1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021-2022, Ideas On Board
*
* AGC/AEC mean-based control algorithm
*/
#include "agc.h"
#include <algorithm>
#include <chrono>
#include <cmath>
#include <tuple>
#include <vector>
#include <libcamera/base/log.h>
#include <libcamera/base/utils.h>
#include <libcamera/control_ids.h>
#include <libcamera/ipa/core_ipa_interface.h>
#include "libcamera/internal/yaml_parser.h"
#include "libipa/histogram.h"
/**
* \file agc.h
*/
namespace libcamera {
using namespace std::literals::chrono_literals;
namespace ipa::rkisp1::algorithms {
/**
* \class Agc
* \brief A mean-based auto-exposure algorithm
*/
LOG_DEFINE_CATEGORY(RkISP1Agc)
int Agc::parseMeteringModes(IPAContext &context, const YamlObject &tuningData)
{
if (!tuningData.isDictionary())
LOG(RkISP1Agc, Warning)
<< "'AeMeteringMode' parameter not found in tuning file";
for (const auto &[key, value] : tuningData.asDict()) {
if (controls::AeMeteringModeNameValueMap.find(key) ==
controls::AeMeteringModeNameValueMap.end()) {
LOG(RkISP1Agc, Warning)
<< "Skipping unknown metering mode '" << key << "'";
continue;
}
std::vector<uint8_t> weights =
value.getList<uint8_t>().value_or(std::vector<uint8_t>{});
if (weights.size() != context.hw->numHistogramWeights) {
LOG(RkISP1Agc, Warning)
<< "Failed to read metering mode'" << key << "'";
continue;
}
meteringModes_[controls::AeMeteringModeNameValueMap.at(key)] = weights;
}
if (meteringModes_.empty()) {
LOG(RkISP1Agc, Warning)
<< "No metering modes read from tuning file; defaulting to matrix";
int32_t meteringModeId = controls::AeMeteringModeNameValueMap.at("MeteringMatrix");
std::vector<uint8_t> weights(context.hw->numHistogramWeights, 1);
meteringModes_[meteringModeId] = weights;
}
std::vector<ControlValue> meteringModes;
std::vector<int> meteringModeKeys = utils::map_keys(meteringModes_);
std::transform(meteringModeKeys.begin(), meteringModeKeys.end(),
std::back_inserter(meteringModes),
[](int x) { return ControlValue(x); });
context.ctrlMap[&controls::AeMeteringMode] = ControlInfo(meteringModes);
return 0;
}
uint8_t Agc::computeHistogramPredivider(Size &size, enum rkisp1_cif_isp_histogram_mode mode)
{
/*
* The maximum number of pixels that could potentially be in one bin is
* if all the pixels of the image are in it, multiplied by 3 for the
* three color channels. The counter for each bin is 16 bits wide, so
* `factor` thus contains the number of times we'd wrap around. This is
* obviously the number of pixels that we need to skip to make sure
* that we don't wrap around, but we compute the square root of it
* instead, as the skip that we need to program is for both the x and y
* directions.
*
* Even though it looks like dividing into a counter of 65536 would
* overflow by 1, this is apparently fine according to the hardware
* documentation, and this successfully gets the expected documented
* predivider size for cases where:
* (width / predivider) * (height / predivider) * 3 == 65536.
*
* There's a bit of extra rounding math to make sure the rounding goes
* the correct direction so that the square of the step is big enough
* to encompass the `factor` number of pixels that we need to skip.
*
* \todo Take into account weights. That is, if the weights are low
* enough we can potentially reduce the predivider to increase
* precision. This needs some investigation however, as this hardware
* behavior is undocumented and is only an educated guess.
*/
int count = mode == RKISP1_CIF_ISP_HISTOGRAM_MODE_RGB_COMBINED ? 3 : 1;
double factor = size.width * size.height * count / 65536.0;
double root = std::sqrt(factor);
uint8_t predivider;
if (std::pow(std::floor(root), 2) < factor)
predivider = static_cast<uint8_t>(std::ceil(root));
else
predivider = static_cast<uint8_t>(std::floor(root));
return std::clamp<uint8_t>(predivider, 3, 127);
}
Agc::Agc()
{
supportsRaw_ = true;
}
/**
* \brief Initialise the AGC algorithm from tuning files
* \param[in] context The shared IPA context
* \param[in] tuningData The YamlObject containing Agc tuning data
*
* This function calls the base class' tuningData parsers to discover which
* control values are supported.
*
* \return 0 on success or errors from the base class
*/
int Agc::init(IPAContext &context, const YamlObject &tuningData)
{
int ret;
ret = parseTuningData(tuningData);
if (ret)
return ret;
const YamlObject &yamlMeteringModes = tuningData["AeMeteringMode"];
ret = parseMeteringModes(context, yamlMeteringModes);
if (ret)
return ret;
context.ctrlMap.merge(controls());
return 0;
}
/**
* \brief Configure the AGC given a configInfo
* \param[in] context The shared IPA context
* \param[in] configInfo The IPA configuration data
*
* \return 0
*/
int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo)
{
/* Configure the default exposure and gain. */
context.activeState.agc.automatic.gain = context.configuration.sensor.minAnalogueGain;
context.activeState.agc.automatic.exposure =
10ms / context.configuration.sensor.lineDuration;
context.activeState.agc.manual.gain = context.activeState.agc.automatic.gain;
context.activeState.agc.manual.exposure = context.activeState.agc.automatic.exposure;
context.activeState.agc.autoEnabled = !context.configuration.raw;
context.activeState.agc.constraintMode =
static_cast<controls::AeConstraintModeEnum>(constraintModes().begin()->first);
context.activeState.agc.exposureMode =
static_cast<controls::AeExposureModeEnum>(exposureModeHelpers().begin()->first);
context.activeState.agc.meteringMode =
static_cast<controls::AeMeteringModeEnum>(meteringModes_.begin()->first);
/*
* \todo This should probably come from FrameDurationLimits instead,
* except it's computed in the IPA and not here so we'd have to
* recompute it.
*/
context.activeState.agc.maxShutterSpeed = context.configuration.sensor.maxShutterSpeed;
/*
* Define the measurement window for AGC as a centered rectangle
* covering 3/4 of the image width and height.
*/
context.configuration.agc.measureWindow.h_offs = configInfo.outputSize.width / 8;
context.configuration.agc.measureWindow.v_offs = configInfo.outputSize.height / 8;
context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4;
context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4;
setLimits(context.configuration.sensor.minShutterSpeed,
context.configuration.sensor.maxShutterSpeed,
context.configuration.sensor.minAnalogueGain,
context.configuration.sensor.maxAnalogueGain);
resetFrameCount();
return 0;
}
/**
* \copydoc libcamera::ipa::Algorithm::queueRequest
*/
void Agc::queueRequest(IPAContext &context,
[[maybe_unused]] const uint32_t frame,
IPAFrameContext &frameContext,
const ControlList &controls)
{
auto &agc = context.activeState.agc;
if (!context.configuration.raw) {
const auto &agcEnable = controls.get(controls::AeEnable);
if (agcEnable && *agcEnable != agc.autoEnabled) {
agc.autoEnabled = *agcEnable;
LOG(RkISP1Agc, Debug)
<< (agc.autoEnabled ? "Enabling" : "Disabling")
<< " AGC";
}
}
const auto &exposure = controls.get(controls::ExposureTime);
if (exposure && !agc.autoEnabled) {
agc.manual.exposure = *exposure * 1.0us
/ context.configuration.sensor.lineDuration;
LOG(RkISP1Agc, Debug)
<< "Set exposure to " << agc.manual.exposure;
}
const auto &gain = controls.get(controls::AnalogueGain);
if (gain && !agc.autoEnabled) {
agc.manual.gain = *gain;
LOG(RkISP1Agc, Debug) << "Set gain to " << agc.manual.gain;
}
frameContext.agc.autoEnabled = agc.autoEnabled;
if (!frameContext.agc.autoEnabled) {
frameContext.agc.exposure = agc.manual.exposure;
frameContext.agc.gain = agc.manual.gain;
}
const auto &meteringMode = controls.get(controls::AeMeteringMode);
if (meteringMode) {
frameContext.agc.update = agc.meteringMode != *meteringMode;
agc.meteringMode =
static_cast<controls::AeMeteringModeEnum>(*meteringMode);
}
frameContext.agc.meteringMode = agc.meteringMode;
const auto &exposureMode = controls.get(controls::AeExposureMode);
if (exposureMode) {
frameContext.agc.update = agc.exposureMode != *exposureMode;
agc.exposureMode =
static_cast<controls::AeExposureModeEnum>(*exposureMode);
}
frameContext.agc.exposureMode = agc.exposureMode;
const auto &constraintMode = controls.get(controls::AeConstraintMode);
if (constraintMode) {
frameContext.agc.update = agc.constraintMode != *constraintMode;
agc.constraintMode =
static_cast<controls::AeConstraintModeEnum>(*constraintMode);
}
frameContext.agc.constraintMode = agc.constraintMode;
const auto &frameDurationLimits = controls.get(controls::FrameDurationLimits);
if (frameDurationLimits) {
utils::Duration maxShutterSpeed =
std::chrono::milliseconds((*frameDurationLimits).back());
frameContext.agc.update = agc.maxShutterSpeed != maxShutterSpeed;
agc.maxShutterSpeed = maxShutterSpeed;
}
frameContext.agc.maxShutterSpeed = agc.maxShutterSpeed;
}
/**
* \copydoc libcamera::ipa::Algorithm::prepare
*/
void Agc::prepare(IPAContext &context, const uint32_t frame,
IPAFrameContext &frameContext, rkisp1_params_cfg *params)
{
if (frameContext.agc.autoEnabled) {
frameContext.agc.exposure = context.activeState.agc.automatic.exposure;
frameContext.agc.gain = context.activeState.agc.automatic.gain;
}
if (frame > 0 && !frameContext.agc.update)
return;
/* Configure the measurement window. */
params->meas.aec_config.meas_window = context.configuration.agc.measureWindow;
/* Use a continuous method for measure. */
params->meas.aec_config.autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0;
/* Estimate Y as (R + G + B) x (85/256). */
params->meas.aec_config.mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1;
params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_AEC;
params->module_ens |= RKISP1_CIF_ISP_MODULE_AEC;
params->module_en_update |= RKISP1_CIF_ISP_MODULE_AEC;
/* Configure histogram. */
params->meas.hst_config.meas_window = context.configuration.agc.measureWindow;
/* Produce the luminance histogram. */
params->meas.hst_config.mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM;
/* Set an average weighted histogram. */
Span<uint8_t> weights{
params->meas.hst_config.hist_weight,
context.hw->numHistogramWeights
};
std::vector<uint8_t> &modeWeights = meteringModes_.at(frameContext.agc.meteringMode);
std::copy(modeWeights.begin(), modeWeights.end(), weights.begin());
struct rkisp1_cif_isp_window window = params->meas.hst_config.meas_window;
Size windowSize = { window.h_size, window.v_size };
params->meas.hst_config.histogram_predivider =
computeHistogramPredivider(windowSize,
static_cast<rkisp1_cif_isp_histogram_mode>(params->meas.hst_config.mode));
/* Update the configuration for histogram. */
params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_HST;
/* Enable the histogram measure unit. */
params->module_ens |= RKISP1_CIF_ISP_MODULE_HST;
params->module_en_update |= RKISP1_CIF_ISP_MODULE_HST;
}
void Agc::fillMetadata(IPAContext &context, IPAFrameContext &frameContext,
ControlList &metadata)
{
utils::Duration exposureTime = context.configuration.sensor.lineDuration
* frameContext.sensor.exposure;
metadata.set(controls::AnalogueGain, frameContext.sensor.gain);
metadata.set(controls::ExposureTime, exposureTime.get<std::micro>());
metadata.set(controls::AeEnable, frameContext.agc.autoEnabled);
/* \todo Use VBlank value calculated from each frame exposure. */
uint32_t vTotal = context.configuration.sensor.size.height
+ context.configuration.sensor.defVBlank;
utils::Duration frameDuration = context.configuration.sensor.lineDuration
* vTotal;
metadata.set(controls::FrameDuration, frameDuration.get<std::micro>());
metadata.set(controls::AeMeteringMode, frameContext.agc.meteringMode);
metadata.set(controls::AeExposureMode, frameContext.agc.exposureMode);
metadata.set(controls::AeConstraintMode, frameContext.agc.constraintMode);
}
/**
* \brief Estimate the relative luminance of the frame with a given gain
* \param[in] gain The gain to apply to the frame
*
* This function estimates the average relative luminance of the frame that
* would be output by the sensor if an additional \a gain was applied.
*
* The estimation is based on the AE statistics for the current frame. Y
* averages for all cells are first multiplied by the gain, and then saturated
* to approximate the sensor behaviour at high brightness values. The
* approximation is quite rough, as it doesn't take into account non-linearities
* when approaching saturation. In this case, saturating after the conversion to
* YUV doesn't take into account the fact that the R, G and B components
* contribute differently to the relative luminance.
*
* The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a
* theoretical perfect reflector of 100% reference white.
*
* More detailed information can be found in:
* https://en.wikipedia.org/wiki/Relative_luminance
*
* \return The relative luminance
*/
double Agc::estimateLuminance(double gain) const
{
double ySum = 0.0;
/* Sum the averages, saturated to 255. */
for (uint8_t expMean : expMeans_)
ySum += std::min(expMean * gain, 255.0);
/* \todo Weight with the AWB gains */
return ySum / expMeans_.size() / 255;
}
/**
* \brief Process RkISP1 statistics, and run AGC operations
* \param[in] context The shared IPA context
* \param[in] frame The frame context sequence number
* \param[in] frameContext The current frame context
* \param[in] stats The RKISP1 statistics and ISP results
* \param[out] metadata Metadata for the frame, to be filled by the algorithm
*
* Identify the current image brightness, and use that to estimate the optimal
* new exposure and gain for the scene.
*/
void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame,
IPAFrameContext &frameContext, const rkisp1_stat_buffer *stats,
ControlList &metadata)
{
if (!stats) {
fillMetadata(context, frameContext, metadata);
return;
}
/*
* \todo Verify that the exposure and gain applied by the sensor for
* this frame match what has been requested. This isn't a hard
* requirement for stability of the AGC (the guarantee we need in
* automatic mode is a perfect match between the frame and the values
* we receive), but is important in manual mode.
*/
const rkisp1_cif_isp_stat *params = &stats->params;
ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP);
/* The lower 4 bits are fractional and meant to be discarded. */
Histogram hist({ params->hist.hist_bins, context.hw->numHistogramBins },
[](uint32_t x) { return x >> 4; });
expMeans_ = { params->ae.exp_mean, context.hw->numAeCells };
utils::Duration maxShutterSpeed = std::min(context.configuration.sensor.maxShutterSpeed,
frameContext.agc.maxShutterSpeed);
setLimits(context.configuration.sensor.minShutterSpeed,
maxShutterSpeed,
context.configuration.sensor.minAnalogueGain,
context.configuration.sensor.maxAnalogueGain);
/*
* The Agc algorithm needs to know the effective exposure value that was
* applied to the sensor when the statistics were collected.
*/
utils::Duration exposureTime = context.configuration.sensor.lineDuration
* frameContext.sensor.exposure;
double analogueGain = frameContext.sensor.gain;
utils::Duration effectiveExposureValue = exposureTime * analogueGain;
utils::Duration shutterTime;
double aGain, dGain;
std::tie(shutterTime, aGain, dGain) =
calculateNewEv(context.activeState.agc.constraintMode,
context.activeState.agc.exposureMode,
hist, effectiveExposureValue);
LOG(RkISP1Agc, Debug)
<< "Divided up shutter, analogue gain and digital gain are "
<< shutterTime << ", " << aGain << " and " << dGain;
IPAActiveState &activeState = context.activeState;
/* Update the estimated exposure and gain. */
activeState.agc.automatic.exposure = shutterTime / context.configuration.sensor.lineDuration;
activeState.agc.automatic.gain = aGain;
fillMetadata(context, frameContext, metadata);
expMeans_ = {};
}
REGISTER_IPA_ALGORITHM(Agc, "Agc")
} /* namespace ipa::rkisp1::algorithms */
} /* namespace libcamera */
|