summaryrefslogtreecommitdiff
path: root/utils/raspberrypi/ctt/ctt_image_load.py
blob: dd7adb1653aa6565423fa4e0e5e295472963d9be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019-2020, Raspberry Pi (Trading) Limited
#
# ctt_image_load.py - camera tuning tool image loading

from ctt_tools import *
from ctt_macbeth_locator import *
import json
import pyexiv2 as pyexif
import rawpy as raw


"""
Image class load image from raw data and extracts metadata.

Once image is extracted from data, it finds 24 16x16 patches for each
channel, centred at the macbeth chart squares
"""
class Image:
    def __init__(self,buf):
        self.buf = buf
        self.patches = None
        self.saturated = False

    '''
    obtain metadata from buffer
    '''
    def get_meta(self):
        self.ver = ba_to_b(self.buf[4:5])
        self.w = ba_to_b(self.buf[0xd0:0xd2])
        self.h = ba_to_b(self.buf[0xd2:0xd4])
        self.pad = ba_to_b(self.buf[0xd4:0xd6])
        self.fmt = self.buf[0xf5]
        self.sigbits = 2*self.fmt + 4
        self.pattern = self.buf[0xf4]
        self.exposure = ba_to_b(self.buf[0x90:0x94])
        self.againQ8 = ba_to_b(self.buf[0x94:0x96])
        self.againQ8_norm = self.againQ8/256
        camName = self.buf[0x10:0x10+128]
        camName_end = camName.find(0x00)
        self.camName = self.buf[0x10:0x10+128][:camName_end].decode()

        """
        Channel order depending on bayer pattern
        """
        bayer_case = {
            0 : (0,1,2,3), #red
            1 : (2,0,3,1), #green next to red
            2 : (3,2,1,0), #green next to blue
            3 : (1,0,3,2), #blue
            128 : (0,1,2,3) #arbitrary order for greyscale casw
        }
        self.order = bayer_case[self.pattern]

        '''
        manual blacklevel - not robust
        '''
        if 'ov5647' in self.camName:
            self.blacklevel = 16
        else:
            self.blacklevel = 64
        self.blacklevel_16 = self.blacklevel << (6)
        return 1

    '''
    print metadata for debug
    '''
    def print_meta(self):
        print('\nData:')
        print('      ver = {}'.format(self.ver))
        print('      w = {}'.format(self.w))
        print('      h = {}'.format(self.h))
        print('      pad = {}'.format(self.pad))
        print('      fmt = {}'.format(self.fmt))
        print('      sigbits = {}'.format(self.sigbits))
        print('      pattern = {}'.format(self.pattern))
        print('      exposure = {}'.format(self.exposure))
        print('      againQ8 = {}'.format(self.againQ8))
        print('      againQ8_norm = {}'.format(self.againQ8_norm))
        print('      camName = {}'.format(self.camName))
        print('      blacklevel = {}'.format(self.blacklevel))
        print('      blacklevel_16 = {}'.format(self.blacklevel_16))

        return 1

    """
    get image from raw scanline data
    """
    def get_image(self,raw):
        self.dptr = []
        """
        check if data is 10 or 12 bits
        """
        if self.sigbits == 10:
            """
            calc length of scanline
            """
            lin_len = ((((((self.w+self.pad+3)>>2)) * 5)+31)>>5) * 32
            """
            stack scan lines into matrix
            """
            raw = np.array(raw).reshape(-1,lin_len).astype(np.int64)[:self.h,...]
            """
            separate 5 bits in each package, stopping when w is satisfied
            """
            ba0 = raw[...,0:5*((self.w+3)>>2):5]
            ba1 = raw[...,1:5*((self.w+3)>>2):5]
            ba2 = raw[...,2:5*((self.w+3)>>2):5]
            ba3 = raw[...,3:5*((self.w+3)>>2):5]
            ba4 = raw[...,4:5*((self.w+3)>>2):5]
            """
            assemble 10 bit numbers
            """
            ch0 = np.left_shift((np.left_shift(ba0,2) + (ba4%4)),6)
            ch1 = np.left_shift((np.left_shift(ba1,2) + (np.right_shift(ba4,2)%4)),6)
            ch2 = np.left_shift((np.left_shift(ba2,2) + (np.right_shift(ba4,4)%4)),6)
            ch3 = np.left_shift((np.left_shift(ba3,2) + (np.right_shift(ba4,6)%4)),6)
            """
            interleave bits
            """
            mat = np.empty((self.h,self.w),dtype=ch0.dtype)

            mat[...,0::4] = ch0
            mat[...,1::4] = ch1
            mat[...,2::4] = ch2
            mat[...,3::4] = ch3

            """
            There is som eleaking memory somewhere in the code. This code here
            seemed to make things good enough that the code would run for
            reasonable numbers of images, however this is techincally just a
            workaround. (sorry)
            """
            ba0,ba1,ba2,ba3,ba4 = None,None,None,None,None
            del ba0,ba1,ba2,ba3,ba4
            ch0,ch1,ch2,ch3 = None,None,None,None
            del ch0,ch1,ch2,ch3

            """
        same as before but 12 bit case
        """
        elif self.sigbits == 12:
            lin_len = ((((((self.w+self.pad+1)>>1)) * 3)+31)>>5) * 32
            raw = np.array(raw).reshape(-1,lin_len).astype(np.int64)[:self.h,...]
            ba0 = raw[...,0:3*((self.w+1)>>1):3]
            ba1 = raw[...,1:3*((self.w+1)>>1):3]
            ba2 = raw[...,2:3*((self.w+1)>>1):3]
            ch0 = np.left_shift((np.left_shift(ba0,4) + ba2%16),4)
            ch1 = np.left_shift((np.left_shift(ba1,4) + (np.right_shift(ba2,4))%16),4)
            mat = np.empty((self.h,self.w),dtype=ch0.dtype)
            mat[...,0::2] = ch0
            mat[...,1::2] = ch1

        else:
            """
            data is neither 10 nor 12 or incorrect data
            """
            print('ERROR: wrong bit format, only 10 or 12 bit supported')
            return 0

        """
        separate bayer channels
        """
        c0 = mat[0::2,0::2]
        c1 = mat[0::2,1::2]
        c2 = mat[1::2,0::2]
        c3 = mat[1::2,1::2]
        self.channels = [c0,c1,c2,c3]
        return 1

    """
    obtain 16x16 patch centred at macbeth square centre for each channel
    """
    def get_patches(self,cen_coords,size=16):
        """
        obtain channel widths and heights
        """
        ch_w,ch_h = self.w,self.h
        cen_coords = list(np.array((cen_coords[0])).astype(np.int32))
        self.cen_coords = cen_coords
        """
        squares are ordered by stacking macbeth chart columns from
        left to right. Some useful patch indices:
            white = 3
            black = 23
            'reds' = 9,10
            'blues' = 2,5,8,20,22
            'greens' = 6,12,17
            greyscale = 3,7,11,15,19,23
        """
        all_patches = []
        for ch in self.channels:
            ch_patches = []
            for cen in cen_coords:
                '''
                macbeth centre is placed at top left of central 2x2 patch
                to account for rounding
                Patch pixels are sorted by pixel brightness so spatial
                information is lost.
                '''
                patch = ch[cen[1]-7:cen[1]+9,cen[0]-7:cen[0]+9].flatten()
                patch.sort()
                if patch[-5] == (2**self.sigbits-1)*2**(16-self.sigbits):
                    self.saturated = True
                ch_patches.append(patch)
                # print('\nNew Patch\n')
            all_patches.append(ch_patches)
            # print('\n\nNew Channel\n\n')
        self.patches = all_patches
        return 1

def brcm_load_image(Cam, im_str):
    """
    Load image where raw data and metadata is in the BRCM format
    """
    try:
        """
        create byte array
        """
        with open(im_str,'rb') as image:
            f = image.read()
            b = bytearray(f)
        """
        return error if incorrect image address
        """
    except FileNotFoundError:
        print('\nERROR:\nInvalid image address')
        Cam.log += '\nWARNING: Invalid image address'
        return 0

    """
    return error if problem reading file
    """
    if f == None:
        print('\nERROR:\nProblem reading file')
        Cam.log += '\nWARNING: Problem readin file'
        return 0

    # print('\nLooking for EOI and BRCM header')
    """
    find end of image followed by BRCM header by turning
    bytearray into hex string and string matching with regexp
    """
    start = -1
    match = bytearray(b'\xff\xd9@BRCM')
    match_str = binascii.hexlify(match)
    b_str = binascii.hexlify(b)
    """
    note index is divided by two to go from string to hex
    """
    indices = [m.start()//2 for m in re.finditer(match_str,b_str)]
    # print(indices)
    try:
        start = indices[0] + 3
    except IndexError:
        print('\nERROR:\nNo Broadcom header found')
        Cam.log += '\nWARNING: No Broadcom header found!'
        return 0
    """
    extract data after header
    """
    # print('\nExtracting data after header')
    buf = b[start:start+32768]
    Img = Image(buf)
    Img.str = im_str
    # print('Data found successfully')

    """
    obtain metadata
    """
    # print('\nReading metadata')
    Img.get_meta()
    Cam.log += '\nExposure : {} us'.format(Img.exposure)
    Cam.log += '\nNormalised gain : {}'.format(Img.againQ8_norm)
    # print('Metadata read successfully')

    """
    obtain raw image data
    """
    # print('\nObtaining raw image data')
    raw = b[start+32768:]
    Img.get_image(raw)
    """
    delete raw to stop memory errors
    """
    raw = None
    del raw
    # print('Raw image data obtained successfully')

    return Img

def dng_load_image(Cam, im_str):
    try:
        Img = Image(None)

        # RawPy doesn't load all the image tags that we need, so we use py3exiv2
        metadata = pyexif.ImageMetadata(im_str)
        metadata.read()

        Img.ver = 100  # random value
        Img.w = metadata['Exif.SubImage1.ImageWidth'].value
        Img.pad = 0
        Img.h = metadata['Exif.SubImage1.ImageLength'].value
        white = metadata['Exif.SubImage1.WhiteLevel'].value
        Img.sigbits = int(white).bit_length()
        Img.fmt = (Img.sigbits - 4) // 2
        Img.exposure = int(metadata['Exif.Photo.ExposureTime'].value*1000000)
        Img.againQ8 = metadata['Exif.Photo.ISOSpeedRatings'].value*256/100
        Img.againQ8_norm = Img.againQ8 / 256
        Img.camName = metadata['Exif.Image.Model'].value
        Img.blacklevel = int(metadata['Exif.SubImage1.BlackLevel'].value[0])
        Img.blacklevel_16 = Img.blacklevel << (16 - Img.sigbits)
        bayer_case = {
            '0 1 1 2': (0, (0, 1, 2, 3)),
            '1 2 0 1': (1, (2, 0, 3, 1)),
            '2 1 1 0': (2, (3, 2, 1, 0)),
            '1 0 2 1': (3, (1, 0, 3, 2))
        }
        cfa_pattern = metadata['Exif.SubImage1.CFAPattern'].value
        Img.pattern = bayer_case[cfa_pattern][0]
        Img.order = bayer_case[cfa_pattern][1]

        # Now use RawPy tp get the raw Bayer pixels
        raw_im = raw.imread(im_str)
        raw_data = raw_im.raw_image
        shift = 16 - Img.sigbits
        c0 = np.left_shift(raw_data[0::2,0::2].astype(np.int64), shift)
        c1 = np.left_shift(raw_data[0::2,1::2].astype(np.int64), shift)
        c2 = np.left_shift(raw_data[1::2,0::2].astype(np.int64), shift)
        c3 = np.left_shift(raw_data[1::2,1::2].astype(np.int64), shift)
        Img.channels = [c0, c1, c2, c3]

    except:
        print("\nERROR: failed to load DNG file", im_str)
        print("Either file does not exist or is incompatible")
        Cam.log += '\nERROR: DNG file does not exist or is incompatible'
        raise

    return Img


'''
load image from file location and perform calibration
check correct filetype

mac boolean is true if image is expected to contain macbeth chart and false
if not (alsc images don't have macbeth charts)
'''
def load_image(Cam,im_str,mac_config=None,show=False,mac=True,show_meta=False):
    """
    check image is correct filetype
    """
    if '.jpg' in im_str or '.jpeg' in im_str or '.brcm' in im_str or '.dng' in im_str:
        if '.dng' in im_str:
            Img = dng_load_image(Cam, im_str)
        else:
            Img = brcm_load_image(Cam, im_str)
        if show_meta:
            Img.print_meta()

        if mac:
            """
            find macbeth centres, discarding images that are too dark or light
            """
            av_chan = (np.mean(np.array(Img.channels),axis=0)/(2**16))
            av_val = np.mean(av_chan)
            # print(av_val)
            if av_val < Img.blacklevel_16/(2**16)+1/64:
                macbeth = None
                print('\nError: Image too dark!')
                Cam.log += '\nWARNING: Image too dark!'
            else:
                macbeth = find_macbeth(Cam,av_chan,mac_config)

            """
            if no macbeth found return error
            """
            if macbeth == None:
                print('\nERROR: No macbeth chart found')
                return 0
            mac_cen_coords = macbeth[1]
            # print('\nMacbeth centres located successfully')

            """
            obtain image patches
            """
            # print('\nObtaining image patches')
            Img.get_patches(mac_cen_coords)
            if Img.saturated:
                print('\nERROR: Macbeth patches have saturated')
                Cam.log += '\nWARNING: Macbeth patches have saturated!'
                return 0

        """
        clear memory
        """
        Img.buf = None
        del Img.buf

        # print('Image patches obtained successfully')

        """
        optional debug
        """
        if show and __name__ == '__main__':
            copy = sum(Img.channels)/2**18
            copy = np.reshape(copy,(Img.h//2,Img.w//2)).astype(np.float64)
            copy,_ = reshape(copy,800)
            represent(copy)

        return Img

        """
    return error if incorrect filetype
    """
    else:
        # print('\nERROR:\nInvalid file extension')
        return 0

"""
bytearray splice to number little endian
"""
def ba_to_b(b):
    total = 0
    for i in range(len(b)):
        total += 256**i * b[i]
    return total