return self.encode(o) + + +class RaspberryPiOutput(Generator): + def __init__(self): + super().__init__() + + def _pretty_print(self, in_json: dict) -> str: + + if 'version' not in in_json or \ + 'target' not in in_json or \ + 'algorithms' not in in_json or \ + in_json['version'] < 2.0: + raise RuntimeError('Incompatible JSON dictionary has been provided') + + return json.dumps(in_json, cls=Encoder, indent=4, sort_keys=False) + + def write(self, output_file: Path, output_dict: dict, output_order: list): + # Write json dictionary to file using ctt's version 2 format + out_json = { + "version": 2.0, + 'target': 'bcm2835', + "algorithms": [{f'{module.out_name}': output_dict[module]} for module in output_order] + } + + with open(output_file, 'w') as f: + f.write(self._pretty_print(out_json)) diff --git a/utils/tuning/libtuning/generators/yaml_output.py b/utils/tuning/libtuning/generators/yaml_output.py new file mode 100644 index 00000000..c490081d --- /dev/null +++ b/utils/tuning/libtuning/generators/yaml_output.py @@ -0,0 +1,127 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright 2022 Paul Elder <paul.elder@ideasonboard.com> +# +# Generate tuning file in YAML format + +from .generator import Generator + +from numbers import Number +from pathlib import Path + +import logging + +logger = logging.getLogger(__name__) + +class YamlOutput(Generator): + def __init__(self): + super().__init__() + + def _stringify_number_list(self, listt: list): + line_wrap = 80 + + line = '[ ' + ', '.join([str(x) for x in listt]) + ' ]' + if len(line) <= line_wrap: + return [line] + + out_lines = ['['] + line = ' ' + for x in listt: + x_str = str(x) + # If the first number is longer than line_wrap, it'll add an extra line + if len(line) + len(x_str) > line_wrap: + out_lines.append(line) + line = f' {x_str},' + continue + line += f' {x_str},' + out_lines.append(line) + out_lines.append(']') + + return out_lines + + # @return Array of lines, and boolean of if all elements were numbers + def _stringify_list(self, listt: list): + out_lines = [] + + all_numbers = set([isinstance(x, Number) for x in listt]).issubset({True}) + + if all_numbers: + return self._stringify_number_list(listt), True + + for value in listt: + if isinstance(value, Number): + out_lines.append(f'- {str(value)}') + elif isinstance(value, str): + out_lines.append(f'- "{value}"') + elif isinstance(value, list): + lines, all_numbers = self._stringify_list(value) + + if all_numbers: + out_lines.append( f'- {lines[0]}') + out_lines += [f' {line}' for line in lines[1:]] + else: + out_lines.append( f'-') + out_lines += [f' {line}' for line in lines] + elif isinstance(value, dict): + lines = self._stringify_dict(value) + out_lines.append( f'- {lines[0]}') + out_lines += [f' {line}' for line in lines[1:]] + + return out_lines, False + + def _stringify_dict(self, dictt: dict): + out_lines = [] + + for key in dictt: + value = dictt[key] + + if isinstance(value, Number): + out_lines.append(f'{key}: {str(value)}') + elif isinstance(value, str): + out_lines.append(f'{key}: "{value}"') + elif isinstance(value, list): + lines, all_numbers = self._stringify_list(value) + + if all_numbers: + out_lines.append( f'{key}: {lines[0]}') + out_lines += [f'{" " * (len(key) + 2)}{line}' for line in lines[1:]] + else: + out_lines.append( f'{key}:') + out_lines += [f' {line}' for line in lines] + elif isinstance(value, dict): + lines = self._stringify_dict(value) + out_lines.append( f'{key}:') + out_lines += [f' {line}' for line in lines] + + return out_lines + + def write(self, output_file: Path, output_dict: dict, output_order: list): + out_lines = [ + '%YAML 1.1', + '---', + 'version: 1', + # No need to condition this, as libtuning already guarantees that + # we have at least one module. Even if the module has no output, + # its prescence is meaningful. + 'algorithms:' + ] + + for module in output_order: + if module not in output_dict: + continue + + out_lines.append(f' - {module.out_name}:') + + if len(output_dict[module]) == 0: + continue + + if not isinstance(output_dict[module], dict): + logger.error(f'Error: Output of {module.type} is not a dictionary') + continue + + lines = self._stringify_dict(output_dict[module]) + out_lines += [f' {line}' for line in lines] + + with open(output_file, 'w', encoding='utf-8') as f: + for line in out_lines: + f.write(f'{line}\n') diff --git a/utils/tuning/libtuning/gradient.py b/utils/tuning/libtuning/gradient.py new file mode 100644 index 00000000..b643f502 --- /dev/null +++ b/utils/tuning/libtuning/gradient.py @@ -0,0 +1,75 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# Gradients that can be used to distribute or map numbers + +import libtuning as lt + +import math +from numbers import Number + + +# @brief Gradient for how to allocate pixels to sectors +# @description There are no parameters for the gradients as the domain is the +# number of pixels and the range is the number of sectors, and +# there is only one curve that has a startpoint and endpoint at +# (0, 0) and at (#pixels, #sectors). The exception is for curves +# that *do* have multiple solutions for only two points, such as +# gaussian, and curves of higher polynomial orders if we had them. +# +# \todo There will probably be a helper in the Gradient class, as I have a +# feeling that all the other curves (besides Linear and Gaussian) can be +# implemented in the same way. +class Gradient(object): + def __init__(self): + pass + + # @brief Distribute pixels into sectors (only in one dimension) + # @param domain Number of pixels + # @param sectors Number of sectors + # @return A list of number of pixels in each sector + def distribute(self, domain: list, sectors: list) -> list: + raise NotImplementedError + + # @brief Map a number on a curve + # @param domain Domain of the curve + # @param rang Range of the curve + # @param x Input on the domain of the curve + # @return y from the range of the curve + def map(self, domain: tuple, rang: tuple, x: Number) -> Number: + raise NotImplementedError + + +class Linear(Gradient): + # @param remainder Mode of handling remainder + def __init__(self, remainder: lt.Remainder = lt.Remainder.Float): + self.remainder = remainder + + def distribute(self, domain: list, sectors: list) -> list: + size = domain / sectors + rem = domain % sectors + + if rem == 0: + return [int(size)] * sectors + + size = math.ceil(size) + rem = domain % size + output_sectors = [int(size)] * (sectors - 1) + + if self.remainder == lt.Remainder.Float: + size = domain / sectors + output_sectors = [size] * sectors + elif self.remainder == lt.Remainder.DistributeFront: + output_sectors.append(int(rem)) + elif self.remainder == lt.Remainder.DistributeBack: + output_sectors.insert(0, int(rem)) + else: + raise ValueError + + return output_sectors + + def map(self, domain: tuple, rang: tuple, x: Number) -> Number: + m = (rang[1] - rang[0]) / (domain[1] - domain[0]) + b = rang[0] - m * domain[0] + return m * x + b diff --git a/utils/tuning/libtuning/image.py b/utils/tuning/libtuning/image.py new file mode 100644 index 00000000..ecd334bd --- /dev/null +++ b/utils/tuning/libtuning/image.py @@ -0,0 +1,140 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# +# Container for an image and associated metadata + +import binascii +import numpy as np +from pathlib import Path +import pyexiv2 as pyexif +import rawpy as raw +import re + +import libtuning as lt +import libtuning.utils as utils +import logging + +logger = logging.getLogger(__name__) + + +class Image: + def __init__(self, path: Path): + self.path = path + self.lsc_only = False + self.color = -1 + self.lux = -1 + self.macbeth = None + + try: + self._load_metadata_exif() + except Exception as e: + logger.error(f'Failed to load metadata from {self.path}: {e}') + raise e + + try: + self._read_image_dng() + except Exception as e: + logger.error(f'Failed to load image data from {self.path}: {e}') + raise e + + @property + def name(self): + return self.path.name + + # May raise KeyError as there are too many to check + def _load_metadata_exif(self): + # RawPy doesn't load all the image tags that we need, so we use py3exiv2 + metadata = pyexif.ImageMetadata(str(self.path)) + metadata.read() + + # The DNG and TIFF/EP specifications use different IFDs to store the + # raw image data and the Exif tags. DNG stores them in a SubIFD and in + # an Exif IFD respectively (named "SubImage1" and "Photo" by pyexiv2), + # while TIFF/EP stores them both in IFD0 (name "Image"). Both are used + # in "DNG" files, with libcamera-apps following the DNG recommendation + # and applications based on picamera2 following TIFF/EP. + # + # This code detects which tags are being used, and therefore extracts the + # correct values. + try: + self.w = metadata['Exif.SubImage1.ImageWidth'].value + subimage = 'SubImage1' + photo = 'Photo' + except KeyError: + self.w = metadata['Exif.Image.ImageWidth'].value + subimage = 'Image' + photo = 'Image' + self.pad = 0 + self.h = metadata[f'Exif.{subimage}.ImageLength'].value + white = metadata[f'Exif.{subimage}.WhiteLevel'].value + self.sigbits = int(white).bit_length() + self.fmt = (self.sigbits - 4) // 2 + self.exposure = int(metadata[f'Exif.{photo}.ExposureTime'].value * 1000000) + self.againQ8 = metadata[f'Exif.{photo}.ISOSpeedRatings'].value * 256 / 100 + self.againQ8_norm = self.againQ8 / 256 + self.camName = metadata['Exif.Image.Model'].value + self.blacklevel = int(metadata[f'Exif.{subimage}.BlackLevel'].value[0]) + self.blacklevel_16 = self.blacklevel << (16 - self.sigbits) + + # Channel order depending on bayer pattern + # The key is the order given by exif, where 0 is R, 1 is G, and 2 is B + # The value is the index where the color can be found, where the first + # is R, then G, then G, then B. + bayer_case = { + '0 1 1 2': (lt.Color.R, lt.Color.GR, lt.Color.GB, lt.Color.B), + '1 2 0 1': (lt.Color.GB, lt.Color.B, lt.Color.R, lt.Color.GR), + '2 1 1 0': (lt.Color.B, lt.Color.GB, lt.Color.GR, lt.Color.R), + '1 0 2 1': (lt.Color.GR, lt.Color.R, lt.Color.B, lt.Color.GB) + } + # Note: This needs to be in IFD0 + cfa_pattern = metadata[f'Exif.{subimage}.CFAPattern'].value + self.order = bayer_case[cfa_pattern] + + def _read_image_dng(self): + raw_im = raw.imread(str(self.path)) + raw_data = raw_im.raw_image + shift = 16 - self.sigbits + c0 = np.left_shift(raw_data[0::2, 0::2].astype(np.int64), shift) + c1 = np.left_shift(raw_data[0::2, 1::2].astype(np.int64), shift) + c2 = np.left_shift(raw_data[1::2, 0::2].astype(np.int64), shift) + c3 = np.left_shift(raw_data[1::2, 1::2].astype(np.int64), shift) + self.channels = [c0, c1, c2, c3] + # Reorder the channels into R, GR, GB, B + self.channels = [self.channels[i] for i in self.order] + + # \todo Move this to macbeth.py + def get_patches(self, cen_coords, size=16): + saturated = False + + # Obtain channel widths and heights + ch_w, ch_h = self.w, self.h + cen_coords = list(np.array((cen_coords[0])).astype(np.int32)) + self.cen_coords = cen_coords + + # Squares are ordered by stacking macbeth chart columns from left to + # right. Some useful patch indices: + # white = 3 + # black = 23 + # 'reds' = 9, 10 + # 'blues' = 2, 5, 8, 20, 22 + # 'greens' = 6, 12, 17 + # greyscale = 3, 7, 11, 15, 19, 23 + all_patches = [] + for ch in self.channels: + ch_patches = [] + for cen in cen_coords: + # Macbeth centre is placed at top left of central 2x2 patch to + # account for rounding. Patch pixels are sorted by pixel + # brightness so spatial information is lost. + patch = ch[cen[1] - 7:cen[1] + 9, cen[0] - 7:cen[0] + 9].flatten() + patch.sort() + if patch[-5] == (2**self.sigbits - 1) * 2**(16 - self.sigbits): + saturated = True + ch_patches.append(patch) + + all_patches.append(ch_patches) + + self.patches = np.array(all_patches) + + return not saturated diff --git a/utils/tuning/libtuning/libtuning.py b/utils/tuning/libtuning/libtuning.py new file mode 100644 index 00000000..bac57323 --- /dev/null +++ b/utils/tuning/libtuning/libtuning.py @@ -0,0 +1,212 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# An infrastructure for camera tuning tools + +import argparse +import logging + +import libtuning as lt +import libtuning.utils as utils + +from enum import Enum, IntEnum + +logger = logging.getLogger(__name__) + +class Color(IntEnum): + R = 0 + GR = 1 + GB = 2 + B = 3 + + +class Debug(Enum): + Plot = 1 + + +# @brief What to do with the leftover pixels after dividing them into ALSC +# sectors, when the division gradient is uniform +# @var Float Force floating point division so all sectors divide equally +# @var DistributeFront Divide the remainder equally (until running out, +# obviously) into the existing sectors, starting from the front +# @var DistributeBack Same as DistributeFront but starting from the back +class Remainder(Enum): + Float = 0 + DistributeFront = 1 + DistributeBack = 2 + + +# @brief A helper class to contain a default value for a module configuration +# parameter +class Param(object): + # @var Required The value contained in this instance is irrelevant, and the + # value must be provided by the tuning configuration file. + # @var Optional If the value is not provided by the tuning configuration + # file, then the value contained in this instance will be used instead. + # @var Hardcode The value contained in this instance will be used + class Mode(Enum): + Required = 0 + Optional = 1 + Hardcode = 2 + + # @param name Name of the parameter. Shall match the name used in the + # configuration file for the parameter + # @param required Whether or not a value is required in the config + # parameter of get_value() + # @param val Default value (only relevant if mode is Optional) + def __init__(self, name: str, required: Mode, val=None): + self.name = name + self.__required = required + self.val = val + + def get_value(self, config: dict): + if self.__required is self.Mode.Hardcode: + return self.val + + if self.__required is self.Mode.Required and self.name not in config: + raise ValueError(f'Parameter {self.name} is required but not provided in the configuration') + + return config[self.name] if self.required else self.val + + @property + def required(self): + return self.__required is self.Mode.Required + + # @brief Used by libtuning to auto-generate help information for the tuning + # script on the available parameters for the configuration file + # \todo Implement this + @property + def info(self): + raise NotImplementedError + + +class Tuner(object): + + # External functions + + def __init__(self, platform_name): + self.name = platform_name + self.modules = [] + self.parser = None + self.generator = None + self.output_order = [] + self.config = {} + self.output = {} + + def add(self, module): + if isinstance(module, list): + self.modules.extend(module) + else: + self.modules.append(module) + + def set_input_parser(self, parser): + self.parser = parser + + def set_output_formatter(self, output): + self.generator = output + + def set_output_order(self, modules): + self.output_order = modules + + # @brief Convert classes in self.output_order to the instances in self.modules + def _prepare_output_order(self): + output_order = self.output_order + self.output_order = [] + for module_type in output_order: + modules = [module for module in self.modules if module.type == module_type.type] + if len(modules) > 1: + logger.error(f'Multiple modules found for module type "{module_type.type}"') + return False + if len(modules) < 1: + logger.error(f'No module found for module type "{module_type.type}"') + return False + self.output_order.append(modules[0]) + + return True + + # \todo Validate parser and generator at Tuner construction time? + def _validate_settings(self): + if self.parser is None: + logger.error('Missing parser') + return False + + if self.generator is None: + logger.error('Missing generator') + return False + + if len(self.modules) == 0: + logger.error('No modules added') + return False + + if len(self.output_order) != len(self.modules): + logger.error('Number of outputs does not match number of modules') + return False + + return True + + def _process_args(self, argv, platform_name): + parser = argparse.ArgumentParser(description=f'Camera Tuning for {platform_name}') + parser.add_argument('-i', '--input', type=str, required=True, + help='''Directory containing calibration images (required). + Images for ALSC must be named "alsc_{Color Temperature}k_1[u].dng", + and all other images must be named "{Color Temperature}k_{Lux Level}l.dng"''') + parser.add_argument('-o', '--output', type=str, required=True, + help='Output file (required)') + # It is not our duty to scan all modules to figure out their default + # options, so simply return an empty configuration if none is provided. + parser.add_argument('-c', '--config', type=str, default='', + help='Config file (optional)') + # \todo Check if we really need this or if stderr is good enough, or if + # we want a better logging infrastructure with log levels + parser.add_argument('-l', '--log', type=str, default=None, + help='Output log file (optional)') + return parser.parse_args(argv[1:]) + + def run(self, argv): + args = self._process_args(argv, self.name) + if args is None: + return -1 + + if not self._validate_settings(): + return -1 + + if not self._prepare_output_order(): + return -1 + + if len(args.config) > 0: + self.config, disable = self.parser.parse(args.config, self.modules) + else: + self.config = {'general': {}} + disable = [] + + # Remove disabled modules + for module in disable: + if module in self.modules: + self.modules.remove(module) + + for module in self.modules: + if not module.validate_config(self.config): + logger.error(f'Config is invalid for module {module.type}') + return -1 + + has_lsc = any(isinstance(m, lt.modules.lsc.LSC) for m in self.modules) + # Only one LSC module allowed + has_only_lsc = has_lsc and len(self.modules) == 1 + + images = utils.load_images(args.input, self.config, not has_only_lsc, has_lsc) + if images is None or len(images) == 0: + logger.error(f'No images were found, or able to load') + return -1 + + # Do the tuning + for module in self.modules: + out = module.process(self.config, images, self.output) + if out is None: + logger.warning(f'Module {module.hr_name} failed to process...') + continue + self.output[module] = out + + self.generator.write(args.output, self.output, self.output_order) + + return 0 diff --git a/utils/tuning/libtuning/macbeth.py b/utils/tuning/libtuning/macbeth.py new file mode 100644 index 00000000..4a2006b0 --- /dev/null +++ b/utils/tuning/libtuning/macbeth.py @@ -0,0 +1,537 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# Copyright (C) 2024, Ideas on Board Oy +# +# Locate and extract Macbeth charts from images +# (Copied from: ctt_macbeth_locator.py) + +# \todo Add debugging + +import cv2 +import os +from pathlib import Path +import numpy as np +import warnings +import logging +from sklearn import cluster as cluster + +from .ctt_ransac import get_square_verts, get_square_centres +from .image import Image + +logger = logging.getLogger(__name__) + + +class MacbethError(Exception): + pass + + +# Reshape image to fixed width without distorting returns image and scale +# factor +def reshape(img, width): + factor = width / img.shape[0] + return cv2.resize(img, None, fx=factor, fy=factor), factor + + +# Correlation function to quantify match +def correlate(im1, im2): + f1 = im1.flatten() + f2 = im2.flatten() + cor = np.corrcoef(f1, f2) + return cor[0][1] + + +# @brief Compute coordinates of macbeth chart vertices and square centres +# @return (max_cor, best_map_col_norm, fit_coords, success) +# +# Also returns an error/success message for debugging purposes. Additionally, +# it scores the match with a confidence value. +# +# Brief explanation of the macbeth chart locating algorithm: +# - Find rectangles within image +# - Take rectangles within percentage offset of median perimeter. The +# assumption is that these will be the macbeth squares +# - For each potential square, find the 24 possible macbeth centre locations +# that would produce a square in that location +# - Find clusters of potential macbeth chart centres to find the potential +# macbeth centres with the most votes, i.e. the most likely ones +# - For each potential macbeth centre, use the centres of the squares that +# voted for it to find macbeth chart corners +# - For each set of corners, transform the possible match into normalised +# space and correlate with a reference chart to evaluate the match +# - Select the highest correlation as the macbeth chart match, returning the +# correlation as the confidence score +# +# \todo Clean this up +def get_macbeth_chart(img, ref_data): + ref, ref_w, ref_h, ref_corns = ref_data + + # The code will raise and catch a MacbethError in case of a problem, trying + # to give some likely reasons why the problem occured, hence the try/except + try: + # Obtain image, convert to grayscale and normalise + src = img + src, factor = reshape(src, 200) + original = src.copy() + a = 125 / np.average(src) + src_norm = cv2.convertScaleAbs(src, alpha=a, beta=0) + + # This code checks if there are seperate colour channels. In the past the + # macbeth locator ran on jpgs and this makes it robust to different + # filetypes. Note that running it on a jpg has 4x the pixels of the + # average bayer channel so coordinates must be doubled. + + # This is best done in img_load.py in the get_patches method. The + # coordinates and image width, height must be divided by two if the + # macbeth locator has been run on a demosaicked image. + if len(src_norm.shape) == 3: + src_bw = cv2.cvtColor(src_norm, cv2.COLOR_BGR2GRAY) + else: + src_bw = src_norm + original_bw = src_bw.copy() + + # Obtain image edges + sigma = 2 + src_bw = cv2.GaussianBlur(src_bw, (0, 0), sigma) + t1, t2 = 50, 100 + edges = cv2.Canny(src_bw, t1, t2) + + # Dilate edges to prevent self-intersections in contours + k_size = 2 + kernel = np.ones((k_size, k_size)) + its = 1 + edges = cv2.dilate(edges, kernel, iterations=its) + + # Find contours in image + conts, _ = cv2.findContours(edges, cv2.RETR_TREE, + cv2.CHAIN_APPROX_NONE) + if len(conts) == 0: + raise MacbethError( + '\nWARNING: No macbeth chart found!' + '\nNo contours found in image\n' + 'Possible problems:\n' + '- Macbeth chart is too dark or bright\n' + '- Macbeth chart is occluded\n' + ) + + # Find quadrilateral contours + epsilon = 0.07 + conts_per = [] + for i in range(len(conts)): + per = cv2.arcLength(conts[i], True) + poly = cv2.approxPolyDP(conts[i], epsilon * per, True) + if len(poly) == 4 and cv2.isContourConvex(poly): + conts_per.append((poly, per)) + + if len(conts_per) == 0: + raise MacbethError( + '\nWARNING: No macbeth chart found!' + '\nNo quadrilateral contours found' + '\nPossible problems:\n' + '- Macbeth chart is too dark or bright\n' + '- Macbeth chart is occluded\n' + '- Macbeth chart is out of camera plane\n' + ) + + # Sort contours by perimeter and get perimeters within percent of median + conts_per = sorted(conts_per, key=lambda x: x[1]) + med_per = conts_per[int(len(conts_per) / 2)][1] + side = med_per / 4 + perc = 0.1 + med_low, med_high = med_per * (1 - perc), med_per * (1 + perc) + squares = [] + for i in conts_per: + if med_low <= i[1] and med_high >= i[1]: + squares.append(i[0]) + + # Obtain coordinates of nomralised macbeth and squares + square_verts, mac_norm = get_square_verts(0.06) + # For each square guess, find 24 possible macbeth chart centres + mac_mids = [] + squares_raw = [] + for i in range(len(squares)): + square = squares[i] + squares_raw.append(square) + + # Convert quads to rotated rectangles. This is required as the + # 'squares' are usually quite irregular quadrilaterls, so + # performing a transform would result in exaggerated warping and + # inaccurate macbeth chart centre placement + rect = cv2.minAreaRect(square) + square = cv2.boxPoints(rect).astype(np.float32) + + # Reorder vertices to prevent 'hourglass shape' + square = sorted(square, key=lambda x: x[0]) + square_1 = sorted(square[:2], key=lambda x: x[1]) + square_2 = sorted(square[2:], key=lambda x: -x[1]) + square = np.array(np.concatenate((square_1, square_2)), np.float32) + square = np.reshape(square, (4, 2)).astype(np.float32) + squares[i] = square + + # Find 24 possible macbeth chart centres by trasnforming normalised + # macbeth square vertices onto candidate square vertices found in image + for j in range(len(square_verts)): + verts = square_verts[j] + p_mat = cv2.getPerspectiveTransform(verts, square) + mac_guess = cv2.perspectiveTransform(mac_norm, p_mat) + mac_guess = np.round(mac_guess).astype(np.int32) + + mac_mid = np.mean(mac_guess, axis=1) + mac_mids.append([mac_mid, (i, j)]) + + if len(mac_mids) == 0: + raise MacbethError( + '\nWARNING: No macbeth chart found!' + '\nNo possible macbeth charts found within image' + '\nPossible problems:\n' + '- Part of the macbeth chart is outside the image\n' + '- Quadrilaterals in image background\n' + ) + + # Reshape data + for i in range(len(mac_mids)): + mac_mids[i][0] = mac_mids[i][0][0] + + # Find where midpoints cluster to identify most likely macbeth centres + clustering = cluster.AgglomerativeClustering( + n_clusters=None, + compute_full_tree=True, + distance_threshold=side * 2 + ) + mac_mids_list = [x[0] for x in mac_mids] + + if len(mac_mids_list) == 1: + # Special case of only one valid centre found (probably not needed) + clus_list = [] + clus_list.append([mac_mids, len(mac_mids)]) + + else: + clustering.fit(mac_mids_list) + + # Create list of all clusters + clus_list = [] + if clustering.n_clusters_ > 1: + for i in range(clustering.labels_.max() + 1): + indices = [j for j, x in enumerate(clustering.labels_) if x == i] + clus = [] + for index in indices: + clus.append(mac_mids[index]) + clus_list.append([clus, len(clus)]) + clus_list.sort(key=lambda x: -x[1]) + + elif clustering.n_clusters_ == 1: + # Special case of only one cluster found + clus_list.append([mac_mids, len(mac_mids)]) + else: + raise MacbethError( + '\nWARNING: No macebth chart found!' + '\nNo clusters found' + '\nPossible problems:\n' + '- NA\n' + ) + + # Keep only clusters with enough votes + clus_len_max = clus_list[0][1] + clus_tol = 0.7 + for i in range(len(clus_list)): + if clus_list[i][1] < clus_len_max * clus_tol: + clus_list = clus_list[:i] + break + cent = np.mean(clus_list[i][0], axis=0)[0] + clus_list[i].append(cent) + + # Get centres of each normalised square + reference = get_square_centres(0.06) + + # For each possible macbeth chart, transform image into + # normalised space and find correlation with reference + max_cor = 0 + best_map = None + best_fit = None + best_cen_fit = None + best_ref_mat = None + + for clus in clus_list: + clus = clus[0] + sq_cents = [] + ref_cents = [] + i_list = [p[1][0] for p in clus] + for point in clus: + i, j = point[1] + + # Remove any square that voted for two different points within + # the same cluster. This causes the same point in the image to be + # mapped to two different reference square centres, resulting in + # a very distorted perspective transform since cv2.findHomography + # simply minimises error. + # This phenomenon is not particularly likely to occur due to the + # enforced distance threshold in the clustering fit but it is + # best to keep this in just in case. + if i_list.count(i) == 1: + square = squares_raw[i] + sq_cent = np.mean(square, axis=0) + ref_cent = reference[j] + sq_cents.append(sq_cent) + ref_cents.append(ref_cent) + + # At least four squares need to have voted for a centre in + # order for a transform to be found + if len(sq_cents) < 4: + raise MacbethError( + '\nWARNING: No macbeth chart found!' + '\nNot enough squares found' + '\nPossible problems:\n' + '- Macbeth chart is occluded\n' + '- Macbeth chart is too dark of bright\n' + ) + + ref_cents = np.array(ref_cents) + sq_cents = np.array(sq_cents) + + # Find best fit transform from normalised centres to image + h_mat, mask = cv2.findHomography(ref_cents, sq_cents) + if 'None' in str(type(h_mat)): + raise MacbethError( + '\nERROR\n' + ) + + # Transform normalised corners and centres into image space + mac_fit = cv2.perspectiveTransform(mac_norm, h_mat) + mac_cen_fit = cv2.perspectiveTransform(np.array([reference]), h_mat) + + # Transform located corners into reference space + ref_mat = cv2.getPerspectiveTransform( + mac_fit, + np.array([ref_corns]) + ) + map_to_ref = cv2.warpPerspective( + original_bw, ref_mat, + (ref_w, ref_h) + ) + + # Normalise brigthness + a = 125 / np.average(map_to_ref) + map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0) + + # Find correlation with bw reference macbeth + cor = correlate(map_to_ref, ref) + + # Keep only if best correlation + if cor > max_cor: + max_cor = cor + best_map = map_to_ref + best_fit = mac_fit + best_cen_fit = mac_cen_fit + best_ref_mat = ref_mat + + # Rotate macbeth by pi and recorrelate in case macbeth chart is + # upside-down + mac_fit_inv = np.array( + ([[mac_fit[0][2], mac_fit[0][3], + mac_fit[0][0], mac_fit[0][1]]]) + ) + mac_cen_fit_inv = np.flip(mac_cen_fit, axis=1) + ref_mat = cv2.getPerspectiveTransform( + mac_fit_inv, + np.array([ref_corns]) + ) + map_to_ref = cv2.warpPerspective( + original_bw, ref_mat, + (ref_w, ref_h) + ) + a = 125 / np.average(map_to_ref) + map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0) + cor = correlate(map_to_ref, ref) + if cor > max_cor: + max_cor = cor + best_map = map_to_ref + best_fit = mac_fit_inv + best_cen_fit = mac_cen_fit_inv + best_ref_mat = ref_mat + + # Check best match is above threshold + cor_thresh = 0.6 + if max_cor < cor_thresh: + raise MacbethError( + '\nWARNING: Correlation too low' + '\nPossible problems:\n' + '- Bad lighting conditions\n' + '- Macbeth chart is occluded\n' + '- Background is too noisy\n' + '- Macbeth chart is out of camera plane\n' + ) + + # Represent coloured macbeth in reference space + best_map_col = cv2.warpPerspective( + original, best_ref_mat, (ref_w, ref_h) + ) + best_map_col = cv2.resize( + best_map_col, None, fx=4, fy=4 + ) + a = 125 / np.average(best_map_col) + best_map_col_norm = cv2.convertScaleAbs( + best_map_col, alpha=a, beta=0 + ) + + # Rescale coordinates to original image size + fit_coords = (best_fit / factor, best_cen_fit / factor) + + return (max_cor, best_map_col_norm, fit_coords, True) + + # Catch macbeth errors and continue with code + except MacbethError as error: + # \todo: This happens so many times in a normal run, that it shadows + # all the relevant output + # logger.warning(error) + return (0, None, None, False) + + +def find_macbeth(img, mac_config): + small_chart = mac_config['small'] + show = mac_config['show'] + + # Catch the warnings + warnings.simplefilter("ignore") + warnings.warn("runtime", RuntimeWarning) + + # Reference macbeth chart is created that will be correlated with the + # located macbeth chart guess to produce a confidence value for the match. + script_dir = Path(os.path.realpath(os.path.dirname(__file__))) + macbeth_ref_path = script_dir.joinpath('macbeth_ref.pgm') + ref = cv2.imread(str(macbeth_ref_path), flags=cv2.IMREAD_GRAYSCALE) + ref_w = 120 + ref_h = 80 + rc1 = (0, 0) + rc2 = (0, ref_h) + rc3 = (ref_w, ref_h) + rc4 = (ref_w, 0) + ref_corns = np.array((rc1, rc2, rc3, rc4), np.float32) + ref_data = (ref, ref_w, ref_h, ref_corns) + + # Locate macbeth chart + cor, mac, coords, ret = get_macbeth_chart(img, ref_data) + + # Following bits of code try to fix common problems with simple techniques. + # If now or at any point the best correlation is of above 0.75, then + # nothing more is tried as this is a high enough confidence to ensure + # reliable macbeth square centre placement. + + # Keep a list that will include this and any brightened up versions of + # the image for reuse. + all_images = [img] + + for brightness in [2, 4]: + if cor >= 0.75: + break + img_br = cv2.convertScaleAbs(img, alpha=brightness, beta=0) + all_images.append(img_br) + cor_b, mac_b, coords_b, ret_b = get_macbeth_chart(img_br, ref_data) + if cor_b > cor: + cor, mac, coords, ret = cor_b, mac_b, coords_b, ret_b + + # In case macbeth chart is too small, take a selection of the image and + # attempt to locate macbeth chart within that. The scale increment is + # root 2 + + # These variables will be used to transform the found coordinates at + # smaller scales back into the original. If ii is still -1 after this + # section that means it was not successful + ii = -1 + w_best = 0 + h_best = 0 + d_best = 100 + + # d_best records the scale of the best match. Macbeth charts are only looked + # for at one scale increment smaller than the current best match in order to avoid + # unecessarily searching for macbeth charts at small scales. + # If a macbeth chart ha already been found then set d_best to 0 + if cor != 0: + d_best = 0 + + for index, pair in enumerate([{'sel': 2 / 3, 'inc': 1 / 6}, + {'sel': 1 / 2, 'inc': 1 / 8}, + {'sel': 1 / 3, 'inc': 1 / 12}, + {'sel': 1 / 4, 'inc': 1 / 16}]): + if cor >= 0.75: + break + + # Check if we need to check macbeth charts at even smaller scales. This + # slows the code down significantly and has therefore been omitted by + # default, however it is not unusably slow so might be useful if the + # macbeth chart is too small to be picked up to by the current + # subselections. Use this for macbeth charts with side lengths around + # 1/5 image dimensions (and smaller...?) it is, however, recommended + # that macbeth charts take up as large as possible a proportion of the + # image. + if index >= 2 and (not small_chart or d_best <= index - 1): + break + + w, h = list(img.shape[:2]) + # Set dimensions of the subselection and the step along each axis + # between selections + w_sel = int(w * pair['sel']) + h_sel = int(h * pair['sel']) + w_inc = int(w * pair['inc']) + h_inc = int(h * pair['inc']) + + loop = int(((1 - pair['sel']) / pair['inc']) + 1) + # For each subselection, look for a macbeth chart + for img_br in all_images: + for i in range(loop): + for j in range(loop): + w_s, h_s = i * w_inc, j * h_inc + img_sel = img_br[w_s:w_s + w_sel, h_s:h_s + h_sel] + cor_ij, mac_ij, coords_ij, ret_ij = get_macbeth_chart(img_sel, ref_data) + + # If the correlation is better than the best then record the + # scale and current subselection at which macbeth chart was + # found. Also record the coordinates, macbeth chart and message. + if cor_ij > cor: + cor = cor_ij + mac, coords, ret = mac_ij, coords_ij, ret_ij + ii, jj = i, j + w_best, h_best = w_inc, h_inc + d_best = index + 1 + + # Transform coordinates from subselection to original image + if ii != -1: + for a in range(len(coords)): + for b in range(len(coords[a][0])): + coords[a][0][b][1] += ii * w_best + coords[a][0][b][0] += jj * h_best + + if not ret: + return None + + coords_fit = coords + if cor < 0.75: + logger.warning(f'Low confidence {cor:.3f} for macbeth chart') + + if show: + draw_macbeth_results(img, coords_fit) + + return coords_fit + + +def locate_macbeth(image: Image, config: dict): + # Find macbeth centres + av_chan = (np.mean(np.array(image.channels), axis=0) / (2**16)) + av_val = np.mean(av_chan) + if av_val < image.blacklevel_16 / (2**16) + 1 / 64: + logger.warning(f'Image {image.path.name} too dark') + return None + + macbeth = find_macbeth(av_chan, config['general']['macbeth']) + + if macbeth is None: + logger.warning(f'No macbeth chart found in {image.path.name}') + return None + + mac_cen_coords = macbeth[1] + if not image.get_patches(mac_cen_coords): + logger.warning(f'Macbeth patches have saturated in {image.path.name}') + return None + + image.macbeth = macbeth + + return macbeth diff --git a/utils/tuning/libtuning/macbeth_ref.pgm b/utils/tuning/libtuning/macbeth_ref.pgm new file mode 100644 index 00000000..089ea91f --- /dev/null +++ b/utils/tuning/libtuning/macbeth_ref.pgm @@ -0,0 +1,6 @@ +P5 +# SPDX-License-Identifier: BSD-2-Clause +# Reference macbeth chart +120 80 +255 + !#!" #!"&&$#$#'"%&#+2///..../.........-()))))))))))))))))))(((-,*)'(&)#($%(%"###""!%""&"&&!$" #!$ !"! $&**" !#5.,%+,-5"0<HBAA54" %##((()*+,---.........+*)))))))))))))))-.,,--+))('((''('%'%##"!""!"!""""#! ! %‚/vÀ¯z:òøßãLñ©û¶ÑÔcÒ,!#""%%''')**+)-../..../.-*)))))))))))))**,,)**'(''&'((&&%%##$! !!!! ! ! ! 5*"-)&7(1.75Rnge`\`$ ""!"%%%'')())++--/---,-..,-.,++**))))())*)*)''%'%&%&'&%%""""" ! !!$&$$&##(+*,,/10122126545./66402006486869650*.1.***)*+)()&((('('##)('&%%&%$$$#$%$%$ (((*))('((('('(&%V0;>>;@@>@AAAACBCB=&<·³µ¶¾¿ÃÇÇÆÇËÒÐÇÄ<5x–•ŠŽŒŠ‰„„„„|64RYVTSRRRMMNLKJJLH+&0gijgdeffmmnpnkji`#3™ ª¦¨¨£Ÿ›››š–—™šbY! 3FHHIIIHIJIIJHIII@#?¾ÈÊÍÏÑÔÖØÚÚÚÛßáßÔ=7}—š˜———˜—˜˜——˜——‘:5Wcbcbdcb`^^`^^_^Y,'6‰ŽŒ‰ˆˆˆ‡†…„††„‚r'<½ÆÅÅÅÄÂÀ¿¾¾¼»¼¼µl%2FHHIIHJJJJJJIIJI?%;ÁÌÌÒÓÖØÙÛÛÜÜÞßâãÕ>7|•™™ž™—˜˜˜—™™™š˜–;8Xfeeegeccb`^aba]Z+)<Ž“’‘‹Š‰‰‰‰ˆ†r)>¿ÇÇÇÆÅÅÄÂÁÁÀ¾¾¼·q#3GHIIIIJIIJJIHIJI@&5ÁÎÑÔÕØÙÚÜÜÞßßßàâ×=8~”•˜™š›šš™›šœ››“;8Zgghggedbdcbda^\Z+(;““’‘‘Ž‹‹ŠŠ‰ˆy)9¿ÈÈÈÇÇÅÄÂÁÁÀ¿½½¹z"3GIIJJJJJKJJJJJJJ@'4ÂÑÔÔÙÚÛÜÞÝßßààààØ>9|”—–—™ššš™›œŸ¥ ž˜=8Zhighgeeeedeca__[/)B’–•••“‘ŽŒŒŒŒŠv&:ÁÊÊÊÊÆÆÆÂÁÂÂÁ¿¿º|#3GJJIIJKKKJJJKKJK@&6ÆÒ××ÙÛÛÞÞßààààààÖ>9~”———˜˜—™šžž ˜<8Yghegggffihccab^\/*C“™˜—––””’‘‘Žz'9ÄÍËÈÈÇÇÆÆÄÂÂÀÀ¿»‚$ 6IKJJMMMKMKKMKKMLC&2É××ÙÛÜßÞàááâââââÖ@9•——˜˜™˜˜š››žŸžž—<9Yghhhhijiegdcebc^0)G—›š™˜˜˜–•“’‘Ž(7ÃÍÌËÊÈÇÇÅÆÄÂÂÂÁº‰% 6JLMMNMMKMMNMMMMMD&2ÊÙÙÛÝßßßààáââáãâÖ@:~”—™™š™™››žžžžž—=9Xfghhjiigdgddedc`1)M—œ›š˜™—•”‘’‘Ž}(:ÄÐÍÌËÊÇÆÆÆÅÂÄÁ¾& "8LNOONNOMONNMMNOND'3ÍÛÛÞßàààáââãâåãå×@;–˜˜™žŸŸ ¡¡ —=:Ziiigheegegegggdc1,Q›ŸŸž›šš˜––““‘~)8ÂÍÎÌËÊÊÈÆÆÆÆÄÆÇÁ•%# "9NNNPPPQOOOOONNOOD'0ÎÜÜßßáàáââååäãåæ×?;–˜—™šœžŸ¡¡ ¡Ÿ ™=;[iigeeegghgdedgea0-P› ¡ žš˜—–•”(8ÃÏÎÎÌÊÈÈÇÇÇÆÈÇÆÃ' "#$:NNOQPPRPQPOOPQPPD*1ÐßßàààâãããåææåææÛA;‚˜™™šœžžŸ Ÿž Ÿ—;:Yfghgghgghghhdggc3.\¡£¡ Ÿœœš˜—•’‘~);ÅÎÎÑÐÌËÊÇÈÉÊÊÇŤ(&%%;OQQQRSSRPQQQQSQQF)3ÓßàááãâãåææææææçÜB<ƒ™šœœžžžžŸ žŸ Ÿž—=:Wfhghhhihggghfhee4/f ¥¤¢¡¡ŸŸš˜—””’‘‚*:ÇÏÍÍÎÎÍÌÉÈËÊÈÆÆÃ¤&%%%?RSSSSSTTTTSSSTTRE)5ÕàááãâäåæåæçççèèÛB=„šœœžŸ Ÿ ¡ žŸŸŸ˜@:Ygiihhiiiihihiiif72p £¤¤£ ŸŸœœ™—–•’‘}(9ÇÎÏÎÍÍÍÍÍËÌÊÈÈÇÆ©'#%&?TUTTTUUQSTTTTTVSF*3ÕàãâãäåæææçççèééßF>†žž ¡¡£ £¡¡¡ Ÿ˜A;[ghjiihiiiihihije50r¢¦¥¥££ Ÿžœš™—–““‚)6ÈÏÏÎÌÎÎÌÏÏËÊÊÈÈÆ«& &#%?SVVVUUUUUTUUVVUUG*5ÖãããåæææçèèèèééëßF=…ŸŸ¢££££ ¡¡ £ ˜A;Yhijiiijjiiiiijje81t¦¦¦¥¥£¡ Ÿ›˜——•’~)5ÇÑÑÏÎËÍÍÑÑÌËÈÈÉÆ°' '$$=OQRRQQPRSRSSSSSSG+6ËÙÙÜÛÜÞÝßààààáããÙD@‚š›œŸœžœ›š”?;Wefgggggfffgeeefc41xŸžŸž››š˜•”’‘ŽŒ{*5¾ÈÈÇÅÃÃÄÄÃÂÂÂÀ¿¼«( &&&'++++,,*-,-00-0100*-SUX\]]`_ffgiooopo=;X\bedbadbca`]\]ZZ;;<::8:;9983433110/-,...1//12410/..--+)"",---,-./,,.-/-0-( &&%+/0103322011223233)(34534767::;;==:=B9;BFGEEGIKJKIJGIJCD=<:76566554111/0/1.*+00233300/00//..,+*#")(*)++,++))*++**'!!&$*w³½¾¿Â¼ÀÀ¼¼·¹¹¸´²Ž1-_addc`ceccdccedbb?A|ŒŒ‘‹ŒŒ‹ŠŠ‰‰ˆB>=>?@@?====;<:;:<:11r‹ŒŽ“–““•–˜™Ž+.’—”™ ¥¢¡¤žšŸŸœ( !'%*zÀÇÆÆÇÇÊÊÈÈÈÊËËËÉ 42gjmllklomooonpopmHG‘©¬«««¬©«««ª««ª©£D>AEDEFEECEECCCDDEC46µåçèçççæåäãáàÞÜÚ׿0:Î×Ö×××ÖÕÒÓÏÐÐÍÍѾ,!!&&,|ÂÇÇÇÇÇÇËËÇÈÊËËÍÊ¡61inknnoopoppoqqrqoEE”¬®®®®®¯®®¥FACGFFFFFFDFDDDDDDC57¹íñïîîíííëéçæãáßÝÄ09ÓÛÛÛÛÚÙØ×ÖÕÔÔÒÔÒÁ+!"%%-~ÀÆÈÊÇÇÈÉÌÌÊÊËÌÌÊ¡42inopppppoqqqrrsrnAB“«®®®®®®®±®¬°¥C?DGGGGFFFFDFFDDEDC48ºíððïïîîíìëèçæãáßÅ1;ÔÞÞÝÜÚÚÙÙ×ÕÕÔÕÔÒÁ+!!"#*|¿ÄÉÊÈÈÈÈÉÍÉÈËÍÍÊ¡62imoppppqqqqrtrqtrGD•¬®®°®°°°±±°®®§H?CGGGGGGGGFFFFFFDB38»îðïïïïîíììëèçæâàÅ1<ÖààßÞÞÜÚÚÙÙÙ××ÔÔ½, !)}¿ÃÈÈÊÇÈÈËÎËÊËÌÍË¢63mooppqqqqqqrrtvtoDH—®±®°±°°®±°°¦JACHHGGHGGFFFDDGGFD29ÀðóòðïïïîííìêéèæâÆ3>ÖááààßÞÜÛÙÙÙØ×Ø×½, $){¼ÂÅÆÉÇÈÆËËÌÊËÊÍË¢53jpppqprqrrrttuvuo>H˜®°®±²±±°°°±°±°°ªJAFHHHHHGGHGGFGGFFE28ÁðôòòððïïîíëìëéçãÇ3:×ãáááßÞÝÛÛÚÙÚÚÚÚ½- "*{¸ÁÁÅÆÇÆÆÊËÌÉÊËÎÌ£53loqpqsqrrrtrutsvrAH—«®®±±°°°®±±±®°©HCGHIHHHHHHGFGHGGGD5;ÀðóóòñððïîííìëëèäÇ28ØäãááààßÞÜÛÛÛÚÚÚÀ, +}¹¾ÀÂÂÅÅÅÇÉÍËÊËÌÊ¡52mqoqpqrttttttuurpFI–®°±°±±²°±±°±±¯°§OCEHHIHHHHGHGGFFIGF8<ÃðòòóóòððïíîìììéæÍ48ÚçåããáààßÝÜÜÜÜÛÛ¿, (|º¼¾ÀÀÃÄÄÆÇÍËÊÊËÊ¢41krqpqqqrrtrtuvtuoEH—°°²±±±±¯²²®²±®«PBHHIIIHIIHIHGHGHHE7<ÃðóóòñððððïíííìêçÑ58ÜèæåãââáßßÜÞÜÞÞÚÄ* (zºº»¾ÀÂÂÂÄÄÇËÈÊËÊ¡63kpqprqqstttutrvvoFO˜¯°¯°±±°±±±±±°±²©LEHHIIHIHHHIGHGIHGF4=ÅñóóóððððïïîìíëéèÓ5<ÞêèçåââááßÞÞßßßÚÇ* 'zº½º»¾ÁÀÂÂÄÅÊÇÈÊÈ¡62lppqrqrrrtttuttvpAG›¯°±°±°°°°°±±°±±«MGHIIIIHIIIHHIIJHHG4<ÃñóóóðòððîîïííëéèÓ4<ÞëêççæãâáàßàÞÞÛØÇ+ !){º¼º»¾½ÀÁÁÂÄÉÇÇÉÈ 62jopqqqqqrtttutttrEH™¯±°°°¯°°±±²²°±±ªOHFIIIIIJIIIIHIHIHI7>ÅðôóòòòïðïîîíììëèÒ5;àíêèææãâáâßßÜÛÙÖÇ, !)z¼¾¼¹»»ÁÁ¿ÁÁÈÇÆÆÆŸ53lppqqrqrtttuuuutsFI™®±²±±±±²²²±°¯±²«RHGJIJHJKJJJIIIIIIH9>ÂñôôôòóððïîííìëééÓ5;àìééèææäááßÜÛØ×ÔÇ+ !({»¿¸º½½¿¾¿¾ÀÅÆÄÆÅœ41joppprqrrrutttvvrIH’±°°°±±±²²°±²±±ªTHCJJJJJIJIJJIJJJIH7=ÂòôòóóñðïîîííììéèÒ5;ßìêêèæåäâàÞÛÙÖ×ÕÇ+ (u±±®¯±³µ²´´µº»¸»º‘65gjlmmmnoopnpprpqoIH¦©ª©«ªªª«¬«ªª¨ª¤OIBIJJJIJJJJIIIHHHG89ºåççæçåäããâáßàßÝÜÈ29ÔàßÝÛÛÙØÕÓÑÎÌÈÌʾ' "&,-*)-01/,0/12102-+04448789<>>??AFAD@DBCIJNRWTSUXT[WUQUOKFEBBABA?>>=<<;;67942:<<<>9999864565363&(13335422./1/-+..+ !"&$$""$"&$%'()(''*+-0124688:<>>??A>?EBCHKOLJLNOSQOXQQVMLACGHGHIGFHGDCCBB@??7432233210111.,++,++%(++)*(''%%%$$#%&$# ")0/001120024455520+-U]`addcdhefeekecYGFJRXYYVWWZWVXXVZTOBF}™œšœžœ›š™–™K7Ybccddfeg`^]^]\[Z[*)OTTPPQPOKOLLJJLIK !1;:9:<<===;=???A@9*/„Ž‘’”•”––—™™š››’FJmxyxwyzzzxyzzz{zxLOÉÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿú]=‹§©¨¦§¥¦¤¤¢¡¡¡ ›Ž.-‹’’Œ‰‡…‚€€€y# !!2><=;==>=<<>@@@@A9-0‡‘‘”—˜˜™—š›žŸ —IKnz||{|{||{}}~}}{zLOÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿý]>ެ¬««¨ª¨§¦¥¥££¡¡–..Œ––”“Ž‹‹‰‡…………„~% $2==;<>>?===>@A@AB;+1…Ž‘“•—™™˜˜™œžŸŸ—JJo{|y{||}{||}}}}}yMTÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿý_>ެ¬«ª©©¦¦¦¤¤££¢ ”-.–”‘‘ŽŠŠ‰…„…„…„}# %2<=;=<@?>==>?A@AA9+3…Ž‘“–——˜™šœšœœžž•FMlz{{y|}}}}||}|}}{MTÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýd>«¬«ªªª¨§¦¦¤¤¤¡ ”-,Œ“‘’Ї†……„„„…# %1<<<;==<<=>?A?@AA:,3†Ž‘’•——˜˜šœšœœž–INo{{y{||||}|}}|~}{RTÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýd=Š©¬«©©§¦¦¥¤¤£¡ Ÿ—/-‹’‘‹‹‰ˆ…………ƒƒ„}#!$0<<<=<<==>A@@>@AA:-2†‘“’–——™™šš™œ›œ—HInzz{{||{{}~~}}|}zMRÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýd=‰ª«ªªª§¥¥¥£¤¡¡ ”++ˆŽŽ‹ŠŠ‰………„„„ƒ„~# "$/;<==>;===@@@@>AA:+2†Ž’’“•—–™˜šœ™œ–KHn||y|||||{}~}|}|xMSÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýd=†©©ª©©§¦¦¥¤£¡Ÿ žœ’+,‡‹Š‰ˆ††…„„„„ƒ}# ! "/:<=>@<<>=@@@@@AA;-3„’’•–˜˜š™šššœ›˜MFs||{{{y}z}}|}|}}yMWÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýc>„©ª©§¦¦¥¤£¡£ ŸŸ›’,)…ŒŠ‹‰ˆ‡†…„„„ƒƒƒ|! !1;>?>><<>@>>=>ABB;,0ƒŽ‘’––™™™™ššœœ›˜LHr{|{|}|y|}}}}}zNXÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýc?„©«ª§§¦¥¥££ žžšŽ()„‹ŠŠ‰ˆ…†„„„„„‚ƒƒz# $/;;<=;<>>=>>>@@BB:,1†‘“•–—˜™šœšœšž˜IInyz||||||{||}{~|{NVÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýc;§¨¨¦¦¦¤££¡¡ŸŸœš“('ƒŠŠˆ‰ˆ……ƒ„ƒƒƒƒ‚€}# $0:<==<;>@>>>>@ABB:,/„‘““–˜™™™šœšš—HLlx|}y{y{|y{|}}}}yMRÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýd>~¥§¦¦§¥¤££¢ ŸžššŽ*(ƒŠ‡‡ˆˆ„ƒ‚„ƒƒ‚‚‚y" !&3:;<<;==@@=>AABBA;-3†‘“‘”–—˜˜™šœœš›–KLqz{|||y{}|}{}|~{zRQÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüc9w¤§¦¥¦¤¢£ Ÿžžš™Ž)'ˆ†……„…„ƒƒƒ‚€€€€y" !%1<<;=>===<=@@ABBC<.5†’’•–—™˜™™œœž•IIlz{|}~~~|}{||~}}zMUÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüd;p¤¦¥¥¤¤£¤¢ Ÿž›š˜)$€ˆˆ…„„„…‚‚€€€x" $2===<==@=<>=ABBBC?/0ˆ‘’•••˜—˜™™š™œž˜IGkz}}{||}{||y||}zyOVÊÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüc7o¢¥¥¤££¡¤¡žŸš™š˜‘'&~‡„„„„ƒ…„€~€z"#"#/;<:<<?>;===@?AAA>07‹‹Ž’’’”“•–—•‘GGgwxz{yyxyzzyz{yuuHO½ùûüüüüüüûûûúúúúò\8v›žœ›š™˜—•••”‘†'$w~~}|||{~|{zxxxxv!"""'*+(+)*))()+,,.../0398;=<=>DCCDDCBBDHBCJMMLMPNPOJPKPSJDICCNMPONMNNOKHIFDBHE3/46433323.....*+,)( !##!!!!!$#$$#$#&"!!"(+**,,*+.//1478:<:33ACDFGGIIHIJLPKNMQFIPTTRVXVUXUUTXUSTNEGGFDEFAA>==;94877520-,))*(((('&$#!!" &%'FQPQR]dqŒ˜£«¹ÍàðÈ=FñûüÿÿÿÿÿÿÿÿÿÿÿÿÿúQN·èììêìæéììêéëëéêáLEœ˜…znki^[YTPUOS;.%-/12322221/10//,/%#0¯ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß@QýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿQMÁðôõôóôóôõõôõôôóæKE„¨©¨§§¤¥¥¢¤£ žžž˜H01NNQOQQOOMNNLKLJGB'&/¸ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâAWþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿOLÀñóôôôóóóõôôõóôòèKE„¦¨©©§ª©ª¦¨§¥¢¤¢œF-,PQQPQPPQPOONMNNKE''0·ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáCZþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRMÁñôóóòòôòôõóôôóòåJE‚¥©¬¬©ª©ª§¥¥¤¤¤¢™F,*NSQPPQOOOOMNNMKID('2·ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáD[þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿQKÀðòòòóóòóõóõóòòðæIF€§©ª©§©§©¥¤¤¤¤¡ ˜F,*NPPPPPPNOONMMMJIF!'(2¶ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáF]þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRL¿íððòðòòóóòòñïòðäHD£¦©©§¨¦¦¦¤¤¤¤¢ ˜F+%MPPPPOOONONNMMKID)*4¸ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáD^þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿPL¿ìðïïòòððòòðïðòïäIC€¢¦¨¨¥¦¥§¥¤££¡ŸŸ—F+&NPOOOPPOONMMKMKHD**6ºÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáD_þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿQJ¾ëïïïòðððððïðïîïãFC~¢§¥¥¦¦¦¤££¤¡ ˜F,'MPOOOOONONNKKIIIG,+7»ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáD^ýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿQI¾êîîîïðïðïððïïïîâEB|£¥¤££¤¤¤£¤¢Ÿ ŸŸ—E+&MONOOONNNNKMJKJHH,-8¹ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàD]þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿPI¼éíìîîîîñðòóóöù÷èHE¥¨§¥¥¤¤£¡£¡ žŸ—C,#LOOOONONNNKKKMKJF,*6»ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáCaýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþMH»éììíîðððôóõöööõçIF‚©ª§¦¦¥££¢ Ÿžž Ÿ–D*%KONOMNMMKMKJJJIJE,,6»ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâB^ýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþMG¹èììîðòóòóóóóòóôéHB}£©¦¦§¥¤¤¢ŸŸžžš”D+&LONOOONNMMMMKLKIA,,6ºÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàA\ýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþMF¹éìííïòóôððôöõööêIE¦ª©¦§¨§§¡¡Ÿš™”E+&LNNMONNMMKKKKKIHF --6¹ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßA[üÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþKF¶çìðïððïðóöõöõùúîJC©««¦§¦¥¤¡¤žžš—F*&LMONMNMNKKJMKJJIF **5»ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß>WüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþKE¶èïíðîðóöõøòùóöôçF?}¨©²¯¬¬©¥¤¤£žœ˜˜‘C*%KONNNJKKKMKJKJKID,*4¶ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØ<WöþÿÿÿÿÿÿÿÿÿÿÿÿÿÿøMA°áäååçêêïêëëåæéçÝGCxž¨¦ ©¥¤ šœ¡˜•’ŠB)%HKLKKJJJKIHIHHFGC!()*q ¡š›šš™““’‘‘’‹‹o39v|}wwwwwwrqtuspn=9^gadcfgce`dbUY[\^>;DIJDB?FEGE=7>8634.(&&(%&*&%%'+*)+*#%()''03364443233222243/-+133423333423766645789:><<<;<;<?=?;<<:78673/001113--.-+*)&&#"&$#%&""$!! ))+rbPpAD9-*******+*++)++--.//./.0/21453469:=;98<;<>=;><7766666741012.-13/-+-/(''&&&%%&$.%0()-%-#-#' #&(% )))hn›YQgÛ7(*))))*)**,--....../0/0001357666::;;>?>AA866666666656565300/20/.-*)(('((&&%)d=yoP¼<Ñ?ßFQFx;§2»1«0))*RQ.0*,,5*(*))))*,**,+/.../...02/22224456468;:>BB;>;:76666666666755303033/,.-*(())('&')#)"##(+$+*#)) & diff --git a/utils/tuning/libtuning/modules/__init__.py b/utils/tuning/libtuning/modules/__init__.py new file mode 100644 index 00000000..9ccabb0e --- /dev/null +++ b/utils/tuning/libtuning/modules/__init__.py @@ -0,0 +1,3 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> diff --git a/utils/tuning/libtuning/modules/agc/__init__.py b/utils/tuning/libtuning/modules/agc/__init__.py new file mode 100644 index 00000000..4db9ca37 --- /dev/null +++ b/utils/tuning/libtuning/modules/agc/__init__.py @@ -0,0 +1,6 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2024, Paul Elder <paul.elder@ideasonboard.com> + +from libtuning.modules.agc.agc import AGC +from libtuning.modules.agc.rkisp1 import AGCRkISP1 diff --git a/utils/tuning/libtuning/modules/agc/agc.py b/utils/tuning/libtuning/modules/agc/agc.py new file mode 100644 index 00000000..9c8899ba --- /dev/null +++ b/utils/tuning/libtuning/modules/agc/agc.py @@ -0,0 +1,21 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# Copyright (C) 2024, Paul Elder <paul.elder@ideasonboard.com> + +from ..module import Module + +import libtuning as lt + + +class AGC(Module): + type = 'agc' + hr_name = 'AGC (Base)' + out_name = 'GenericAGC' + + # \todo Add sector shapes and stuff just like lsc + def __init__(self, *, + debug: list): + super().__init__() + + self.debug = debug diff --git a/utils/tuning/libtuning/modules/agc/rkisp1.py b/utils/tuning/libtuning/modules/agc/rkisp1.py new file mode 100644 index 00000000..2dad3a09 --- /dev/null +++ b/utils/tuning/libtuning/modules/agc/rkisp1.py @@ -0,0 +1,79 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# Copyright (C) 2024, Paul Elder <paul.elder@ideasonboard.com> +# +# rkisp1.py - AGC module for tuning rkisp1 + +from .agc import AGC + +import libtuning as lt + + +class AGCRkISP1(AGC): + hr_name = 'AGC (RkISP1)' + out_name = 'Agc' + + def __init__(self, **kwargs): + super().__init__(**kwargs) + + # We don't actually need anything from the config file + def validate_config(self, config: dict) -> bool: + return True + + def _generate_metering_modes(self) -> dict: + centre_weighted = [ + 0, 0, 0, 0, 0, + 0, 6, 8, 6, 0, + 0, 8, 16, 8, 0, + 0, 6, 8, 6, 0, + 0, 0, 0, 0, 0 + ] + + spot = [ + 0, 0, 0, 0, 0, + 0, 2, 4, 2, 0, + 0, 4, 16, 4, 0, + 0, 2, 4, 2, 0, + 0, 0, 0, 0, 0 + ] + + matrix = [1 for i in range(0, 25)] + + return { + 'MeteringCentreWeighted': centre_weighted, + 'MeteringSpot': spot, + 'MeteringMatrix': matrix + } + + def _generate_exposure_modes(self) -> dict: + normal = {'exposureTime': [100, 10000, 30000, 60000, 120000], + 'gain': [2.0, 4.0, 6.0, 6.0, 6.0]} + short = {'exposureTime': [100, 5000, 10000, 20000, 120000], + 'gain': [2.0, 4.0, 6.0, 6.0, 6.0]} + + return {'ExposureNormal': normal, 'ExposureShort': short} + + def _generate_constraint_modes(self) -> dict: + normal = {'lower': {'qLo': 0.98, 'qHi': 1.0, 'yTarget': 0.5}} + highlight = { + 'lower': {'qLo': 0.98, 'qHi': 1.0, 'yTarget': 0.5}, + 'upper': {'qLo': 0.98, 'qHi': 1.0, 'yTarget': 0.8} + } + + return {'ConstraintNormal': normal, 'ConstraintHighlight': highlight} + + def _generate_y_target(self) -> list: + return 0.5 + + def process(self, config: dict, images: list, outputs: dict) -> dict: + output = {} + + output['AeMeteringMode'] = self._generate_metering_modes() + output['AeExposureMode'] = self._generate_exposure_modes() + output['AeConstraintMode'] = self._generate_constraint_modes() + output['relativeLuminanceTarget'] = self._generate_y_target() + + # \todo Debug functionality + + return output diff --git a/utils/tuning/libtuning/modules/awb/__init__.py b/utils/tuning/libtuning/modules/awb/__init__.py new file mode 100644 index 00000000..2d67f10c --- /dev/null +++ b/utils/tuning/libtuning/modules/awb/__init__.py @@ -0,0 +1,6 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2024, Ideas On Board + +from libtuning.modules.awb.awb import AWB +from libtuning.modules.awb.rkisp1 import AWBRkISP1 diff --git a/utils/tuning/libtuning/modules/awb/awb.py b/utils/tuning/libtuning/modules/awb/awb.py new file mode 100644 index 00000000..c154cf3b --- /dev/null +++ b/utils/tuning/libtuning/modules/awb/awb.py @@ -0,0 +1,36 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2024, Ideas On Board + +import logging + +from ..module import Module + +from libtuning.ctt_awb import awb +import numpy as np + +logger = logging.getLogger(__name__) + + +class AWB(Module): + type = 'awb' + hr_name = 'AWB (Base)' + out_name = 'GenericAWB' + + def __init__(self, *, debug: list): + super().__init__() + + self.debug = debug + + def do_calculation(self, images): + logger.info('Starting AWB calculation') + + imgs = [img for img in images if img.macbeth is not None] + + gains, _, _ = awb(imgs, None, None, False) + gains = np.reshape(gains, (-1, 3)) + + return [{ + 'ct': int(v[0]), + 'gains': [float(1.0 / v[1]), float(1.0 / v[2])] + } for v in gains] diff --git a/utils/tuning/libtuning/modules/awb/rkisp1.py b/utils/tuning/libtuning/modules/awb/rkisp1.py new file mode 100644 index 00000000..0c95843b --- /dev/null +++ b/utils/tuning/libtuning/modules/awb/rkisp1.py @@ -0,0 +1,27 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2024, Ideas On Board +# +# AWB module for tuning rkisp1 + +from .awb import AWB + +import libtuning as lt + + +class AWBRkISP1(AWB): + hr_name = 'AWB (RkISP1)' + out_name = 'Awb' + + def __init__(self, **kwargs): + super().__init__(**kwargs) + + def validate_config(self, config: dict) -> bool: + return True + + def process(self, config: dict, images: list, outputs: dict) -> dict: + output = {} + + output['colourGains'] = self.do_calculation(images) + + return output diff --git a/utils/tuning/libtuning/modules/ccm/__init__.py b/utils/tuning/libtuning/modules/ccm/__init__.py new file mode 100644 index 00000000..322602af --- /dev/null +++ b/utils/tuning/libtuning/modules/ccm/__init__.py @@ -0,0 +1,6 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2024, Paul Elder <paul.elder@ideasonboard.com> + +from libtuning.modules.ccm.ccm import CCM +from libtuning.modules.ccm.rkisp1 import CCMRkISP1 diff --git a/utils/tuning/libtuning/modules/ccm/ccm.py b/utils/tuning/libtuning/modules/ccm/ccm.py new file mode 100644 index 00000000..18702f8d --- /dev/null +++ b/utils/tuning/libtuning/modules/ccm/ccm.py @@ -0,0 +1,41 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2024, Paul Elder <paul.elder@ideasonboard.com> +# Copyright (C) 2024, Ideas on Board +# +# Base Ccm tuning module + +from ..module import Module + +from libtuning.ctt_ccm import ccm +import logging + +logger = logging.getLogger(__name__) + + +class CCM(Module): + type = 'ccm' + hr_name = 'CCM (Base)' + out_name = 'GenericCCM' + + def __init__(self, debug: list): + super().__init__() + + self.debug = debug + + def do_calibration(self, images): + logger.info('Starting CCM calibration') + + imgs = [img for img in images if img.macbeth is not None] + + # todo: Take LSC calibration results into account. + cal_cr_list = None + cal_cb_list = None + + try: + ccms = ccm(imgs, cal_cr_list, cal_cb_list) + except ArithmeticError: + logger.error('CCM calibration failed') + return None + + return ccms diff --git a/utils/tuning/libtuning/modules/ccm/rkisp1.py b/utils/tuning/libtuning/modules/ccm/rkisp1.py new file mode 100644 index 00000000..be0252d9 --- /dev/null +++ b/utils/tuning/libtuning/modules/ccm/rkisp1.py @@ -0,0 +1,28 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2024, Paul Elder <paul.elder@ideasonboard.com> +# Copyright (C) 2024, Ideas on Board +# +# Ccm module for tuning rkisp1 + +from .ccm import CCM + + +class CCMRkISP1(CCM): + hr_name = 'Crosstalk Correction (RkISP1)' + out_name = 'Ccm' + + def __init__(self, **kwargs): + super().__init__(**kwargs) + + # We don't need anything from the config file. + def validate_config(self, config: dict) -> bool: + return True + + def process(self, config: dict, images: list, outputs: dict) -> dict: + output = {} + + ccms = self.do_calibration(images) + output['ccms'] = ccms + + return output diff --git a/utils/tuning/libtuning/modules/lsc/__init__.py b/utils/tuning/libtuning/modules/lsc/__init__.py new file mode 100644 index 00000000..0ba4411b --- /dev/null +++ b/utils/tuning/libtuning/modules/lsc/__init__.py @@ -0,0 +1,7 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> + +from libtuning.modules.lsc.lsc import LSC +from libtuning.modules.lsc.raspberrypi import ALSCRaspberryPi +from libtuning.modules.lsc.rkisp1 import LSCRkISP1 diff --git a/utils/tuning/libtuning/modules/lsc/lsc.py b/utils/tuning/libtuning/modules/lsc/lsc.py new file mode 100644 index 00000000..e0ca22eb --- /dev/null +++ b/utils/tuning/libtuning/modules/lsc/lsc.py @@ -0,0 +1,75 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> + +from ..module import Module + +import libtuning as lt +import libtuning.utils as utils + +import numpy as np + + +class LSC(Module): + type = 'lsc' + hr_name = 'LSC (Base)' + out_name = 'GenericLSC' + + def __init__(self, *, + debug: list, + sector_shape: tuple, + sector_x_gradient: lt.Gradient, + sector_y_gradient: lt.Gradient, + sector_average_function: lt.Average, + smoothing_function: lt.Smoothing): + super().__init__() + + self.debug = debug + + self.sector_shape = sector_shape + self.sector_x_gradient = sector_x_gradient + self.sector_y_gradient = sector_y_gradient + self.sector_average_function = sector_average_function + + self.smoothing_function = smoothing_function + + def _enumerate_lsc_images(self, images): + for image in images: + if image.lsc_only: + yield image + + def _get_grid(self, channel, img_w, img_h): + # List of number of pixels in each sector + sectors_x = self.sector_x_gradient.distribute(img_w / 2, self.sector_shape[0]) + sectors_y = self.sector_y_gradient.distribute(img_h / 2, self.sector_shape[1]) + + grid = [] + + r = 0 + for y in sectors_y: + c = 0 + for x in sectors_x: + grid.append(self.sector_average_function.average(channel[r:r + y, c:c + x])) + c += x + r += y + + return np.array(grid) + + def _lsc_single_channel(self, channel: np.array, + image: lt.Image, green_grid: np.array = None): + grid = self._get_grid(channel, image.w, image.h) + # Clamp the values to a small positive, so that the following 1/grid + # doesn't produce negative results. + grid = np.maximum(grid - image.blacklevel_16, 0.1) + + if green_grid is None: + table = np.reshape(1 / grid, self.sector_shape[::-1]) + else: + table = np.reshape(green_grid / grid, self.sector_shape[::-1]) + table = self.smoothing_function.smoothing(table) + + if green_grid is None: + table = table / np.min(table) + + return table, grid diff --git a/utils/tuning/libtuning/modules/lsc/raspberrypi.py b/utils/tuning/libtuning/modules/lsc/raspberrypi.py new file mode 100644 index 00000000..99bc4fe6 --- /dev/null +++ b/utils/tuning/libtuning/modules/lsc/raspberrypi.py @@ -0,0 +1,248 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# ALSC module for tuning Raspberry Pi + +from .lsc import LSC + +import libtuning as lt +import libtuning.utils as utils + +from numbers import Number +import numpy as np +import logging + +logger = logging.getLogger(__name__) + +class ALSCRaspberryPi(LSC): + # Override the type name so that the parser can match the entry in the + # config file. + type = 'alsc' + hr_name = 'ALSC (Raspberry Pi)' + out_name = 'rpi.alsc' + compatible = ['raspberrypi'] + + def __init__(self, *, + do_color: lt.Param, + luminance_strength: lt.Param, + **kwargs): + super().__init__(**kwargs) + + self.do_color = do_color + self.luminance_strength = luminance_strength + + self.output_range = (0, 3.999) + + def validate_config(self, config: dict) -> bool: + if self not in config: + logger.error(f'{self.type} not in config') + return False + + valid = True + + conf = config[self] + + lum_key = self.luminance_strength.name + color_key = self.do_color.name + + if lum_key not in conf and self.luminance_strength.required: + logger.error(f'{lum_key} is not in config') + valid = False + + if lum_key in conf and (conf[lum_key] < 0 or conf[lum_key] > 1): + logger.warning(f'{lum_key} is not in range [0, 1]; defaulting to 0.5') + + if color_key not in conf and self.do_color.required: + logger.error(f'{color_key} is not in config') + valid = False + + return valid + + # @return Image color temperature, flattened array of red calibration table + # (containing {sector size} elements), flattened array of blue + # calibration table, flattened array of green calibration + # table + + def _do_single_alsc(self, image: lt.Image, do_alsc_colour: bool): + average_green = np.mean((image.channels[lt.Color.GR:lt.Color.GB + 1]), axis=0) + + cg, g = self._lsc_single_channel(average_green, image) + + if not do_alsc_colour: + return image.color, None, None, cg.flatten() + + cr, _ = self._lsc_single_channel(image.channels[lt.Color.R], image, g) + cb, _ = self._lsc_single_channel(image.channels[lt.Color.B], image, g) + + # \todo implement debug + + return image.color, cr.flatten(), cb.flatten(), cg.flatten() + + # @return Red shading table, Blue shading table, Green shading table, + # number of images processed + + def _do_all_alsc(self, images: list, do_alsc_colour: bool, general_conf: dict) -> (list, list, list, Number, int): + # List of colour temperatures + list_col = [] + # Associated calibration tables + list_cr = [] + list_cb = [] + list_cg = [] + count = 0 + for image in self._enumerate_lsc_images(images): + col, cr, cb, cg = self._do_single_alsc(image, do_alsc_colour) + list_col.append(col) + list_cr.append(cr) + list_cb.append(cb) + list_cg.append(cg) + count += 1 + + # Convert to numpy array for data manipulation + list_col = np.array(list_col) + list_cr = np.array(list_cr) + list_cb = np.array(list_cb) + list_cg = np.array(list_cg) + + cal_cr_list = [] + cal_cb_list = [] + + # Note: Calculation of average corners and center of the shading tables + # has been removed (which ctt had, as it was unused) + + # Average all values for luminance shading and return one table for all temperatures + lum_lut = list(np.round(np.mean(list_cg, axis=0), 3)) + + if not do_alsc_colour: + return None, None, lum_lut, count + + for ct in sorted(set(list_col)): + # Average tables for the same colour temperature + indices = np.where(list_col == ct) + ct = int(ct) + t_r = np.round(np.mean(list_cr[indices], axis=0), 3) + t_b = np.round(np.mean(list_cb[indices], axis=0), 3) + + cr_dict = { + 'ct': ct, + 'table': list(t_r) + } + cb_dict = { + 'ct': ct, + 'table': list(t_b) + } + cal_cr_list.append(cr_dict) + cal_cb_list.append(cb_dict) + + return cal_cr_list, cal_cb_list, lum_lut, count + + # @brief Calculate sigma from two adjacent gain tables + def _calcSigma(self, g1, g2): + g1 = np.reshape(g1, self.sector_shape[::-1]) + g2 = np.reshape(g2, self.sector_shape[::-1]) + + # Apply gains to gain table + gg = g1 / g2 + if np.mean(gg) < 1: + gg = 1 / gg + + # For each internal patch, compute average difference between it and + # its 4 neighbours, then append to list + diffs = [] + for i in range(self.sector_shape[1] - 2): + for j in range(self.sector_shape[0] - 2): + # Indexing is incremented by 1 since all patches on borders are + # not counted + diff = np.abs(gg[i + 1][j + 1] - gg[i][j + 1]) + diff += np.abs(gg[i + 1][j + 1] - gg[i + 2][j + 1]) + diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j]) + diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j + 2]) + diffs.append(diff / 4) + + mean_diff = np.mean(diffs) + return np.round(mean_diff, 5) + + # @brief Obtains sigmas for red and blue, effectively a measure of the + # 'error' + def _get_sigma(self, cal_cr_list, cal_cb_list): + # Provided colour alsc tables were generated for two different colour + # temperatures sigma is calculated by comparing two calibration temperatures + # adjacent in colour space + + color_temps = [cal['ct'] for cal in cal_cr_list] + + # Calculate sigmas for each adjacent color_temps and return worst one + sigma_rs = [] + sigma_bs = [] + for i in range(len(color_temps) - 1): + sigma_rs.append(self._calcSigma(cal_cr_list[i]['table'], cal_cr_list[i + 1]['table'])) + sigma_bs.append(self._calcSigma(cal_cb_list[i]['table'], cal_cb_list[i + 1]['table'])) + + # Return maximum sigmas, not necessarily from the same colour + # temperature interval + sigma_r = max(sigma_rs) if sigma_rs else 0.005 + sigma_b = max(sigma_bs) if sigma_bs else 0.005 + + return sigma_r, sigma_b + + def process(self, config: dict, images: list, outputs: dict) -> dict: + output = { + 'omega': 1.3, + 'n_iter': 100, + 'luminance_strength': 0.7 + } + + conf = config[self] + general_conf = config['general'] + + do_alsc_colour = self.do_color.get_value(conf) + + # \todo I have no idea where this input parameter is used + luminance_strength = self.luminance_strength.get_value(conf) + if luminance_strength < 0 or luminance_strength > 1: + luminance_strength = 0.5 + + output['luminance_strength'] = luminance_strength + + # \todo Validate images from greyscale camera and force grescale mode + # \todo Debug functionality + + alsc_out = self._do_all_alsc(images, do_alsc_colour, general_conf) + # \todo Handle the second green lut + cal_cr_list, cal_cb_list, luminance_lut, count = alsc_out + + if not do_alsc_colour: + output['luminance_lut'] = luminance_lut + output['n_iter'] = 0 + return output + + output['calibrations_Cr'] = cal_cr_list + output['calibrations_Cb'] = cal_cb_list + output['luminance_lut'] = luminance_lut + + # The sigmas determine the strength of the adaptive algorithm, that + # cleans up any lens shading that has slipped through the alsc. These + # are determined by measuring a 'worst-case' difference between two + # alsc tables that are adjacent in colour space. If, however, only one + # colour temperature has been provided, then this difference can not be + # computed as only one table is available. + # To determine the sigmas you would have to estimate the error of an + # alsc table with only the image it was taken on as a check. To avoid + # circularity, dfault exaggerated sigmas are used, which can result in + # too much alsc and is therefore not advised. + # In general, just take another alsc picture at another colour + # temperature! + + if count == 1: + output['sigma'] = 0.005 + output['sigma_Cb'] = 0.005 + logger.warning('Only one alsc calibration found; standard sigmas used for adaptive algorithm.') + return output + + # Obtain worst-case scenario residual sigmas + sigma_r, sigma_b = self._get_sigma(cal_cr_list, cal_cb_list) + output['sigma'] = np.round(sigma_r, 5) + output['sigma_Cb'] = np.round(sigma_b, 5) + + return output diff --git a/utils/tuning/libtuning/modules/lsc/rkisp1.py b/utils/tuning/libtuning/modules/lsc/rkisp1.py new file mode 100644 index 00000000..c02b2306 --- /dev/null +++ b/utils/tuning/libtuning/modules/lsc/rkisp1.py @@ -0,0 +1,116 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# LSC module for tuning rkisp1 + +from .lsc import LSC + +import libtuning as lt +import libtuning.utils as utils + +from numbers import Number +import numpy as np + + +class LSCRkISP1(LSC): + hr_name = 'LSC (RkISP1)' + out_name = 'LensShadingCorrection' + # \todo Not sure if this is useful. Probably will remove later. + compatible = ['rkisp1'] + + def __init__(self, *args, **kwargs): + super().__init__(**kwargs) + + # We don't actually need anything from the config file + def validate_config(self, config: dict) -> bool: + return True + + # @return Image color temperature, flattened array of red calibration table + # (containing {sector size} elements), flattened array of blue + # calibration table, flattened array of (red's) green calibration + # table, flattened array of (blue's) green calibration table + + def _do_single_lsc(self, image: lt.Image): + # Perform LSC on each colour channel independently. A future enhancement + # worth investigating would be splitting the luminance and chrominance + # LSC as done by Raspberry Pi. + cgr, _ = self._lsc_single_channel(image.channels[lt.Color.GR], image) + cgb, _ = self._lsc_single_channel(image.channels[lt.Color.GB], image) + cr, _ = self._lsc_single_channel(image.channels[lt.Color.R], image) + cb, _ = self._lsc_single_channel(image.channels[lt.Color.B], image) + + return image.color, cr.flatten(), cb.flatten(), cgr.flatten(), cgb.flatten() + + # @return List of dictionaries of color temperature, red table, red's green + # table, blue's green table, and blue table + + def _do_all_lsc(self, images: list) -> list: + output_list = [] + output_map_func = lt.gradient.Linear().map + + # List of colour temperatures + list_col = [] + # Associated calibration tables + list_cr = [] + list_cb = [] + list_cgr = [] + list_cgb = [] + for image in self._enumerate_lsc_images(images): + col, cr, cb, cgr, cgb = self._do_single_lsc(image) + list_col.append(col) + list_cr.append(cr) + list_cb.append(cb) + list_cgr.append(cgr) + list_cgb.append(cgb) + + # Convert to numpy array for data manipulation + list_col = np.array(list_col) + list_cr = np.array(list_cr) + list_cb = np.array(list_cb) + list_cgr = np.array(list_cgr) + list_cgb = np.array(list_cgb) + + for color_temperature in sorted(set(list_col)): + # Average tables for the same colour temperature + indices = np.where(list_col == color_temperature) + color_temperature = int(color_temperature) + + tables = [] + for lis in [list_cr, list_cgr, list_cgb, list_cb]: + table = np.mean(lis[indices], axis=0) + table = output_map_func((1, 4), (1024, 4096), table) + table = np.clip(table, 1024, 4095) + table = np.round(table).astype('int32').tolist() + tables.append(table) + + entry = { + 'ct': color_temperature, + 'r': tables[0], + 'gr': tables[1], + 'gb': tables[2], + 'b': tables[3], + } + + output_list.append(entry) + + return output_list + + def process(self, config: dict, images: list, outputs: dict) -> dict: + output = {} + + # \todo This should actually come from self.sector_{x,y}_gradient + size_gradient = lt.gradient.Linear(lt.Remainder.Float) + output['x-size'] = size_gradient.distribute(0.5, 8) + output['y-size'] = size_gradient.distribute(0.5, 8) + + output['sets'] = self._do_all_lsc(images) + + if len(output['sets']) == 0: + return None + + # \todo Validate images from greyscale camera and force grescale mode + # \todo Debug functionality + + return output diff --git a/utils/tuning/libtuning/modules/module.py b/utils/tuning/libtuning/modules/module.py new file mode 100644 index 00000000..de624384 --- /dev/null +++ b/utils/tuning/libtuning/modules/module.py @@ -0,0 +1,32 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# Base class for algorithm-specific tuning modules + + +# @var type Type of the module. Defined in the base module. +# @var out_name The key that will be used for the algorithm in the algorithms +# dictionary in the tuning output file +# @var hr_name Human-readable module name, mostly for debugging +class Module(object): + type = 'base' + hr_name = 'Base Module' + out_name = 'GenericAlgorithm' + + def __init__(self): + pass + + def validate_config(self, config: dict) -> bool: + raise NotImplementedError + + # @brief Do the module's processing + # @param config Full configuration from the input configuration file + # @param images List of images to process + # @param outputs The outputs of all modules that were executed before this + # module. Note that this is an input parameter, and the + # output of this module should be returned directly + # @return Result of the module's processing. It may be empty. None + # indicates failure and that the result should not be used. + def process(self, config: dict, images: list, outputs: dict) -> dict: + raise NotImplementedError diff --git a/utils/tuning/libtuning/modules/static.py b/utils/tuning/libtuning/modules/static.py new file mode 100644 index 00000000..4d0f7e18 --- /dev/null +++ b/utils/tuning/libtuning/modules/static.py @@ -0,0 +1,24 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2024, Ideas on Board +# +# Module implementation for static data + +from .module import Module + + +# This module can be used in cases where the tuning file should contain +# static data. +class StaticModule(Module): + def __init__(self, out_name: str, output: dict = {}): + super().__init__() + self.out_name = out_name + self.hr_name = f'Static {out_name}' + self.type = f'static_{out_name}' + self.output = output + + def validate_config(self, config: dict) -> bool: + return True + + def process(self, config: dict, images: list, outputs: dict) -> dict: + return self.output diff --git a/utils/tuning/libtuning/parsers/__init__.py b/utils/tuning/libtuning/parsers/__init__.py new file mode 100644 index 00000000..022c1e5d --- /dev/null +++ b/utils/tuning/libtuning/parsers/__init__.py @@ -0,0 +1,6 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> + +from libtuning.parsers.raspberrypi_parser import RaspberryPiParser +from libtuning.parsers.yaml_parser import YamlParser diff --git a/utils/tuning/libtuning/parsers/parser.py b/utils/tuning/libtuning/parsers/parser.py new file mode 100644 index 00000000..0c3944c7 --- /dev/null +++ b/utils/tuning/libtuning/parsers/parser.py @@ -0,0 +1,21 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# Base class for a parser for a specific format of config file + +class Parser(object): + def __init__(self): + pass + + # @brief Parse a config file into a config dict + # @details The config dict shall have one key 'general' with a dict value + # for general configuration options, and all other entries shall + # have the module as the key with its configuration options (as a + # dict) as the value. The config dict shall prune entries that are + # for modules that are not in @a modules. + # @param config (str) Path to config file + # @param modules (list) List of modules + # @return (dict, list) Configuration and list of modules to disable + def parse(self, config_file: str, modules: list) -> (dict, list): + raise NotImplementedError diff --git a/utils/tuning/libtuning/parsers/raspberrypi_parser.py b/utils/tuning/libtuning/parsers/raspberrypi_parser.py new file mode 100644 index 00000000..f1da4592 --- /dev/null +++ b/utils/tuning/libtuning/parsers/raspberrypi_parser.py @@ -0,0 +1,93 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# Parser for Raspberry Pi config file format + +from .parser import Parser + +import json +import numbers + +import libtuning.utils as utils + + +class RaspberryPiParser(Parser): + def __init__(self): + super().__init__() + + # The string in the 'disable' and 'plot' lists are formatted as + # 'rpi.{module_name}'. + # @brief Enumerate, as a module, @a listt if its value exists in @a dictt + # and it is the name of a valid module in @a modules + def _enumerate_rpi_modules(self, listt, dictt, modules): + for x in listt: + name = x.replace('rpi.', '') + if name not in dictt: + continue + module = utils.get_module_by_typename(modules, name) + if module is not None: + yield module + + def _valid_macbeth_option(self, value): + if not isinstance(value, dict): + return False + + if list(value.keys()) != ['small', 'show']: + return False + + for val in value.values(): + if not isinstance(val, numbers.Number): + return False + + return True + + def parse(self, config_file: str, modules: list) -> (dict, list): + with open(config_file, 'r') as config_json: + config = json.load(config_json) + + disable = [] + for module in self._enumerate_rpi_modules(config['disable'], config, modules): + disable.append(module) + # Remove the disabled module's config too + config.pop(module.name) + config.pop('disable') + + # The raspberrypi config format has 'plot' map to a list of module + # names which should be plotted. libtuning has each module contain the + # plot information in itself so do this conversion. + + for module in self._enumerate_rpi_modules(config['plot'], config, modules): + # It's fine to set the value of a potentially disabled module, as + # the object still exists at this point + module.appendValue('debug', 'plot') + config.pop('plot') + + # Convert the keys from module name to module instance + + new_config = {} + + for module_name in config: + module = utils.get_module_by_type_name(modules, module_name) + if module is not None: + new_config[module] = config[module_name] + + new_config['general'] = {} + + if 'blacklevel' in config: + if not isinstance(config['blacklevel'], numbers.Number): + raise TypeError('Config "blacklevel" must be a number') + # Raspberry Pi's ctt config has magic blacklevel value -1 to mean + # "get it from the image metadata". Since we already do that in + # Image, don't save it to the config here. + if config['blacklevel'] >= 0: + new_config['general']['blacklevel'] = config['blacklevel'] + + if 'macbeth' in config: + if not self._valid_macbeth_option(config['macbeth']): + raise TypeError('Config "macbeth" must be a dict: {"small": number, "show": number}') + new_config['general']['macbeth'] = config['macbeth'] + else: + new_config['general']['macbeth'] = {'small': 0, 'show': 0} + + return new_config, disable diff --git a/utils/tuning/libtuning/parsers/yaml_parser.py b/utils/tuning/libtuning/parsers/yaml_parser.py new file mode 100644 index 00000000..1fa6b7a8 --- /dev/null +++ b/utils/tuning/libtuning/parsers/yaml_parser.py @@ -0,0 +1,20 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# Parser for YAML format config file + +from .parser import Parser +import yaml + + +class YamlParser(Parser): + def __init__(self): + super().__init__() + + def parse(self, config_file: str, modules: list) -> (dict, list): + # Dummy implementation that just reads the file + with open(config_file, 'r') as f: + config = yaml.safe_load(f) + + return config, [] diff --git a/utils/tuning/libtuning/smoothing.py b/utils/tuning/libtuning/smoothing.py new file mode 100644 index 00000000..de4d920c --- /dev/null +++ b/utils/tuning/libtuning/smoothing.py @@ -0,0 +1,24 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# Wrapper for cv2 smoothing functions to enable duck-typing + +import cv2 + + +# @brief Wrapper for cv2 smoothing functions so that they can be duck-typed +class Smoothing(object): + def __init__(self): + pass + + def smoothing(self, src): + raise NotImplementedError + + +class MedianBlur(Smoothing): + def __init__(self, ksize): + self.ksize = ksize + + def smoothing(self, src): + return cv2.medianBlur(src.astype('float32'), self.ksize).astype('float64') diff --git a/utils/tuning/libtuning/utils.py b/utils/tuning/libtuning/utils.py new file mode 100644 index 00000000..e35cf409 --- /dev/null +++ b/utils/tuning/libtuning/utils.py @@ -0,0 +1,186 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# Utilities for libtuning + +import cv2 +import decimal +import math +import numpy as np +import os +from pathlib import Path +import re +import sys +import logging + +import libtuning as lt +from libtuning.image import Image +from .macbeth import locate_macbeth + +logger = logging.getLogger(__name__) + +# Utility functions + + +def get_module_by_type_name(modules, name): + for module in modules: + if module.type == name: + return module + return None + + +# Private utility functions + + +def _list_image_files(directory): + d = Path(directory) + files = [d.joinpath(f) for f in os.listdir(d) + if re.search(r'\.(jp[e]g$)|(dng$)', f)] + files.sort() + return files + + +def _parse_image_filename(fn: Path): + lsc_only = False + color_temperature = None + lux = None + + parts = fn.stem.split('_') + for part in parts: + if part == 'alsc': + lsc_only = True + continue + r = re.match(r'(\d+)[kK]', part) + if r: + color_temperature = int(r.group(1)) + continue + r = re.match(r'(\d+)[lLuU]', part) + if r: + lux = int(r.group(1)) + + if color_temperature is None: + logger.error(f'The file name of "{fn.name}" does not contain a color temperature') + + if lux is None and lsc_only is False: + logger.error(f'The file name of "{fn.name}" must either contain alsc or a lux level') + + return color_temperature, lux, lsc_only + + +# \todo Implement this from check_imgs() in ctt.py +def _validate_images(images): + return True + + +# Public utility functions + + +# @brief Load images into a single list of Image instances +# @param input_dir Directory from which to load image files +# @param config Configuration dictionary +# @param load_nonlsc Whether or not to load non-lsc images +# @param load_lsc Whether or not to load lsc-only images +# @return A list of Image instances +def load_images(input_dir: str, config: dict, load_nonlsc: bool, load_lsc: bool) -> list: + files = _list_image_files(input_dir) + if len(files) == 0: + logger.error(f'No images found in {input_dir}') + return None + + images = [] + for f in files: + color, lux, lsc_only = _parse_image_filename(f) + + if color is None: + logger.warning(f'Ignoring "{f.name}" as it has no associated color temperature') + continue + + logger.info(f'Process image "{f.name}" (color={color}, lux={lux}, lsc_only={lsc_only})') + + # Skip lsc image if we don't need it + if lsc_only and not load_lsc: + logger.warning(f'Skipping {f.name} as this tuner has no LSC module') + continue + + # Skip non-lsc image if we don't need it + if not lsc_only and not load_nonlsc: + logger.warning(f'Skipping {f.name} as this tuner only has an LSC module') + continue + + # Load image + try: + image = Image(f) + except Exception as e: + logger.error(f'Failed to load image {f.name}: {e}') + continue + + # Populate simple fields + image.lsc_only = lsc_only + image.color = color + image.lux = lux + + # Black level comes from the TIFF tags, but they are overridable by the + # config file. + if 'blacklevel' in config['general']: + image.blacklevel_16 = config['general']['blacklevel'] + + if lsc_only: + images.append(image) + continue + + # Handle macbeth + macbeth = locate_macbeth(image, config) + if macbeth is None: + continue + + images.append(image) + + if not _validate_images(images): + return None + + return images + + + +""" +Some code that will save virtual macbeth charts that show the difference between optimised matrices and non optimised matrices + +The function creates an image that is 1550 by 1050 pixels wide, and fills it with patches which are 200x200 pixels in size +Each patch contains the ideal color, the color from the original matrix, and the color from the final matrix +_________________ +| | +| Ideal Color | +|_______________| +| Old | new | +| Color | Color | +|_______|_______| + +Nice way of showing how the optimisation helps change the colors and the color matricies +""" +def visualise_macbeth_chart(macbeth_rgb, original_rgb, new_rgb, output_filename): + image = np.zeros((1050, 1550, 3), dtype=np.uint8) + colorindex = -1 + for y in range(6): + for x in range(4): # Creates 6 x 4 grid of macbeth chart + colorindex += 1 + xlocation = 50 + 250 * x # Means there is 50px of black gap between each square, more like the real macbeth chart. + ylocation = 50 + 250 * y + for g in range(200): + for i in range(100): + image[xlocation + i, ylocation + g] = macbeth_rgb[colorindex] + xlocation = 150 + 250 * x + ylocation = 50 + 250 * y + for i in range(100): + for g in range(100): + image[xlocation + i, ylocation + g] = original_rgb[colorindex] # Smaller squares below to compare the old colors with the new ones + xlocation = 150 + 250 * x + ylocation = 150 + 250 * y + for i in range(100): + for g in range(100): + image[xlocation + i, ylocation + g] = new_rgb[colorindex] + + im_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) + cv2.imwrite(f'{output_filename} Generated Macbeth Chart.png', im_bgr) + diff --git a/utils/tuning/raspberrypi/__init__.py b/utils/tuning/raspberrypi/__init__.py new file mode 100644 index 00000000..9ccabb0e --- /dev/null +++ b/utils/tuning/raspberrypi/__init__.py @@ -0,0 +1,3 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> diff --git a/utils/tuning/raspberrypi/alsc.py b/utils/tuning/raspberrypi/alsc.py new file mode 100644 index 00000000..ba8fc9e1 --- /dev/null +++ b/utils/tuning/raspberrypi/alsc.py @@ -0,0 +1,19 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# ALSC module instance for Raspberry Pi tuning scripts + +import libtuning as lt +from libtuning.modules.lsc import ALSCRaspberryPi + +ALSC = \ + ALSCRaspberryPi(do_color=lt.Param('do_alsc_colour', lt.Param.Mode.Optional, True), + luminance_strength=lt.Param('luminance_strength', lt.Param.Mode.Optional, 0.5), + debug=[lt.Debug.Plot], + sector_shape=(16, 12), + sector_x_gradient=lt.gradient.Linear(lt.Remainder.DistributeFront), + sector_y_gradient=lt.gradient.Linear(lt.Remainder.DistributeFront), + sector_average_function=lt.average.Mean(), + smoothing_function=lt.smoothing.MedianBlur(3), + ) diff --git a/utils/tuning/raspberrypi_alsc_only.py b/utils/tuning/raspberrypi_alsc_only.py new file mode 100755 index 00000000..777d8007 --- /dev/null +++ b/utils/tuning/raspberrypi_alsc_only.py @@ -0,0 +1,23 @@ +#!/usr/bin/env python3 +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# Tuning script for raspberrypi, ALSC only + +import sys + +import libtuning as lt +from libtuning.parsers import RaspberryPiParser +from libtuning.generators import RaspberryPiOutput + +from raspberrypi.alsc import ALSC + +tuner = lt.Tuner('Raspberry Pi (ALSC only)') +tuner.add(ALSC) +tuner.set_input_parser(RaspberryPiParser()) +tuner.set_output_formatter(RaspberryPiOutput()) +tuner.set_output_order([ALSC]) + +if __name__ == '__main__': + sys.exit(tuner.run(sys.argv)) diff --git a/utils/tuning/requirements.txt b/utils/tuning/requirements.txt new file mode 100644 index 00000000..3705769b --- /dev/null +++ b/utils/tuning/requirements.txt @@ -0,0 +1,9 @@ +coloredlogs +matplotlib +numpy +opencv-python +py3exiv2 +pyyaml +rawpy +scikit-learn +scipy diff --git a/utils/tuning/rkisp1.py b/utils/tuning/rkisp1.py new file mode 100755 index 00000000..9f40fd8b --- /dev/null +++ b/utils/tuning/rkisp1.py @@ -0,0 +1,57 @@ +#!/usr/bin/env python3 +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# Copyright (C) 2024, Ideas On Board +# +# Tuning script for rkisp1 + +import coloredlogs +import logging +import sys + +import libtuning as lt +from libtuning.parsers import YamlParser +from libtuning.generators import YamlOutput +from libtuning.modules.lsc import LSCRkISP1 +from libtuning.modules.agc import AGCRkISP1 +from libtuning.modules.awb import AWBRkISP1 +from libtuning.modules.ccm import CCMRkISP1 +from libtuning.modules.static import StaticModule + +coloredlogs.install(level=logging.INFO, fmt='%(name)s %(levelname)s %(message)s') + +agc = AGCRkISP1(debug=[lt.Debug.Plot]) +awb = AWBRkISP1(debug=[lt.Debug.Plot]) +blc = StaticModule('BlackLevelCorrection') +ccm = CCMRkISP1(debug=[lt.Debug.Plot]) +color_processing = StaticModule('ColorProcessing') +filter = StaticModule('Filter') +gamma_out = StaticModule('GammaOutCorrection', {'gamma': 2.2}) +lsc = LSCRkISP1(debug=[lt.Debug.Plot], + # This is for the actual LSC tuning, and is part of the base LSC + # module. rkisp1's table sector sizes (16x16 programmed as mirrored + # 8x8) are separate, and is hardcoded in its specific LSC tuning + # module. + sector_shape=(17, 17), + + sector_x_gradient=lt.gradient.Linear(lt.Remainder.DistributeFront), + sector_y_gradient=lt.gradient.Linear(lt.Remainder.DistributeFront), + + # This is the function that will be used to average the pixels in + # each sector. This can also be a custom function. + sector_average_function=lt.average.Mean(), + + # This is the function that will be used to smooth the color ratio + # values. This can also be a custom function. + smoothing_function=lt.smoothing.MedianBlur(3),) + +tuner = lt.Tuner('RkISP1') +tuner.add([agc, awb, blc, ccm, color_processing, filter, gamma_out, lsc]) +tuner.set_input_parser(YamlParser()) +tuner.set_output_formatter(YamlOutput()) +tuner.set_output_order([agc, awb, blc, ccm, color_processing, + filter, gamma_out, lsc]) + +if __name__ == '__main__': + sys.exit(tuner.run(sys.argv)) |