1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2024 Ideas on Board Oy
*
* Base class for mean luminance AGC algorithms
*/
#include "agc_mean_luminance.h"
#include <cmath>
#include <libcamera/base/log.h>
#include <libcamera/control_ids.h>
#include "exposure_mode_helper.h"
using namespace libcamera::controls;
/**
* \file agc_mean_luminance.h
* \brief Base class implementing mean luminance AEGC
*/
namespace libcamera {
using namespace std::literals::chrono_literals;
LOG_DEFINE_CATEGORY(AgcMeanLuminance)
namespace ipa {
/*
* Number of frames for which to run the algorithm at full speed, before slowing
* down to prevent large and jarring changes in exposure from frame to frame.
*/
static constexpr uint32_t kNumStartupFrames = 10;
/*
* Default relative luminance target
*
* This value should be chosen so that when the camera points at a grey target,
* the resulting image brightness looks "right". Custom values can be passed
* as the relativeLuminanceTarget value in sensor tuning files.
*/
static constexpr double kDefaultRelativeLuminanceTarget = 0.16;
/**
* \struct AgcMeanLuminance::AgcConstraint
* \brief The boundaries and target for an AeConstraintMode constraint
*
* This structure describes an AeConstraintMode constraint for the purposes of
* this algorithm. These constraints are expressed as a pair of quantile
* boundaries for a histogram, along with a luminance target and a bounds-type.
* The algorithm uses the constraints by ensuring that the defined portion of a
* luminance histogram (I.E. lying between the two quantiles) is above or below
* the given luminance value.
*/
/**
* \enum AgcMeanLuminance::AgcConstraint::Bound
* \brief Specify whether the constraint defines a lower or upper bound
* \var AgcMeanLuminance::AgcConstraint::Lower
* \brief The constraint defines a lower bound
* \var AgcMeanLuminance::AgcConstraint::Upper
* \brief The constraint defines an upper bound
*/
/**
* \var AgcMeanLuminance::AgcConstraint::bound
* \brief The type of constraint bound
*/
/**
* \var AgcMeanLuminance::AgcConstraint::qLo
* \brief The lower quantile to use for the constraint
*/
/**
* \var AgcMeanLuminance::AgcConstraint::qHi
* \brief The upper quantile to use for the constraint
*/
/**
* \var AgcMeanLuminance::AgcConstraint::yTarget
* \brief The luminance target for the constraint
*/
/**
* \class AgcMeanLuminance
* \brief A mean-based auto-exposure algorithm
*
* This algorithm calculates an exposure time, analogue and digital gain such
* that the normalised mean luminance value of an image is driven towards a
* target, which itself is discovered from tuning data. The algorithm is a
* two-stage process.
*
* In the first stage, an initial gain value is derived by iteratively comparing
* the gain-adjusted mean luminance across the entire image against a target,
* and selecting a value which pushes it as closely as possible towards the
* target.
*
* In the second stage we calculate the gain required to drive the average of a
* section of a histogram to a target value, where the target and the boundaries
* of the section of the histogram used in the calculation are taken from the
* values defined for the currently configured AeConstraintMode within the
* tuning data. This class provides a helper function to parse those tuning data
* to discover the constraints, and so requires a specific format for those
* data which is described in \ref parseTuningData(). The gain from the first
* stage is then clamped to the gain from this stage.
*
* The final gain is used to adjust the effective exposure value of the image,
* and that new exposure value is divided into exposure time, analogue gain and
* digital gain according to the selected AeExposureMode. This class uses the
* \ref ExposureModeHelper class to assist in that division, and expects the
* data needed to initialise that class to be present in tuning data in a
* format described in \ref parseTuningData().
*
* In order to be able to use this algorithm an IPA module needs to be able to
* do the following:
*
* 1. Provide a luminance estimation across an entire image.
* 2. Provide a luminance Histogram for the image to use in calculating
* constraint compliance. The precision of the Histogram that is available
* will determine the supportable precision of the constraints.
*
* IPA modules that want to use this class to implement their AEGC algorithm
* should derive it and provide an overriding estimateLuminance() function for
* this class to use. They must call parseTuningData() in init(), and must also
* call setLimits() and resetFrameCounter() in configure(). They may then use
* calculateNewEv() in process(). If the limits passed to setLimits() change for
* any reason (for example, in response to a FrameDurationLimit control being
* passed in queueRequest()) then setLimits() must be called again with the new
* values.
*/
AgcMeanLuminance::AgcMeanLuminance()
: frameCount_(0), filteredExposure_(0s), relativeLuminanceTarget_(0)
{
}
AgcMeanLuminance::~AgcMeanLuminance() = default;
void AgcMeanLuminance::parseRelativeLuminanceTarget(const YamlObject &tuningData)
{
relativeLuminanceTarget_ =
tuningData["relativeLuminanceTarget"].get<double>(kDefaultRelativeLuminanceTarget);
}
void AgcMeanLuminance::parseConstraint(const YamlObject &modeDict, int32_t id)
{
for (const auto &[boundName, content] : modeDict.asDict()) {
if (boundName != "upper" && boundName != "lower") {
LOG(AgcMeanLuminance, Warning)
<< "Ignoring unknown constraint bound '" << boundName << "'";
continue;
}
unsigned int idx = static_cast<unsigned int>(boundName == "upper");
AgcConstraint::Bound bound = static_cast<AgcConstraint::Bound>(idx);
double qLo = content["qLo"].get<double>().value_or(0.98);
double qHi = content["qHi"].get<double>().value_or(1.0);
double yTarget =
content["yTarget"].getList<double>().value_or(std::vector<double>{ 0.5 }).at(0);
AgcConstraint constraint = { bound, qLo, qHi, yTarget };
if (!constraintModes_.count(id))
constraintModes_[id] = {};
if (idx)
constraintModes_[id].push_back(constraint);
else
constraintModes_[id].insert(constraintModes_[id].begin(), constraint);
}
}
int AgcMeanLuminance::parseConstraintModes(const YamlObject &tuningData)
{
std::vector<ControlValue> availableConstraintModes;
const YamlObject &yamlConstraintModes = tuningData[controls::AeConstraintMode.name()];
if (yamlConstraintModes.isDictionary()) {
for (const auto &[modeName, modeDict] : yamlConstraintModes.asDict()) {
if (AeConstraintModeNameValueMap.find(modeName) ==
AeConstraintModeNameValueMap.end()) {
LOG(AgcMeanLuminance, Warning)
<< "Skipping unknown constraint mode '" << modeName << "'";
continue;
}
if (!modeDict.isDictionary()) {
LOG(AgcMeanLuminance, Error)
<< "Invalid constraint mode '" << modeName << "'";
return -EINVAL;
}
parseConstraint(modeDict,
AeConstraintModeNameValueMap.at(modeName));
availableConstraintModes.push_back(
AeConstraintModeNameValueMap.at(modeName));
}
}
/*
* If the tuning data file contains no constraints then we use the
* default constraint that the IPU3/RkISP1 Agc algorithms were adhering
* to anyway before centralisation; this constraint forces the top 2% of
* the histogram to be at least 0.5.
*/
if (constraintModes_.empty()) {
AgcConstraint constraint = {
AgcConstraint::Bound::Lower,
0.98,
1.0,
0.5
};
constraintModes_[controls::ConstraintNormal].insert(
constraintModes_[controls::ConstraintNormal].begin(),
constraint);
availableConstraintModes.push_back(
AeConstraintModeNameValueMap.at("ConstraintNormal"));
}
controls_[&controls::AeConstraintMode] = ControlInfo(availableConstraintModes);
return 0;
}
int AgcMeanLuminance::parseExposureModes(const YamlObject &tuningData)
{
std::vector<ControlValue> availableExposureModes;
const YamlObject &yamlExposureModes = tuningData[controls::AeExposureMode.name()];
if (yamlExposureModes.isDictionary()) {
for (const auto &[modeName, modeValues] : yamlExposureModes.asDict()) {
if (AeExposureModeNameValueMap.find(modeName) ==
AeExposureModeNameValueMap.end()) {
LOG(AgcMeanLuminance, Warning)
<< "Skipping unknown exposure mode '" << modeName << "'";
continue;
}
if (!modeValues.isDictionary()) {
LOG(AgcMeanLuminance, Error)
<< "Invalid exposure mode '" << modeName << "'";
return -EINVAL;
}
std::vector<uint32_t> exposureTimes =
modeValues["exposureTime"].getList<uint32_t>().value_or(std::vector<uint32_t>{});
std::vector<double> gains =
modeValues["gain"].getList<double>().value_or(std::vector<double>{});
if (exposureTimes.size() != gains.size()) {
LOG(AgcMeanLuminance, Error)
<< "Exposure time and gain array sizes unequal";
return -EINVAL;
}
if (exposureTimes.empty()) {
LOG(AgcMeanLuminance, Error)
<< "Exposure time and gain arrays are empty";
return -EINVAL;
}
std::vector<std::pair<utils::Duration, double>> stages;
for (unsigned int i = 0; i < exposureTimes.size(); i++) {
stages.push_back({
std::chrono::microseconds(exposureTimes[i]),
gains[i]
});
}
std::shared_ptr<ExposureModeHelper> helper =
std::make_shared<ExposureModeHelper>(stages);
exposureModeHelpers_[AeExposureModeNameValueMap.at(modeName)] = helper;
availableExposureModes.push_back(AeExposureModeNameValueMap.at(modeName));
}
}
/*
* If we don't have any exposure modes in the tuning data we create an
* ExposureModeHelper using an empty vector of stages. This will result
* in the ExposureModeHelper simply driving the exposure time as high as
* possible before touching gain.
*/
if (availableExposureModes.empty()) {
int32_t exposureModeId = AeExposureModeNameValueMap.at("ExposureNormal");
std::vector<std::pair<utils::Duration, double>> stages = { };
std::shared_ptr<ExposureModeHelper> helper =
std::make_shared<ExposureModeHelper>(stages);
exposureModeHelpers_[exposureModeId] = helper;
availableExposureModes.push_back(exposureModeId);
}
controls_[&controls::AeExposureMode] = ControlInfo(availableExposureModes);
return 0;
}
/**
* \brief Parse tuning data for AeConstraintMode and AeExposureMode controls
* \param[in] tuningData the YamlObject representing the tuning data
*
* This function parses tuning data to build the list of allowed values for the
* AeConstraintMode and AeExposureMode controls. Those tuning data must provide
* the data in a specific format; the Agc algorithm's tuning data should contain
* a dictionary called AeConstraintMode containing per-mode setting dictionaries
* with the key being a value from \ref controls::AeConstraintModeNameValueMap.
* Each mode dict may contain either a "lower" or "upper" key or both, for
* example:
*
* \code{.unparsed}
* algorithms:
* - Agc:
* AeConstraintMode:
* ConstraintNormal:
* lower:
* qLo: 0.98
* qHi: 1.0
* yTarget: 0.5
* ConstraintHighlight:
* lower:
* qLo: 0.98
* qHi: 1.0
* yTarget: 0.5
* upper:
* qLo: 0.98
* qHi: 1.0
* yTarget: 0.8
*
* \endcode
*
* For the AeExposureMode control the data should contain a dictionary called
* AeExposureMode containing per-mode setting dictionaries with the key being a
* value from \ref controls::AeExposureModeNameValueMap. Each mode dict should
* contain an array of exposure times with the key "exposureTime" and an array
* of gain values with the key "gain", in this format:
*
* \code{.unparsed}
* algorithms:
* - Agc:
* AeExposureMode:
* ExposureNormal:
* exposureTime: [ 100, 10000, 30000, 60000, 120000 ]
* gain: [ 2.0, 4.0, 6.0, 8.0, 10.0 ]
* ExposureShort:
* exposureTime: [ 100, 10000, 30000, 60000, 120000 ]
* gain: [ 2.0, 4.0, 6.0, 8.0, 10.0 ]
*
* \endcode
*
* \return 0 on success or a negative error code
*/
int AgcMeanLuminance::parseTuningData(const YamlObject &tuningData)
{
int ret;
parseRelativeLuminanceTarget(tuningData);
ret = parseConstraintModes(tuningData);
if (ret)
return ret;
return parseExposureModes(tuningData);
}
/**
* \brief Set the ExposureModeHelper limits for this class
* \param[in] minExposureTime Minimum exposure time to allow
* \param[in] maxExposureTime Maximum ewposure time to allow
* \param[in] minGain Minimum gain to allow
* \param[in] maxGain Maximum gain to allow
*
* This function calls \ref ExposureModeHelper::setLimits() for each
* ExposureModeHelper that has been created for this class.
*/
void AgcMeanLuminance::setLimits(utils::Duration minExposureTime,
utils::Duration maxExposureTime,
double minGain, double maxGain)
{
for (auto &[id, helper] : exposureModeHelpers_)
helper->setLimits(minExposureTime, maxExposureTime, minGain, maxGain);
}
/**
* \fn AgcMeanLuminance::constraintModes()
* \brief Get the constraint modes that have been parsed from tuning data
*/
/**
* \fn AgcMeanLuminance::exposureModeHelpers()
* \brief Get the ExposureModeHelpers that have been parsed from tuning data
*/
/**
* \fn AgcMeanLuminance::controls()
* \brief Get the controls that have been generated after parsing tuning data
*/
/**
* \fn AgcMeanLuminance::estimateLuminance(const double gain)
* \brief Estimate the luminance of an image, adjusted by a given gain
* \param[in] gain The gain with which to adjust the luminance estimate
*
* This function estimates the average relative luminance of the frame that
* would be output by the sensor if an additional \a gain was applied. It is a
* pure virtual function because estimation of luminance is a hardware-specific
* operation, which depends wholly on the format of the stats that are delivered
* to libcamera from the ISP. Derived classes must override this function with
* one that calculates the normalised mean luminance value across the entire
* image.
*
* \return The normalised relative luminance of the image
*/
/**
* \brief Estimate the initial gain needed to achieve a relative luminance
* target
* \return The calculated initial gain
*/
double AgcMeanLuminance::estimateInitialGain() const
{
double yTarget = relativeLuminanceTarget_;
double yGain = 1.0;
/*
* To account for non-linearity caused by saturation, the value needs to
* be estimated in an iterative process, as multiplying by a gain will
* not increase the relative luminance by the same factor if some image
* regions are saturated.
*/
for (unsigned int i = 0; i < 8; i++) {
double yValue = estimateLuminance(yGain);
double extra_gain = std::min(10.0, yTarget / (yValue + .001));
yGain *= extra_gain;
LOG(AgcMeanLuminance, Debug) << "Y value: " << yValue
<< ", Y target: " << yTarget
<< ", gives gain " << yGain;
if (utils::abs_diff(extra_gain, 1.0) < 0.01)
break;
}
return yGain;
}
/**
* \brief Clamp gain within the bounds of a defined constraint
* \param[in] constraintModeIndex The index of the constraint to adhere to
* \param[in] hist A histogram over which to calculate inter-quantile means
* \param[in] gain The gain to clamp
*
* \return The gain clamped within the constraint bounds
*/
double AgcMeanLuminance::constraintClampGain(uint32_t constraintModeIndex,
const Histogram &hist,
double gain)
{
std::vector<AgcConstraint> &constraints = constraintModes_[constraintModeIndex];
for (const AgcConstraint &constraint : constraints) {
double newGain = constraint.yTarget * hist.bins() /
hist.interQuantileMean(constraint.qLo, constraint.qHi);
if (constraint.bound == AgcConstraint::Bound::Lower &&
newGain > gain)
gain = newGain;
if (constraint.bound == AgcConstraint::Bound::Upper &&
newGain < gain)
gain = newGain;
}
return gain;
}
/**
* \brief Apply a filter on the exposure value to limit the speed of changes
* \param[in] exposureValue The target exposure from the AGC algorithm
*
* The speed of the filter is adaptive, and will produce the target quicker
* during startup, or when the target exposure is within 20% of the most recent
* filter output.
*
* \return The filtered exposure
*/
utils::Duration AgcMeanLuminance::filterExposure(utils::Duration exposureValue)
{
double speed = 0.2;
/* Adapt instantly if we are in startup phase. */
if (frameCount_ < kNumStartupFrames)
speed = 1.0;
/*
* If we are close to the desired result, go faster to avoid making
* multiple micro-adjustments.
* \todo Make this customisable?
*/
if (filteredExposure_ < 1.2 * exposureValue &&
filteredExposure_ > 0.8 * exposureValue)
speed = sqrt(speed);
filteredExposure_ = speed * exposureValue +
filteredExposure_ * (1.0 - speed);
return filteredExposure_;
}
/**
* \brief Calculate the new exposure value and splut it between exposure time
* and gain
* \param[in] constraintModeIndex The index of the current constraint mode
* \param[in] exposureModeIndex The index of the current exposure mode
* \param[in] yHist A Histogram from the ISP statistics to use in constraining
* the calculated gain
* \param[in] effectiveExposureValue The EV applied to the frame from which the
* statistics in use derive
*
* Calculate a new exposure value to try to obtain the target. The calculated
* exposure value is filtered to prevent rapid changes from frame to frame, and
* divided into exposure time, analogue and digital gain.
*
* \return Tuple of exposure time, analogue gain, and digital gain
*/
std::tuple<utils::Duration, double, double>
AgcMeanLuminance::calculateNewEv(uint32_t constraintModeIndex,
uint32_t exposureModeIndex,
const Histogram &yHist,
utils::Duration effectiveExposureValue)
{
/*
* The pipeline handler should validate that we have received an allowed
* value for AeExposureMode.
*/
std::shared_ptr<ExposureModeHelper> exposureModeHelper =
exposureModeHelpers_.at(exposureModeIndex);
double gain = estimateInitialGain();
gain = constraintClampGain(constraintModeIndex, yHist, gain);
/*
* We don't check whether we're already close to the target, because
* even if the effective exposure value is the same as the last frame's
* we could have switched to an exposure mode that would require a new
* pass through the splitExposure() function.
*/
utils::Duration newExposureValue = effectiveExposureValue * gain;
/*
* We filter the exposure value to make sure changes are not too jarring
* from frame to frame.
*/
newExposureValue = filterExposure(newExposureValue);
frameCount_++;
return exposureModeHelper->splitExposure(newExposureValue);
}
/**
* \fn AgcMeanLuminance::resetFrameCount()
* \brief Reset the frame counter
*
* This function resets the internal frame counter, which exists to help the
* algorithm decide whether it should respond instantly or not. The expectation
* is for derived classes to call this function before each camera start call in
* their configure() function.
*/
} /* namespace ipa */
} /* namespace libcamera */
|