summaryrefslogtreecommitdiff
path: root/src/apps/qcam/assets/feathericons/smartphone.svg
AgeCommit message (Expand)Author
2022-10-20Move test applications to src/apps/Laurent Pinchart
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
#
# ctt_noise.py - camera tuning tool noise calibration

from ctt_image_load import *
import matplotlib.pyplot as plt


"""
Find noise standard deviation and fit to model:

    noise std = a + b*sqrt(pixel mean)
"""
def noise(Cam, Img, plot):
    Cam.log += '\nProcessing image: {}'.format(Img.name)
    stds = []
    means = []
    """
    iterate through macbeth square patches
    """
    for ch_patches in Img.patches:
        for patch in ch_patches:
            """
            renormalise patch
            """
            patch = np.array(patch)
            patch = (patch-Img.blacklevel_16)/Img.againQ8_norm
            std = np.std(patch)
            mean = np.mean(patch)
            stds.append(std)
            means.append(mean)

    """
    clean data and ensure all means are above 0
    """
    stds = np.array(stds)
    means = np.array(means)
    means = np.clip(np.array(means), 0, None)
    sq_means = np.sqrt(means)

    """
    least squares fit model
    """
    fit = np.polyfit(sq_means, stds, 1)
    Cam.log += '\nBlack level = {}'.format(Img.blacklevel_16)
    Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1]))
    Cam.log += ' slope = {:.3f}'.format(fit[0])
    """
    remove any values further than std from the fit

    anomalies most likely caused by:
    > ucharacteristically noisy white patch
    > saturation in the white patch
    """
    fit_score = np.abs(stds - fit[0]*sq_means - fit[1])
    fit_std = np.std(stds)
    fit_score_norm = fit_score - fit_std
    anom_ind = np.where(fit_score_norm > 1)
    fit_score_norm.sort()
    sq_means_clean = np.delete(sq_means, anom_ind)
    stds_clean = np.delete(stds, anom_ind)
    removed = len(stds) - len(stds_clean)
    if removed != 0:
        Cam.log += '\nIdentified and removed {} anomalies.'.format(removed)
        Cam.log += '\nRecalculating fit'
        """
        recalculate fit with outliers removed
        """
        fit = np.polyfit(sq_means_clean, stds_clean, 1)
        Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1]))
        Cam.log += ' slope = {:.3f}'.format(fit[0])

    """
    if fit const is < 0 then force through 0 by
    dividing by sq_means and fitting poly order 0
    """
    corrected = 0
    if fit[1] < 0:
        corrected = 1
        ones = np.ones(len(means))
        y_data = stds/sq_means
        fit2 = np.polyfit(ones, y_data, 0)
        Cam.log += '\nOffset below zero. Fit recalculated with zero offset'
        Cam.log += '\nNoise profile: offset = 0'
        Cam.log += ' slope = {:.3f}'.format(fit2[0])
        # print('new fit')
        # print(fit2)

    """
    plot fit for debug
    """
    if plot:
        x = np.arange(sq_means.max()//0.88)
        fit_plot = x*fit[0] + fit[1]
        plt.scatter(sq_means, stds, label='data', color='blue')
        plt.scatter(sq_means[anom_ind], stds[anom_ind], color='orange', label='anomalies')
        plt.plot(x, fit_plot, label='fit', color='red', ls=':')
        if fit[1] < 0:
            fit_plot_2 = x*fit2[0]
            plt.plot(x, fit_plot_2, label='fit 0 intercept', color='green', ls='--')
        plt.plot(0, 0)
        plt.title('Noise Plot\nImg: {}'.format(Img.str))
        plt.legend(loc='upper left')
        plt.xlabel('Sqrt Pixel Value')
        plt.ylabel('Noise Standard Deviation')
        plt.grid()
        plt.show()
    """
    End of plotting code
    """

    """
    format output to include forced 0 constant
    """
    Cam.log += '\n'
    if corrected:
        fit = [fit2[0], 0]
        return fit

    else:
        return fit