1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021-2022, Ideas On Board
*
* RkISP1 Defect Pixel Cluster Correction control
*/
#include "dpcc.h"
#include <libcamera/base/log.h>
#include "libcamera/internal/yaml_parser.h"
#include "linux/rkisp1-config.h"
/**
* \file dpcc.h
*/
namespace libcamera {
namespace ipa::rkisp1::algorithms {
/**
* \class DefectPixelClusterCorrection
* \brief RkISP1 Defect Pixel Cluster Correction control
*
* Depending of the sensor quality, some pixels can be defective and then
* appear significantly brighter or darker than the other pixels.
*
* The Defect Pixel Cluster Correction algorithms is responsible to minimize
* the impact of the pixels. This can be done with algorithms applied at run
* time (on-the-fly method) or with a table of defective pixels. Only the first
* method is supported for the moment.
*/
LOG_DEFINE_CATEGORY(RkISP1Dpcc)
DefectPixelClusterCorrection::DefectPixelClusterCorrection()
: config_({})
{
}
/**
* \copydoc libcamera::ipa::Algorithm::init
*/
int DefectPixelClusterCorrection::init([[maybe_unused]] IPAContext &context,
const YamlObject &tuningData)
{
config_.mode = RKISP1_CIF_ISP_DPCC_MODE_STAGE1_ENABLE;
config_.output_mode = RKISP1_CIF_ISP_DPCC_OUTPUT_MODE_STAGE1_INCL_G_CENTER
| RKISP1_CIF_ISP_DPCC_OUTPUT_MODE_STAGE1_INCL_RB_CENTER;
config_.set_use = tuningData["fixed-set"].get<bool>(false)
? RKISP1_CIF_ISP_DPCC_SET_USE_STAGE1_USE_FIX_SET : 0;
/* Get all defined sets to apply (up to 3). */
const YamlObject &setsObject = tuningData["sets"];
if (!setsObject.isList()) {
LOG(RkISP1Dpcc, Error)
<< "'sets' parameter not found in tuning file";
return -EINVAL;
}
if (setsObject.size() > RKISP1_CIF_ISP_DPCC_METHODS_MAX) {
LOG(RkISP1Dpcc, Error)
<< "'sets' size in tuning file (" << setsObject.size()
<< ") exceeds the maximum hardware capacity (3)";
return -EINVAL;
}
for (std::size_t i = 0; i < setsObject.size(); ++i) {
struct rkisp1_cif_isp_dpcc_methods_config &method = config_.methods[i];
const YamlObject &set = setsObject[i];
uint16_t value;
/* Enable set if described in YAML tuning file. */
config_.set_use |= 1 << i;
/* PG Method */
const YamlObject &pgObject = set["pg-factor"];
if (pgObject.contains("green")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_PG_GREEN_ENABLE;
value = pgObject["green"].get<uint16_t>(0);
method.pg_fac |= RKISP1_CIF_ISP_DPCC_PG_FAC_G(value);
}
if (pgObject.contains("red-blue")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_PG_RED_BLUE_ENABLE;
value = pgObject["red-blue"].get<uint16_t>(0);
method.pg_fac |= RKISP1_CIF_ISP_DPCC_PG_FAC_RB(value);
}
/* RO Method */
const YamlObject &roObject = set["ro-limits"];
if (roObject.contains("green")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_RO_GREEN_ENABLE;
value = roObject["green"].get<uint16_t>(0);
config_.ro_limits |=
RKISP1_CIF_ISP_DPCC_RO_LIMITS_n_G(i, value);
}
if (roObject.contains("red-blue")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_RO_RED_BLUE_ENABLE;
value = roObject["red-blue"].get<uint16_t>(0);
config_.ro_limits |=
RKISP1_CIF_ISP_DPCC_RO_LIMITS_n_RB(i, value);
}
/* RG Method */
const YamlObject &rgObject = set["rg-factor"];
method.rg_fac = 0;
if (rgObject.contains("green")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_RG_GREEN_ENABLE;
value = rgObject["green"].get<uint16_t>(0);
method.rg_fac |= RKISP1_CIF_ISP_DPCC_RG_FAC_G(value);
}
if (rgObject.contains("red-blue")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_RG_RED_BLUE_ENABLE;
value = rgObject["red-blue"].get<uint16_t>(0);
method.rg_fac |= RKISP1_CIF_ISP_DPCC_RG_FAC_RB(value);
}
/* RND Method */
const YamlObject &rndOffsetsObject = set["rnd-offsets"];
if (rndOffsetsObject.contains("green")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_RND_GREEN_ENABLE;
value = rndOffsetsObject["green"].get<uint16_t>(0);
config_.rnd_offs |=
RKISP1_CIF_ISP_DPCC_RND_OFFS_n_G(i, value);
}
if (rndOffsetsObject.contains("red-blue")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_RND_RED_BLUE_ENABLE;
value = rndOffsetsObject["red-blue"].get<uint16_t>(0);
config_.rnd_offs |=
RKISP1_CIF_ISP_DPCC_RND_OFFS_n_RB(i, value);
}
const YamlObject &rndThresholdObject = set["rnd-threshold"];
method.rnd_thresh = 0;
if (rndThresholdObject.contains("green")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_RND_GREEN_ENABLE;
value = rndThresholdObject["green"].get<uint16_t>(0);
method.rnd_thresh |=
RKISP1_CIF_ISP_DPCC_RND_THRESH_G(value);
}
if (rndThresholdObject.contains("red-blue")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_RND_RED_BLUE_ENABLE;
value = rndThresholdObject["red-blue"].get<uint16_t>(0);
method.rnd_thresh |=
RKISP1_CIF_ISP_DPCC_RND_THRESH_RB(value);
}
/* LC Method */
const YamlObject &lcThresholdObject = set["line-threshold"];
method.line_thresh = 0;
if (lcThresholdObject.contains("green")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_LC_GREEN_ENABLE;
value = lcThresholdObject["green"].get<uint16_t>(0);
method.line_thresh |=
RKISP1_CIF_ISP_DPCC_LINE_THRESH_G(value);
}
if (lcThresholdObject.contains("red-blue")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_LC_RED_BLUE_ENABLE;
value = lcThresholdObject["red-blue"].get<uint16_t>(0);
method.line_thresh |=
RKISP1_CIF_ISP_DPCC_LINE_THRESH_RB(value);
}
const YamlObject &lcTMadFactorObject = set["line-mad-factor"];
method.line_mad_fac = 0;
if (lcTMadFactorObject.contains("green")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_LC_GREEN_ENABLE;
value = lcTMadFactorObject["green"].get<uint16_t>(0);
method.line_mad_fac |=
RKISP1_CIF_ISP_DPCC_LINE_MAD_FAC_G(value);
}
if (lcTMadFactorObject.contains("red-blue")) {
method.method |=
RKISP1_CIF_ISP_DPCC_METHODS_SET_LC_RED_BLUE_ENABLE;
value = lcTMadFactorObject["red-blue"].get<uint16_t>(0);
method.line_mad_fac |=
RKISP1_CIF_ISP_DPCC_LINE_MAD_FAC_RB(value);
}
}
return 0;
}
/**
* \copydoc libcamera::ipa::Algorithm::prepare
*/
void DefectPixelClusterCorrection::prepare([[maybe_unused]] IPAContext &context,
const uint32_t frame,
[[maybe_unused]] IPAFrameContext &frameContext,
rkisp1_params_cfg *params)
{
if (frame > 0)
return;
params->others.dpcc_config = config_;
params->module_en_update |= RKISP1_CIF_ISP_MODULE_DPCC;
params->module_ens |= RKISP1_CIF_ISP_MODULE_DPCC;
params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_DPCC;
}
REGISTER_IPA_ALGORITHM(DefectPixelClusterCorrection, "DefectPixelClusterCorrection")
} /* namespace ipa::rkisp1::algorithms */
} /* namespace libcamera */
|