diff options
Diffstat (limited to 'src/ipa/rkisp1/algorithms/agc.cpp')
-rw-r--r-- | src/ipa/rkisp1/algorithms/agc.cpp | 470 |
1 files changed, 470 insertions, 0 deletions
diff --git a/src/ipa/rkisp1/algorithms/agc.cpp b/src/ipa/rkisp1/algorithms/agc.cpp new file mode 100644 index 00000000..40e5a8f4 --- /dev/null +++ b/src/ipa/rkisp1/algorithms/agc.cpp @@ -0,0 +1,470 @@ +/* SPDX-License-Identifier: LGPL-2.1-or-later */ +/* + * Copyright (C) 2021-2022, Ideas On Board + * + * AGC/AEC mean-based control algorithm + */ + +#include "agc.h" + +#include <algorithm> +#include <chrono> +#include <cmath> +#include <tuple> +#include <vector> + +#include <libcamera/base/log.h> +#include <libcamera/base/utils.h> + +#include <libcamera/control_ids.h> +#include <libcamera/ipa/core_ipa_interface.h> + +#include "libcamera/internal/yaml_parser.h" + +#include "libipa/histogram.h" + +/** + * \file agc.h + */ + +namespace libcamera { + +using namespace std::literals::chrono_literals; + +namespace ipa::rkisp1::algorithms { + +/** + * \class Agc + * \brief A mean-based auto-exposure algorithm + */ + +LOG_DEFINE_CATEGORY(RkISP1Agc) + +int Agc::parseMeteringModes(IPAContext &context, const YamlObject &tuningData) +{ + if (!tuningData.isDictionary()) + LOG(RkISP1Agc, Warning) + << "'AeMeteringMode' parameter not found in tuning file"; + + for (const auto &[key, value] : tuningData.asDict()) { + if (controls::AeMeteringModeNameValueMap.find(key) == + controls::AeMeteringModeNameValueMap.end()) { + LOG(RkISP1Agc, Warning) + << "Skipping unknown metering mode '" << key << "'"; + continue; + } + + std::vector<uint8_t> weights = + value.getList<uint8_t>().value_or(std::vector<uint8_t>{}); + if (weights.size() != context.hw->numHistogramWeights) { + LOG(RkISP1Agc, Warning) + << "Failed to read metering mode'" << key << "'"; + continue; + } + + meteringModes_[controls::AeMeteringModeNameValueMap.at(key)] = weights; + } + + if (meteringModes_.empty()) { + LOG(RkISP1Agc, Warning) + << "No metering modes read from tuning file; defaulting to matrix"; + int32_t meteringModeId = controls::AeMeteringModeNameValueMap.at("MeteringMatrix"); + std::vector<uint8_t> weights(context.hw->numHistogramWeights, 1); + + meteringModes_[meteringModeId] = weights; + } + + std::vector<ControlValue> meteringModes; + std::vector<int> meteringModeKeys = utils::map_keys(meteringModes_); + std::transform(meteringModeKeys.begin(), meteringModeKeys.end(), + std::back_inserter(meteringModes), + [](int x) { return ControlValue(x); }); + context.ctrlMap[&controls::AeMeteringMode] = ControlInfo(meteringModes); + + return 0; +} + +uint8_t Agc::computeHistogramPredivider(const Size &size, + enum rkisp1_cif_isp_histogram_mode mode) +{ + /* + * The maximum number of pixels that could potentially be in one bin is + * if all the pixels of the image are in it, multiplied by 3 for the + * three color channels. The counter for each bin is 16 bits wide, so + * `factor` thus contains the number of times we'd wrap around. This is + * obviously the number of pixels that we need to skip to make sure + * that we don't wrap around, but we compute the square root of it + * instead, as the skip that we need to program is for both the x and y + * directions. + * + * Even though it looks like dividing into a counter of 65536 would + * overflow by 1, this is apparently fine according to the hardware + * documentation, and this successfully gets the expected documented + * predivider size for cases where: + * (width / predivider) * (height / predivider) * 3 == 65536. + * + * There's a bit of extra rounding math to make sure the rounding goes + * the correct direction so that the square of the step is big enough + * to encompass the `factor` number of pixels that we need to skip. + * + * \todo Take into account weights. That is, if the weights are low + * enough we can potentially reduce the predivider to increase + * precision. This needs some investigation however, as this hardware + * behavior is undocumented and is only an educated guess. + */ + int count = mode == RKISP1_CIF_ISP_HISTOGRAM_MODE_RGB_COMBINED ? 3 : 1; + double factor = size.width * size.height * count / 65536.0; + double root = std::sqrt(factor); + uint8_t predivider = static_cast<uint8_t>(std::ceil(root)); + + return std::clamp<uint8_t>(predivider, 3, 127); +} + +Agc::Agc() +{ + supportsRaw_ = true; +} + +/** + * \brief Initialise the AGC algorithm from tuning files + * \param[in] context The shared IPA context + * \param[in] tuningData The YamlObject containing Agc tuning data + * + * This function calls the base class' tuningData parsers to discover which + * control values are supported. + * + * \return 0 on success or errors from the base class + */ +int Agc::init(IPAContext &context, const YamlObject &tuningData) +{ + int ret; + + ret = parseTuningData(tuningData); + if (ret) + return ret; + + const YamlObject &yamlMeteringModes = tuningData["AeMeteringMode"]; + ret = parseMeteringModes(context, yamlMeteringModes); + if (ret) + return ret; + + context.ctrlMap[&controls::AeEnable] = ControlInfo(false, true); + context.ctrlMap.merge(controls()); + + return 0; +} + +/** + * \brief Configure the AGC given a configInfo + * \param[in] context The shared IPA context + * \param[in] configInfo The IPA configuration data + * + * \return 0 + */ +int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo) +{ + /* Configure the default exposure and gain. */ + context.activeState.agc.automatic.gain = context.configuration.sensor.minAnalogueGain; + context.activeState.agc.automatic.exposure = + 10ms / context.configuration.sensor.lineDuration; + context.activeState.agc.manual.gain = context.activeState.agc.automatic.gain; + context.activeState.agc.manual.exposure = context.activeState.agc.automatic.exposure; + context.activeState.agc.autoEnabled = !context.configuration.raw; + + context.activeState.agc.constraintMode = + static_cast<controls::AeConstraintModeEnum>(constraintModes().begin()->first); + context.activeState.agc.exposureMode = + static_cast<controls::AeExposureModeEnum>(exposureModeHelpers().begin()->first); + context.activeState.agc.meteringMode = + static_cast<controls::AeMeteringModeEnum>(meteringModes_.begin()->first); + + /* + * \todo This should probably come from FrameDurationLimits instead, + * except it's computed in the IPA and not here so we'd have to + * recompute it. + */ + context.activeState.agc.maxFrameDuration = context.configuration.sensor.maxExposureTime; + + /* + * Define the measurement window for AGC as a centered rectangle + * covering 3/4 of the image width and height. + */ + context.configuration.agc.measureWindow.h_offs = configInfo.outputSize.width / 8; + context.configuration.agc.measureWindow.v_offs = configInfo.outputSize.height / 8; + context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4; + context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4; + + setLimits(context.configuration.sensor.minExposureTime, + context.configuration.sensor.maxExposureTime, + context.configuration.sensor.minAnalogueGain, + context.configuration.sensor.maxAnalogueGain); + + resetFrameCount(); + + return 0; +} + +/** + * \copydoc libcamera::ipa::Algorithm::queueRequest + */ +void Agc::queueRequest(IPAContext &context, + [[maybe_unused]] const uint32_t frame, + IPAFrameContext &frameContext, + const ControlList &controls) +{ + auto &agc = context.activeState.agc; + + if (!context.configuration.raw) { + const auto &agcEnable = controls.get(controls::AeEnable); + if (agcEnable && *agcEnable != agc.autoEnabled) { + agc.autoEnabled = *agcEnable; + + LOG(RkISP1Agc, Debug) + << (agc.autoEnabled ? "Enabling" : "Disabling") + << " AGC"; + } + } + + const auto &exposure = controls.get(controls::ExposureTime); + if (exposure && !agc.autoEnabled) { + agc.manual.exposure = *exposure * 1.0us + / context.configuration.sensor.lineDuration; + + LOG(RkISP1Agc, Debug) + << "Set exposure to " << agc.manual.exposure; + } + + const auto &gain = controls.get(controls::AnalogueGain); + if (gain && !agc.autoEnabled) { + agc.manual.gain = *gain; + + LOG(RkISP1Agc, Debug) << "Set gain to " << agc.manual.gain; + } + + frameContext.agc.autoEnabled = agc.autoEnabled; + + if (!frameContext.agc.autoEnabled) { + frameContext.agc.exposure = agc.manual.exposure; + frameContext.agc.gain = agc.manual.gain; + } + + const auto &meteringMode = controls.get(controls::AeMeteringMode); + if (meteringMode) { + frameContext.agc.updateMetering = agc.meteringMode != *meteringMode; + agc.meteringMode = + static_cast<controls::AeMeteringModeEnum>(*meteringMode); + } + frameContext.agc.meteringMode = agc.meteringMode; + + const auto &exposureMode = controls.get(controls::AeExposureMode); + if (exposureMode) + agc.exposureMode = + static_cast<controls::AeExposureModeEnum>(*exposureMode); + frameContext.agc.exposureMode = agc.exposureMode; + + const auto &constraintMode = controls.get(controls::AeConstraintMode); + if (constraintMode) + agc.constraintMode = + static_cast<controls::AeConstraintModeEnum>(*constraintMode); + frameContext.agc.constraintMode = agc.constraintMode; + + const auto &frameDurationLimits = controls.get(controls::FrameDurationLimits); + if (frameDurationLimits) { + utils::Duration maxFrameDuration = + std::chrono::milliseconds((*frameDurationLimits).back()); + agc.maxFrameDuration = maxFrameDuration; + } + frameContext.agc.maxFrameDuration = agc.maxFrameDuration; +} + +/** + * \copydoc libcamera::ipa::Algorithm::prepare + */ +void Agc::prepare(IPAContext &context, const uint32_t frame, + IPAFrameContext &frameContext, RkISP1Params *params) +{ + if (frameContext.agc.autoEnabled) { + frameContext.agc.exposure = context.activeState.agc.automatic.exposure; + frameContext.agc.gain = context.activeState.agc.automatic.gain; + } + + if (frame > 0 && !frameContext.agc.updateMetering) + return; + + /* + * Configure the AEC measurements. Set the window, measure + * continuously, and estimate Y as (R + G + B) x (85/256). + */ + auto aecConfig = params->block<BlockType::Aec>(); + aecConfig.setEnabled(true); + + aecConfig->meas_window = context.configuration.agc.measureWindow; + aecConfig->autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0; + aecConfig->mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1; + + /* + * Configure the histogram measurement. Set the window, produce a + * luminance histogram, and set the weights and predivider. + */ + auto hstConfig = params->block<BlockType::Hst>(); + hstConfig.setEnabled(true); + + hstConfig->meas_window = context.configuration.agc.measureWindow; + hstConfig->mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM; + + Span<uint8_t> weights{ + hstConfig->hist_weight, + context.hw->numHistogramWeights + }; + std::vector<uint8_t> &modeWeights = meteringModes_.at(frameContext.agc.meteringMode); + std::copy(modeWeights.begin(), modeWeights.end(), weights.begin()); + + struct rkisp1_cif_isp_window window = hstConfig->meas_window; + Size windowSize = { window.h_size, window.v_size }; + hstConfig->histogram_predivider = + computeHistogramPredivider(windowSize, + static_cast<rkisp1_cif_isp_histogram_mode>(hstConfig->mode)); +} + +void Agc::fillMetadata(IPAContext &context, IPAFrameContext &frameContext, + ControlList &metadata) +{ + utils::Duration exposureTime = context.configuration.sensor.lineDuration + * frameContext.sensor.exposure; + metadata.set(controls::AnalogueGain, frameContext.sensor.gain); + metadata.set(controls::ExposureTime, exposureTime.get<std::micro>()); + metadata.set(controls::AeEnable, frameContext.agc.autoEnabled); + + /* \todo Use VBlank value calculated from each frame exposure. */ + uint32_t vTotal = context.configuration.sensor.size.height + + context.configuration.sensor.defVBlank; + utils::Duration frameDuration = context.configuration.sensor.lineDuration + * vTotal; + metadata.set(controls::FrameDuration, frameDuration.get<std::micro>()); + + metadata.set(controls::AeMeteringMode, frameContext.agc.meteringMode); + metadata.set(controls::AeExposureMode, frameContext.agc.exposureMode); + metadata.set(controls::AeConstraintMode, frameContext.agc.constraintMode); +} + +/** + * \brief Estimate the relative luminance of the frame with a given gain + * \param[in] gain The gain to apply to the frame + * + * This function estimates the average relative luminance of the frame that + * would be output by the sensor if an additional \a gain was applied. + * + * The estimation is based on the AE statistics for the current frame. Y + * averages for all cells are first multiplied by the gain, and then saturated + * to approximate the sensor behaviour at high brightness values. The + * approximation is quite rough, as it doesn't take into account non-linearities + * when approaching saturation. In this case, saturating after the conversion to + * YUV doesn't take into account the fact that the R, G and B components + * contribute differently to the relative luminance. + * + * The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a + * theoretical perfect reflector of 100% reference white. + * + * More detailed information can be found in: + * https://en.wikipedia.org/wiki/Relative_luminance + * + * \return The relative luminance + */ +double Agc::estimateLuminance(double gain) const +{ + double ySum = 0.0; + + /* Sum the averages, saturated to 255. */ + for (uint8_t expMean : expMeans_) + ySum += std::min(expMean * gain, 255.0); + + /* \todo Weight with the AWB gains */ + + return ySum / expMeans_.size() / 255; +} + +/** + * \brief Process RkISP1 statistics, and run AGC operations + * \param[in] context The shared IPA context + * \param[in] frame The frame context sequence number + * \param[in] frameContext The current frame context + * \param[in] stats The RKISP1 statistics and ISP results + * \param[out] metadata Metadata for the frame, to be filled by the algorithm + * + * Identify the current image brightness, and use that to estimate the optimal + * new exposure and gain for the scene. + */ +void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame, + IPAFrameContext &frameContext, const rkisp1_stat_buffer *stats, + ControlList &metadata) +{ + if (!stats) { + fillMetadata(context, frameContext, metadata); + return; + } + + if (!(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP)) { + fillMetadata(context, frameContext, metadata); + LOG(RkISP1Agc, Error) << "AUTOEXP data is missing in statistics"; + return; + } + + /* + * \todo Verify that the exposure and gain applied by the sensor for + * this frame match what has been requested. This isn't a hard + * requirement for stability of the AGC (the guarantee we need in + * automatic mode is a perfect match between the frame and the values + * we receive), but is important in manual mode. + */ + + const rkisp1_cif_isp_stat *params = &stats->params; + + /* The lower 4 bits are fractional and meant to be discarded. */ + Histogram hist({ params->hist.hist_bins, context.hw->numHistogramBins }, + [](uint32_t x) { return x >> 4; }); + expMeans_ = { params->ae.exp_mean, context.hw->numAeCells }; + + utils::Duration maxExposureTime = + std::clamp(frameContext.agc.maxFrameDuration, + context.configuration.sensor.minExposureTime, + context.configuration.sensor.maxExposureTime); + setLimits(context.configuration.sensor.minExposureTime, + maxExposureTime, + context.configuration.sensor.minAnalogueGain, + context.configuration.sensor.maxAnalogueGain); + + /* + * The Agc algorithm needs to know the effective exposure value that was + * applied to the sensor when the statistics were collected. + */ + utils::Duration exposureTime = context.configuration.sensor.lineDuration + * frameContext.sensor.exposure; + double analogueGain = frameContext.sensor.gain; + utils::Duration effectiveExposureValue = exposureTime * analogueGain; + + utils::Duration newExposureTime; + double aGain, dGain; + std::tie(newExposureTime, aGain, dGain) = + calculateNewEv(frameContext.agc.constraintMode, + frameContext.agc.exposureMode, + hist, effectiveExposureValue); + + LOG(RkISP1Agc, Debug) + << "Divided up exposure time, analogue gain and digital gain are " + << newExposureTime << ", " << aGain << " and " << dGain; + + IPAActiveState &activeState = context.activeState; + /* Update the estimated exposure and gain. */ + activeState.agc.automatic.exposure = newExposureTime + / context.configuration.sensor.lineDuration; + activeState.agc.automatic.gain = aGain; + + fillMetadata(context, frameContext, metadata); + expMeans_ = {}; +} + +REGISTER_IPA_ALGORITHM(Agc, "Agc") + +} /* namespace ipa::rkisp1::algorithms */ + +} /* namespace libcamera */ |