summaryrefslogtreecommitdiff
path: root/src/ipa/ipu3/algorithms/agc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/ipa/ipu3/algorithms/agc.cpp')
-rw-r--r--src/ipa/ipu3/algorithms/agc.cpp255
1 files changed, 255 insertions, 0 deletions
diff --git a/src/ipa/ipu3/algorithms/agc.cpp b/src/ipa/ipu3/algorithms/agc.cpp
new file mode 100644
index 00000000..39d0aebb
--- /dev/null
+++ b/src/ipa/ipu3/algorithms/agc.cpp
@@ -0,0 +1,255 @@
+/* SPDX-License-Identifier: LGPL-2.1-or-later */
+/*
+ * Copyright (C) 2021, Ideas On Board
+ *
+ * AGC/AEC mean-based control algorithm
+ */
+
+#include "agc.h"
+
+#include <algorithm>
+#include <chrono>
+
+#include <libcamera/base/log.h>
+#include <libcamera/base/utils.h>
+
+#include <libcamera/control_ids.h>
+
+#include <libcamera/ipa/core_ipa_interface.h>
+
+#include "libipa/colours.h"
+#include "libipa/histogram.h"
+
+/**
+ * \file agc.h
+ */
+
+namespace libcamera {
+
+using namespace std::literals::chrono_literals;
+
+namespace ipa::ipu3::algorithms {
+
+/**
+ * \class Agc
+ * \brief A mean-based auto-exposure algorithm
+ *
+ * This algorithm calculates an exposure time and an analogue gain so that the
+ * average value of the green channel of the brightest 2% of pixels approaches
+ * 0.5. The AWB gains are not used here, and all cells in the grid have the same
+ * weight, like an average-metering case. In this metering mode, the camera uses
+ * light information from the entire scene and creates an average for the final
+ * exposure setting, giving no weighting to any particular portion of the
+ * metered area.
+ *
+ * Reference: Battiato, Messina & Castorina. (2008). Exposure
+ * Correction for Imaging Devices: An Overview. 10.1201/9781420054538.ch12.
+ */
+
+LOG_DEFINE_CATEGORY(IPU3Agc)
+
+/* Minimum limit for analogue gain value */
+static constexpr double kMinAnalogueGain = 1.0;
+
+/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
+static constexpr utils::Duration kMaxExposureTime = 60ms;
+
+/* Histogram constants */
+static constexpr uint32_t knumHistogramBins = 256;
+
+Agc::Agc()
+ : minExposureTime_(0s), maxExposureTime_(0s)
+{
+}
+
+/**
+ * \brief Initialise the AGC algorithm from tuning files
+ * \param[in] context The shared IPA context
+ * \param[in] tuningData The YamlObject containing Agc tuning data
+ *
+ * This function calls the base class' tuningData parsers to discover which
+ * control values are supported.
+ *
+ * \return 0 on success or errors from the base class
+ */
+int Agc::init(IPAContext &context, const YamlObject &tuningData)
+{
+ int ret;
+
+ ret = parseTuningData(tuningData);
+ if (ret)
+ return ret;
+
+ context.ctrlMap.merge(controls());
+
+ return 0;
+}
+
+/**
+ * \brief Configure the AGC given a configInfo
+ * \param[in] context The shared IPA context
+ * \param[in] configInfo The IPA configuration data
+ *
+ * \return 0
+ */
+int Agc::configure(IPAContext &context,
+ [[maybe_unused]] const IPAConfigInfo &configInfo)
+{
+ const IPASessionConfiguration &configuration = context.configuration;
+ IPAActiveState &activeState = context.activeState;
+
+ stride_ = configuration.grid.stride;
+ bdsGrid_ = configuration.grid.bdsGrid;
+
+ minExposureTime_ = configuration.agc.minExposureTime;
+ maxExposureTime_ = std::min(configuration.agc.maxExposureTime,
+ kMaxExposureTime);
+
+ minAnalogueGain_ = std::max(configuration.agc.minAnalogueGain, kMinAnalogueGain);
+ maxAnalogueGain_ = configuration.agc.maxAnalogueGain;
+
+ /* Configure the default exposure and gain. */
+ activeState.agc.gain = minAnalogueGain_;
+ activeState.agc.exposure = 10ms / configuration.sensor.lineDuration;
+
+ context.activeState.agc.constraintMode = constraintModes().begin()->first;
+ context.activeState.agc.exposureMode = exposureModeHelpers().begin()->first;
+
+ /* \todo Run this again when FrameDurationLimits is passed in */
+ setLimits(minExposureTime_, maxExposureTime_, minAnalogueGain_,
+ maxAnalogueGain_);
+ resetFrameCount();
+
+ return 0;
+}
+
+Histogram Agc::parseStatistics(const ipu3_uapi_stats_3a *stats,
+ const ipu3_uapi_grid_config &grid)
+{
+ uint32_t hist[knumHistogramBins] = { 0 };
+
+ rgbTriples_.clear();
+
+ for (unsigned int cellY = 0; cellY < grid.height; cellY++) {
+ for (unsigned int cellX = 0; cellX < grid.width; cellX++) {
+ uint32_t cellPosition = cellY * stride_ + cellX;
+
+ const ipu3_uapi_awb_set_item *cell =
+ reinterpret_cast<const ipu3_uapi_awb_set_item *>(
+ &stats->awb_raw_buffer.meta_data[cellPosition]);
+
+ rgbTriples_.push_back({
+ cell->R_avg,
+ (cell->Gr_avg + cell->Gb_avg) / 2,
+ cell->B_avg
+ });
+
+ /*
+ * Store the average green value to estimate the
+ * brightness. Even the overexposed pixels are
+ * taken into account.
+ */
+ hist[(cell->Gr_avg + cell->Gb_avg) / 2]++;
+ }
+ }
+
+ return Histogram(Span<uint32_t>(hist));
+}
+
+/**
+ * \brief Estimate the relative luminance of the frame with a given gain
+ * \param[in] gain The gain to apply in estimating luminance
+ *
+ * The estimation is based on the AWB statistics for the current frame. Red,
+ * green and blue averages for all cells are first multiplied by the gain, and
+ * then saturated to approximate the sensor behaviour at high brightness
+ * values. The approximation is quite rough, as it doesn't take into account
+ * non-linearities when approaching saturation.
+ *
+ * The relative luminance (Y) is computed from the linear RGB components using
+ * the Rec. 601 formula. The values are normalized to the [0.0, 1.0] range,
+ * where 1.0 corresponds to a theoretical perfect reflector of 100% reference
+ * white.
+ *
+ * More detailed information can be found in:
+ * https://en.wikipedia.org/wiki/Relative_luminance
+ *
+ * \return The relative luminance of the frame
+ */
+double Agc::estimateLuminance(double gain) const
+{
+ RGB<double> sum{ 0.0 };
+
+ for (unsigned int i = 0; i < rgbTriples_.size(); i++) {
+ sum.r() += std::min(std::get<0>(rgbTriples_[i]) * gain, 255.0);
+ sum.g() += std::min(std::get<1>(rgbTriples_[i]) * gain, 255.0);
+ sum.b() += std::min(std::get<2>(rgbTriples_[i]) * gain, 255.0);
+ }
+
+ RGB<double> gains{{ rGain_, gGain_, bGain_ }};
+ double ySum = rec601LuminanceFromRGB(sum * gains);
+ return ySum / (bdsGrid_.height * bdsGrid_.width) / 255;
+}
+
+/**
+ * \brief Process IPU3 statistics, and run AGC operations
+ * \param[in] context The shared IPA context
+ * \param[in] frame The current frame sequence number
+ * \param[in] frameContext The current frame context
+ * \param[in] stats The IPU3 statistics and ISP results
+ * \param[out] metadata Metadata for the frame, to be filled by the algorithm
+ *
+ * Identify the current image brightness, and use that to estimate the optimal
+ * new exposure and gain for the scene.
+ */
+void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame,
+ IPAFrameContext &frameContext,
+ const ipu3_uapi_stats_3a *stats,
+ ControlList &metadata)
+{
+ Histogram hist = parseStatistics(stats, context.configuration.grid.bdsGrid);
+ rGain_ = context.activeState.awb.gains.red;
+ gGain_ = context.activeState.awb.gains.blue;
+ bGain_ = context.activeState.awb.gains.green;
+
+ /*
+ * The Agc algorithm needs to know the effective exposure value that was
+ * applied to the sensor when the statistics were collected.
+ */
+ utils::Duration exposureTime = context.configuration.sensor.lineDuration
+ * frameContext.sensor.exposure;
+ double analogueGain = frameContext.sensor.gain;
+ utils::Duration effectiveExposureValue = exposureTime * analogueGain;
+
+ utils::Duration newExposureTime;
+ double aGain, dGain;
+ std::tie(newExposureTime, aGain, dGain) =
+ calculateNewEv(context.activeState.agc.constraintMode,
+ context.activeState.agc.exposureMode, hist,
+ effectiveExposureValue);
+
+ LOG(IPU3Agc, Debug)
+ << "Divided up exposure time, analogue gain and digital gain are "
+ << newExposureTime << ", " << aGain << " and " << dGain;
+
+ IPAActiveState &activeState = context.activeState;
+ /* Update the estimated exposure time and gain. */
+ activeState.agc.exposure = newExposureTime / context.configuration.sensor.lineDuration;
+ activeState.agc.gain = aGain;
+
+ metadata.set(controls::AnalogueGain, frameContext.sensor.gain);
+ metadata.set(controls::ExposureTime, exposureTime.get<std::micro>());
+
+ /* \todo Use VBlank value calculated from each frame exposure. */
+ uint32_t vTotal = context.configuration.sensor.size.height
+ + context.configuration.sensor.defVBlank;
+ utils::Duration frameDuration = context.configuration.sensor.lineDuration
+ * vTotal;
+ metadata.set(controls::FrameDuration, frameDuration.get<std::micro>());
+}
+
+REGISTER_IPA_ALGORITHM(Agc, "Agc")
+
+} /* namespace ipa::ipu3::algorithms */
+
+} /* namespace libcamera */