summaryrefslogtreecommitdiff
path: root/src/qcam/viewfinder_gl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/qcam/viewfinder_gl.cpp')
0 files changed, 0 insertions, 0 deletions
n50' href='#n50'>50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
#
# ctt_geq.py - camera tuning tool for GEQ (green equalisation)

from ctt_tools import *
import matplotlib.pyplot as plt
import scipy.optimize as optimize


"""
Uses green differences in macbeth patches to fit green equalisation threshold
model. Ideally, all macbeth chart centres would fall below the threshold as
these should be corrected by geq.
"""
def geq_fit(Cam, plot):
    imgs = Cam.imgs
    """
    green equalisation to mitigate mazing.
    Fits geq model by looking at difference
    between greens in macbeth patches
    """
    geqs = np.array([geq(Cam, Img)*Img.againQ8_norm for Img in imgs])
    Cam.log += '\nProcessed all images'
    geqs = geqs.reshape((-1, 2))
    """
    data is sorted by green difference and top half is selected since higher
    green difference data define the decision boundary.
    """
    geqs = np.array(sorted(geqs, key=lambda r: np.abs((r[1]-r[0])/r[0])))

    length = len(geqs)
    g0 = geqs[length//2:, 0]
    g1 = geqs[length//2:, 1]
    gdiff = np.abs(g0-g1)
    """
    find linear fit by minimising asymmetric least square errors
    in order to cover most of the macbeth images.
    the philosophy here is that every macbeth patch should fall within the
    threshold, hence the upper bound approach
    """
    def f(params):
        m, c = params
        a = gdiff - (m*g0+c)
        """
        asymmetric square error returns:
            1.95 * a**2 if a is positive
            0.05 * a**2 if a is negative
        """
        return(np.sum(a**2+0.95*np.abs(a)*a))

    initial_guess = [0.01, 500]
    """
    Nelder-Mead is usually not the most desirable optimisation method
    but has been chosen here due to its robustness to undifferentiability
    (is that a word?)
    """
    result = optimize.minimize(f, initial_guess, method='Nelder-Mead')
    """
    need to check if the fit worked correectly
    """
    if result.success:
        slope, offset = result.x
        Cam.log += '\nFit result: slope = {:.5f} '.format(slope)
        Cam.log += 'offset = {}'.format(int(offset))
        """
        optional plotting code
        """
        if plot:
            x = np.linspace(max(g0)*1.1, 100)
            y = slope*x + offset
            plt.title('GEQ Asymmetric \'Upper Bound\' Fit')