1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
|
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2022-2023, Raspberry Pi Ltd
*
* af.cpp - Autofocus control algorithm
*/
#include "af.h"
#include <iomanip>
#include <math.h>
#include <stdlib.h>
#include <libcamera/base/log.h>
#include <libcamera/control_ids.h>
using namespace RPiController;
using namespace libcamera;
LOG_DEFINE_CATEGORY(RPiAf)
#define NAME "rpi.af"
/*
* Default values for parameters. All may be overridden in the tuning file.
* Many of these values are sensor- or module-dependent; the defaults here
* assume IMX708 in a Raspberry Pi V3 camera with the standard lens.
*
* Here all focus values are in dioptres (1/m). They are converted to hardware
* units when written to status.lensSetting or returned from setLensPosition().
*
* Gain and delay values are relative to the update rate, since much (not all)
* of the delay is in the sensor and (for CDAF) ISP, not the lens mechanism;
* but note that algorithms are updated at no more than 30 Hz.
*/
Af::RangeDependentParams::RangeDependentParams()
: focusMin(0.0),
focusMax(12.0),
focusDefault(1.0)
{
}
Af::SpeedDependentParams::SpeedDependentParams()
: stepCoarse(1.0),
stepFine(0.25),
contrastRatio(0.75),
pdafGain(-0.02),
pdafSquelch(0.125),
maxSlew(2.0),
pdafFrames(20),
dropoutFrames(6),
stepFrames(4)
{
}
Af::CfgParams::CfgParams()
: confEpsilon(8),
confThresh(16),
confClip(512),
skipFrames(5),
map()
{
}
template<typename T>
static void readNumber(T &dest, const libcamera::YamlObject ¶ms, char const *name)
{
auto value = params[name].get<T>();
if (value)
dest = *value;
else
LOG(RPiAf, Warning) << "Missing parameter \"" << name << "\"";
}
void Af::RangeDependentParams::read(const libcamera::YamlObject ¶ms)
{
readNumber<double>(focusMin, params, "min");
readNumber<double>(focusMax, params, "max");
readNumber<double>(focusDefault, params, "default");
}
void Af::SpeedDependentParams::read(const libcamera::YamlObject ¶ms)
{
readNumber<double>(stepCoarse, params, "step_coarse");
readNumber<double>(stepFine, params, "step_fine");
readNumber<double>(contrastRatio, params, "contrast_ratio");
readNumber<double>(pdafGain, params, "pdaf_gain");
readNumber<double>(pdafSquelch, params, "pdaf_squelch");
readNumber<double>(maxSlew, params, "max_slew");
readNumber<uint32_t>(pdafFrames, params, "pdaf_frames");
readNumber<uint32_t>(dropoutFrames, params, "dropout_frames");
readNumber<uint32_t>(stepFrames, params, "step_frames");
}
int Af::CfgParams::read(const libcamera::YamlObject ¶ms)
{
if (params.contains("ranges")) {
auto &rr = params["ranges"];
if (rr.contains("normal"))
ranges[AfRangeNormal].read(rr["normal"]);
else
LOG(RPiAf, Warning) << "Missing range \"normal\"";
ranges[AfRangeMacro] = ranges[AfRangeNormal];
if (rr.contains("macro"))
ranges[AfRangeMacro].read(rr["macro"]);
ranges[AfRangeFull].focusMin = std::min(ranges[AfRangeNormal].focusMin,
ranges[AfRangeMacro].focusMin);
ranges[AfRangeFull].focusMax = std::max(ranges[AfRangeNormal].focusMax,
ranges[AfRangeMacro].focusMax);
ranges[AfRangeFull].focusDefault = ranges[AfRangeNormal].focusDefault;
if (rr.contains("full"))
ranges[AfRangeFull].read(rr["full"]);
} else
LOG(RPiAf, Warning) << "No ranges defined";
if (params.contains("speeds")) {
auto &ss = params["speeds"];
if (ss.contains("normal"))
speeds[AfSpeedNormal].read(ss["normal"]);
else
LOG(RPiAf, Warning) << "Missing speed \"normal\"";
speeds[AfSpeedFast] = speeds[AfSpeedNormal];
if (ss.contains("fast"))
speeds[AfSpeedFast].read(ss["fast"]);
} else
LOG(RPiAf, Warning) << "No speeds defined";
readNumber<uint32_t>(confEpsilon, params, "conf_epsilon");
readNumber<uint32_t>(confThresh, params, "conf_thresh");
readNumber<uint32_t>(confClip, params, "conf_clip");
readNumber<uint32_t>(skipFrames, params, "skip_frames");
if (params.contains("map"))
map.read(params["map"]);
else
LOG(RPiAf, Warning) << "No map defined";
return 0;
}
void Af::CfgParams::initialise()
{
if (map.empty()) {
/* Default mapping from dioptres to hardware setting */
static constexpr double DefaultMapX0 = 0.0;
static constexpr double DefaultMapY0 = 445.0;
static constexpr double DefaultMapX1 = 15.0;
static constexpr double DefaultMapY1 = 925.0;
map.append(DefaultMapX0, DefaultMapY0);
map.append(DefaultMapX1, DefaultMapY1);
}
}
/* Af Algorithm class */
static constexpr unsigned MaxWindows = 10;
Af::Af(Controller *controller)
: AfAlgorithm(controller),
cfg_(),
range_(AfRangeNormal),
speed_(AfSpeedNormal),
mode_(AfAlgorithm::AfModeManual),
pauseFlag_(false),
statsRegion_(0, 0, 0, 0),
windows_(),
useWindows_(false),
phaseWeights_{},
contrastWeights_{},
sumWeights_(0),
scanState_(ScanState::Idle),
initted_(false),
ftarget_(-1.0),
fsmooth_(-1.0),
prevContrast_(0.0),
skipCount_(0),
stepCount_(0),
dropCount_(0),
scanMaxContrast_(0.0),
scanMinContrast_(1.0e9),
scanData_(),
reportState_(AfState::Idle)
{
scanData_.reserve(24);
}
Af::~Af()
{
}
char const *Af::name() const
{
return NAME;
}
int Af::read(const libcamera::YamlObject ¶ms)
{
return cfg_.read(params);
}
void Af::initialise()
{
cfg_.initialise();
}
void Af::switchMode(CameraMode const &cameraMode, [[maybe_unused]] Metadata *metadata)
{
(void)metadata;
/* Assume that PDAF and Focus stats grids cover the visible area */
statsRegion_.x = (int)cameraMode.cropX;
statsRegion_.y = (int)cameraMode.cropY;
statsRegion_.width = (unsigned)(cameraMode.width * cameraMode.scaleX);
statsRegion_.height = (unsigned)(cameraMode.height * cameraMode.scaleY);
LOG(RPiAf, Debug) << "switchMode: statsRegion: "
<< statsRegion_.x << ','
<< statsRegion_.y << ','
<< statsRegion_.width << ','
<< statsRegion_.height;
computeWeights();
if (scanState_ >= ScanState::Coarse && scanState_ < ScanState::Settle) {
/*
* If a scan was in progress, re-start it, as CDAF statistics
* may have changed. Though if the application is just about
* to take a still picture, this will not help...
*/
startProgrammedScan();
}
skipCount_ = cfg_.skipFrames;
}
void Af::computeWeights()
{
constexpr int MaxCellWeight = 240 / (int)MaxWindows;
sumWeights_ = 0;
for (int i = 0; i < PDAF_DATA_ROWS; ++i)
std::fill(phaseWeights_[i], phaseWeights_[i] + PDAF_DATA_COLS, 0);
if (useWindows_ &&
statsRegion_.width >= PDAF_DATA_COLS && statsRegion_.height >= PDAF_DATA_ROWS) {
/*
* Here we just merge all of the given windows, weighted by area.
* \todo Perhaps a better approach might be to find the phase in each
* window and choose either the closest or the highest-confidence one?
*
* Using mostly "int" arithmetic, because Rectangle has signed x, y
*/
int cellH = (int)(statsRegion_.height / PDAF_DATA_ROWS);
int cellW = (int)(statsRegion_.width / PDAF_DATA_COLS);
int cellA = cellH * cellW;
for (auto &w : windows_) {
for (int i = 0; i < PDAF_DATA_ROWS; ++i) {
int y0 = std::max(statsRegion_.y + cellH * i, w.y);
int y1 = std::min(statsRegion_.y + cellH * (i + 1), w.y + (int)(w.height));
if (y0 >= y1)
continue;
y1 -= y0;
for (int j = 0; j < PDAF_DATA_COLS; ++j) {
int x0 = std::max(statsRegion_.x + cellW * j, w.x);
int x1 = std::min(statsRegion_.x + cellW * (j + 1), w.x + (int)(w.width));
if (x0 >= x1)
continue;
int a = y1 * (x1 - x0);
a = (MaxCellWeight * a + cellA - 1) / cellA;
phaseWeights_[i][j] += a;
sumWeights_ += a;
}
}
}
}
if (sumWeights_ == 0) {
/*
* Default AF window is the middle 1/2 width of the middle 1/3 height
* since this maps nicely to both PDAF (16x12) and Focus (4x3) grids.
*/
for (int i = PDAF_DATA_ROWS / 3; i < 2 * PDAF_DATA_ROWS / 3; ++i) {
for (int j = PDAF_DATA_COLS / 4; j < 3 * PDAF_DATA_COLS / 4; ++j) {
phaseWeights_[i][j] = MaxCellWeight;
sumWeights_ += MaxCellWeight;
}
}
}
/* Scale from PDAF to Focus Statistics grid (which has fixed size 4x3) */
constexpr int FocusStatsRows = 3;
constexpr int FocusStatsCols = 4;
static_assert(FOCUS_REGIONS == FocusStatsRows * FocusStatsCols);
static_assert(PDAF_DATA_ROWS % FocusStatsRows == 0);
static_assert(PDAF_DATA_COLS % FocusStatsCols == 0);
constexpr int YFactor = PDAF_DATA_ROWS / FocusStatsRows;
constexpr int XFactor = PDAF_DATA_COLS / FocusStatsCols;
LOG(RPiAf, Debug) << "Recomputed weights:";
for (int i = 0; i < FocusStatsRows; ++i) {
for (int j = 0; j < FocusStatsCols; ++j) {
unsigned w = 0;
for (int y = 0; y < YFactor; ++y)
for (int x = 0; x < XFactor; ++x)
w += phaseWeights_[YFactor * i + y][XFactor * j + x];
contrastWeights_[FocusStatsCols * i + j] = w;
}
LOG(RPiAf, Debug) << " "
<< contrastWeights_[FocusStatsCols * i + 0] << " "
<< contrastWeights_[FocusStatsCols * i + 1] << " "
<< contrastWeights_[FocusStatsCols * i + 2] << " "
<< contrastWeights_[FocusStatsCols * i + 3];
}
}
bool Af::getPhase(PdafData const &data, double &phase, double &conf) const
{
uint32_t sumWc = 0;
int64_t sumWcp = 0;
for (unsigned i = 0; i < PDAF_DATA_ROWS; ++i) {
for (unsigned j = 0; j < PDAF_DATA_COLS; ++j) {
if (phaseWeights_[i][j]) {
uint32_t c = data.conf[i][j];
if (c >= cfg_.confThresh) {
if (c > cfg_.confClip)
c = cfg_.confClip;
c -= (cfg_.confThresh >> 2);
sumWc += phaseWeights_[i][j] * c;
c -= (cfg_.confThresh >> 2);
sumWcp += phaseWeights_[i][j] * data.phase[i][j] * (int64_t)c;
}
}
}
}
if (0 < sumWeights_ && sumWeights_ <= sumWc) {
phase = (double)sumWcp / (double)sumWc;
conf = (double)sumWc / (double)sumWeights_;
return true;
} else {
phase = 0.0;
conf = 0.0;
return false;
}
}
double Af::getContrast(const FocusRegions &focusStats) const
{
uint32_t sumWc = 0;
for (unsigned i = 0; i < focusStats.numRegions(); ++i)
sumWc += contrastWeights_[i] * focusStats.get(i).val;
return (sumWeights_ == 0) ? 0.0 : (double)sumWc / (double)sumWeights_;
}
void Af::doPDAF(double phase, double conf)
{
/* Apply loop gain */
phase *= cfg_.speeds[speed_].pdafGain;
if (mode_ == AfModeContinuous) {
/*
* PDAF in Continuous mode. Scale down lens movement when
* delta is small or confidence is low, to suppress wobble.
*/
phase *= conf / (conf + cfg_.confEpsilon);
if (std::abs(phase) < cfg_.speeds[speed_].pdafSquelch) {
double a = phase / cfg_.speeds[speed_].pdafSquelch;
phase *= a * a;
}
} else {
/*
* PDAF in triggered-auto mode. Allow early termination when
* phase delta is small; scale down lens movements towards
* the end of the sequence, to ensure a stable image.
*/
if (stepCount_ >= cfg_.speeds[speed_].stepFrames) {
if (std::abs(phase) < cfg_.speeds[speed_].pdafSquelch)
stepCount_ = cfg_.speeds[speed_].stepFrames;
} else
phase *= stepCount_ / cfg_.speeds[speed_].stepFrames;
}
/* Apply slew rate limit. Report failure if out of bounds. */
if (phase < -cfg_.speeds[speed_].maxSlew) {
phase = -cfg_.speeds[speed_].maxSlew;
reportState_ = (ftarget_ <= cfg_.ranges[range_].focusMin) ? AfState::Failed
: AfState::Scanning;
} else if (phase > cfg_.speeds[speed_].maxSlew) {
phase = cfg_.speeds[speed_].maxSlew;
reportState_ = (ftarget_ >= cfg_.ranges[range_].focusMax) ? AfState::Failed
: AfState::Scanning;
} else
reportState_ = AfState::Focused;
ftarget_ = fsmooth_ + phase;
}
bool Af::earlyTerminationByPhase(double phase)
{
if (scanData_.size() > 0 &&
scanData_[scanData_.size() - 1].conf >= cfg_.confEpsilon) {
double oldFocus = scanData_[scanData_.size() - 1].focus;
double oldPhase = scanData_[scanData_.size() - 1].phase;
/*
* Check that the gradient is finite and has the expected sign;
* Interpolate/extrapolate the lens position for zero phase.
* Check that the extrapolation is well-conditioned.
*/
if ((ftarget_ - oldFocus) * (phase - oldPhase) > 0.0) {
double param = phase / (phase - oldPhase);
if (-3.0 <= param && param <= 3.5) {
ftarget_ += param * (oldFocus - ftarget_);
LOG(RPiAf, Debug) << "ETBP: param=" << param;
return true;
}
}
}
return false;
}
double Af::findPeak(unsigned i) const
{
double f = scanData_[i].focus;
if (i > 0 && i + 1 < scanData_.size()) {
double dropLo = scanData_[i].contrast - scanData_[i - 1].contrast;
double dropHi = scanData_[i].contrast - scanData_[i + 1].contrast;
if (0.0 <= dropLo && dropLo < dropHi) {
double param = 0.3125 * (1.0 - dropLo / dropHi) * (1.6 - dropLo / dropHi);
f += param * (scanData_[i - 1].focus - f);
} else if (0.0 <= dropHi && dropHi < dropLo) {
double param = 0.3125 * (1.0 - dropHi / dropLo) * (1.6 - dropHi / dropLo);
f += param * (scanData_[i + 1].focus - f);
}
}
LOG(RPiAf, Debug) << "FindPeak: " << f;
return f;
}
void Af::doScan(double contrast, double phase, double conf)
{
/* Record lens position, contrast and phase values for the current scan */
if (scanData_.empty() || contrast > scanMaxContrast_) {
scanMaxContrast_ = contrast;
scanMaxIndex_ = scanData_.size();
}
if (contrast < scanMinContrast_)
scanMinContrast_ = contrast;
scanData_.emplace_back(ScanRecord{ ftarget_, contrast, phase, conf });
if (scanState_ == ScanState::Coarse) {
if (ftarget_ >= cfg_.ranges[range_].focusMax ||
contrast < cfg_.speeds[speed_].contrastRatio * scanMaxContrast_) {
/*
* Finished course scan, or termination based on contrast.
* Jump to just after max contrast and start fine scan.
*/
ftarget_ = std::min(ftarget_, findPeak(scanMaxIndex_) +
2.0 * cfg_.speeds[speed_].stepFine);
scanState_ = ScanState::Fine;
scanData_.clear();
} else
ftarget_ += cfg_.speeds[speed_].stepCoarse;
} else { /* ScanState::Fine */
if (ftarget_ <= cfg_.ranges[range_].focusMin || scanData_.size() >= 5 ||
contrast < cfg_.speeds[speed_].contrastRatio * scanMaxContrast_) {
/*
* Finished fine scan, or termination based on contrast.
* Use quadratic peak-finding to find best contrast position.
*/
ftarget_ = findPeak(scanMaxIndex_);
scanState_ = ScanState::Settle;
} else
ftarget_ -= cfg_.speeds[speed_].stepFine;
}
stepCount_ = (ftarget_ == fsmooth_) ? 0 : cfg_.speeds[speed_].stepFrames;
}
void Af::doAF(double contrast, double phase, double conf)
{
/* Skip frames at startup and after sensor mode change */
if (skipCount_ > 0) {
LOG(RPiAf, Debug) << "SKIP";
skipCount_--;
return;
}
if (scanState_ == ScanState::Pdaf) {
/*
* Use PDAF closed-loop control whenever available, in both CAF
* mode and (for a limited number of iterations) when triggered.
* If PDAF fails (due to poor contrast, noise or large defocus),
* fall back to a CDAF-based scan. To avoid "nuisance" scans,
* scan only after a number of frames with low PDAF confidence.
*/
if (conf > (dropCount_ ? 1.0 : 0.25) * cfg_.confEpsilon) {
doPDAF(phase, conf);
if (stepCount_ > 0)
stepCount_--;
else if (mode_ != AfModeContinuous)
scanState_ = ScanState::Idle;
dropCount_ = 0;
} else if (++dropCount_ == cfg_.speeds[speed_].dropoutFrames)
startProgrammedScan();
} else if (scanState_ >= ScanState::Coarse && fsmooth_ == ftarget_) {
/*
* Scanning sequence. This means PDAF has become unavailable.
* Allow a delay between steps for CDAF FoM statistics to be
* updated, and a "settling time" at the end of the sequence.
* [A coarse or fine scan can be abandoned if two PDAF samples
* allow direct interpolation of the zero-phase lens position.]
*/
if (stepCount_ > 0)
stepCount_--;
else if (scanState_ == ScanState::Settle) {
if (prevContrast_ >= cfg_.speeds[speed_].contrastRatio * scanMaxContrast_ &&
scanMinContrast_ <= cfg_.speeds[speed_].contrastRatio * scanMaxContrast_)
reportState_ = AfState::Focused;
else
reportState_ = AfState::Failed;
if (mode_ == AfModeContinuous && !pauseFlag_ &&
cfg_.speeds[speed_].dropoutFrames > 0)
scanState_ = ScanState::Pdaf;
else
scanState_ = ScanState::Idle;
scanData_.clear();
} else if (conf >= cfg_.confEpsilon && earlyTerminationByPhase(phase)) {
scanState_ = ScanState::Settle;
stepCount_ = (mode_ == AfModeContinuous) ? 0
: cfg_.speeds[speed_].stepFrames;
} else
doScan(contrast, phase, conf);
}
}
void Af::updateLensPosition()
{
if (scanState_ >= ScanState::Pdaf) {
ftarget_ = std::clamp(ftarget_,
cfg_.ranges[range_].focusMin,
cfg_.ranges[range_].focusMax);
}
if (initted_) {
/* from a known lens position: apply slew rate limit */
fsmooth_ = std::clamp(ftarget_,
fsmooth_ - cfg_.speeds[speed_].maxSlew,
fsmooth_ + cfg_.speeds[speed_].maxSlew);
} else {
/* from an unknown position: go straight to target, but add delay */
fsmooth_ = ftarget_;
initted_ = true;
skipCount_ = cfg_.skipFrames;
}
}
void Af::startAF()
{
/* Use PDAF if the tuning file allows it; else CDAF. */
if (cfg_.speeds[speed_].dropoutFrames > 0 &&
(mode_ == AfModeContinuous || cfg_.speeds[speed_].pdafFrames > 0)) {
if (!initted_) {
ftarget_ = cfg_.ranges[range_].focusDefault;
updateLensPosition();
}
stepCount_ = (mode_ == AfModeContinuous) ? 0 : cfg_.speeds[speed_].pdafFrames;
scanState_ = ScanState::Pdaf;
scanData_.clear();
dropCount_ = 0;
reportState_ = AfState::Scanning;
} else
startProgrammedScan();
}
void Af::startProgrammedScan()
{
ftarget_ = cfg_.ranges[range_].focusMin;
updateLensPosition();
scanState_ = ScanState::Coarse;
scanMaxContrast_ = 0.0;
scanMinContrast_ = 1.0e9;
scanMaxIndex_ = 0;
scanData_.clear();
stepCount_ = cfg_.speeds[speed_].stepFrames;
reportState_ = AfState::Scanning;
}
void Af::goIdle()
{
scanState_ = ScanState::Idle;
reportState_ = AfState::Idle;
scanData_.clear();
}
/*
* PDAF phase data are available in prepare(), but CDAF statistics are not
* available until process(). We are gambling on the availability of PDAF.
* To expedite feedback control using PDAF, issue the V4L2 lens control from
* prepare(). Conversely, during scans, we must allow an extra frame delay
* between steps, to retrieve CDAF statistics from the previous process()
* so we can terminate the scan early without having to change our minds.
*/
void Af::prepare(Metadata *imageMetadata)
{
/* Initialize for triggered scan or start of CAF mode */
if (scanState_ == ScanState::Trigger)
startAF();
if (initted_) {
/* Get PDAF from the embedded metadata, and run AF algorithm core */
PdafData data;
double phase = 0.0, conf = 0.0;
double oldFt = ftarget_;
double oldFs = fsmooth_;
ScanState oldSs = scanState_;
uint32_t oldSt = stepCount_;
if (imageMetadata->get("pdaf.data", data) == 0)
getPhase(data, phase, conf);
doAF(prevContrast_, phase, conf);
updateLensPosition();
LOG(RPiAf, Debug) << std::fixed << std::setprecision(2)
<< static_cast<unsigned int>(reportState_)
<< " sst" << static_cast<unsigned int>(oldSs)
<< "->" << static_cast<unsigned int>(scanState_)
<< " stp" << oldSt << "->" << stepCount_
<< " ft" << oldFt << "->" << ftarget_
<< " fs" << oldFs << "->" << fsmooth_
<< " cont=" << (int)prevContrast_
<< " phase=" << (int)phase << " conf=" << (int)conf;
}
/* Report status and produce new lens setting */
AfStatus status;
if (pauseFlag_)
status.pauseState = (scanState_ == ScanState::Idle) ? AfPauseState::Paused
: AfPauseState::Pausing;
else
status.pauseState = AfPauseState::Running;
if (mode_ == AfModeAuto && scanState_ != ScanState::Idle)
status.state = AfState::Scanning;
else
status.state = reportState_;
status.lensSetting = initted_ ? std::optional<int>(cfg_.map.eval(fsmooth_))
: std::nullopt;
imageMetadata->set("af.status", status);
}
void Af::process(StatisticsPtr &stats, [[maybe_unused]] Metadata *imageMetadata)
{
(void)imageMetadata;
prevContrast_ = getContrast(stats->focusRegions);
}
/* Controls */
void Af::setRange(AfRange r)
{
LOG(RPiAf, Debug) << "setRange: " << (unsigned)r;
if (r < AfAlgorithm::AfRangeMax)
range_ = r;
}
void Af::setSpeed(AfSpeed s)
{
LOG(RPiAf, Debug) << "setSpeed: " << (unsigned)s;
if (s < AfAlgorithm::AfSpeedMax) {
if (scanState_ == ScanState::Pdaf &&
cfg_.speeds[s].pdafFrames > cfg_.speeds[speed_].pdafFrames)
stepCount_ += cfg_.speeds[s].pdafFrames - cfg_.speeds[speed_].pdafFrames;
speed_ = s;
}
}
void Af::setMetering(bool mode)
{
if (useWindows_ != mode) {
useWindows_ = mode;
computeWeights();
}
}
void Af::setWindows(libcamera::Span<libcamera::Rectangle const> const &wins)
{
windows_.clear();
for (auto &w : wins) {
LOG(RPiAf, Debug) << "Window: "
<< w.x << ", "
<< w.y << ", "
<< w.width << ", "
<< w.height;
windows_.push_back(w);
if (windows_.size() >= MaxWindows)
break;
}
computeWeights();
}
bool Af::setLensPosition(double dioptres, int *hwpos)
{
bool changed = false;
if (mode_ == AfModeManual) {
LOG(RPiAf, Debug) << "setLensPosition: " << dioptres;
ftarget_ = cfg_.map.domain().clip(dioptres);
changed = !(initted_ && fsmooth_ == ftarget_);
updateLensPosition();
}
if (hwpos)
*hwpos = cfg_.map.eval(fsmooth_);
return changed;
}
std::optional<double> Af::getLensPosition() const
{
/*
* \todo We ought to perform some precise timing here to determine
* the current lens position.
*/
return initted_ ? std::optional<double>(fsmooth_) : std::nullopt;
}
void Af::cancelScan()
{
LOG(RPiAf, Debug) << "cancelScan";
if (mode_ == AfModeAuto)
goIdle();
}
void Af::triggerScan()
{
LOG(RPiAf, Debug) << "triggerScan";
if (mode_ == AfModeAuto && scanState_ == ScanState::Idle)
scanState_ = ScanState::Trigger;
}
void Af::setMode(AfAlgorithm::AfMode mode)
{
LOG(RPiAf, Debug) << "setMode: " << (unsigned)mode;
if (mode_ != mode) {
mode_ = mode;
pauseFlag_ = false;
if (mode == AfModeContinuous)
scanState_ = ScanState::Trigger;
else if (mode != AfModeAuto || scanState_ < ScanState::Coarse)
goIdle();
}
}
AfAlgorithm::AfMode Af::getMode() const
{
return mode_;
}
void Af::pause(AfAlgorithm::AfPause pause)
{
LOG(RPiAf, Debug) << "pause: " << (unsigned)pause;
if (mode_ == AfModeContinuous) {
if (pause == AfPauseResume && pauseFlag_) {
pauseFlag_ = false;
if (scanState_ < ScanState::Coarse)
scanState_ = ScanState::Trigger;
} else if (pause != AfPauseResume && !pauseFlag_) {
pauseFlag_ = true;
if (pause == AfPauseImmediate || scanState_ < ScanState::Coarse)
goIdle();
}
}
}
// Register algorithm with the system.
static Algorithm *create(Controller *controller)
{
return (Algorithm *)new Af(controller);
}
static RegisterAlgorithm reg(NAME, &create);
|