diff options
Diffstat (limited to 'src/ipa/rkisp1/algorithms/agc.cpp')
-rw-r--r-- | src/ipa/rkisp1/algorithms/agc.cpp | 621 |
1 files changed, 382 insertions, 239 deletions
diff --git a/src/ipa/rkisp1/algorithms/agc.cpp b/src/ipa/rkisp1/algorithms/agc.cpp index 47a6f7b2..b3ac9400 100644 --- a/src/ipa/rkisp1/algorithms/agc.cpp +++ b/src/ipa/rkisp1/algorithms/agc.cpp @@ -2,7 +2,7 @@ /* * Copyright (C) 2021-2022, Ideas On Board * - * agc.cpp - AGC/AEC mean-based control algorithm + * AGC/AEC mean-based control algorithm */ #include "agc.h" @@ -10,6 +10,8 @@ #include <algorithm> #include <chrono> #include <cmath> +#include <tuple> +#include <vector> #include <libcamera/base/log.h> #include <libcamera/base/utils.h> @@ -17,6 +19,8 @@ #include <libcamera/control_ids.h> #include <libcamera/ipa/core_ipa_interface.h> +#include "libcamera/internal/yaml_parser.h" + #include "libipa/histogram.h" /** @@ -36,35 +40,130 @@ namespace ipa::rkisp1::algorithms { LOG_DEFINE_CATEGORY(RkISP1Agc) -/* Minimum limit for analogue gain value */ -static constexpr double kMinAnalogueGain = 1.0; +int Agc::parseMeteringModes(IPAContext &context, const YamlObject &tuningData) +{ + if (!tuningData.isDictionary()) + LOG(RkISP1Agc, Warning) + << "'AeMeteringMode' parameter not found in tuning file"; + + for (const auto &[key, value] : tuningData.asDict()) { + if (controls::AeMeteringModeNameValueMap.find(key) == + controls::AeMeteringModeNameValueMap.end()) { + LOG(RkISP1Agc, Warning) + << "Skipping unknown metering mode '" << key << "'"; + continue; + } -/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */ -static constexpr utils::Duration kMaxShutterSpeed = 60ms; + std::vector<uint8_t> weights = + value.getList<uint8_t>().value_or(std::vector<uint8_t>{}); + if (weights.size() != context.hw->numHistogramWeights) { + LOG(RkISP1Agc, Warning) + << "Failed to read metering mode'" << key << "'"; + continue; + } -/* Number of frames to wait before calculating stats on minimum exposure */ -static constexpr uint32_t kNumStartupFrames = 10; + meteringModes_[controls::AeMeteringModeNameValueMap.at(key)] = weights; + } -/* Target value to reach for the top 2% of the histogram */ -static constexpr double kEvGainTarget = 0.5; + if (meteringModes_.empty()) { + LOG(RkISP1Agc, Warning) + << "No metering modes read from tuning file; defaulting to matrix"; + int32_t meteringModeId = controls::AeMeteringModeNameValueMap.at("MeteringMatrix"); + std::vector<uint8_t> weights(context.hw->numHistogramWeights, 1); -/* - * Relative luminance target. - * - * It's a number that's chosen so that, when the camera points at a grey - * target, the resulting image brightness is considered right. - * - * \todo Why is the value different between IPU3 and RkISP1 ? - */ -static constexpr double kRelativeLuminanceTarget = 0.4; + meteringModes_[meteringModeId] = weights; + } + + std::vector<ControlValue> meteringModes; + std::vector<int> meteringModeKeys = utils::map_keys(meteringModes_); + std::transform(meteringModeKeys.begin(), meteringModeKeys.end(), + std::back_inserter(meteringModes), + [](int x) { return ControlValue(x); }); + context.ctrlMap[&controls::AeMeteringMode] = ControlInfo(meteringModes); + + return 0; +} + +uint8_t Agc::computeHistogramPredivider(const Size &size, + enum rkisp1_cif_isp_histogram_mode mode) +{ + /* + * The maximum number of pixels that could potentially be in one bin is + * if all the pixels of the image are in it, multiplied by 3 for the + * three color channels. The counter for each bin is 16 bits wide, so + * `factor` thus contains the number of times we'd wrap around. This is + * obviously the number of pixels that we need to skip to make sure + * that we don't wrap around, but we compute the square root of it + * instead, as the skip that we need to program is for both the x and y + * directions. + * + * Even though it looks like dividing into a counter of 65536 would + * overflow by 1, this is apparently fine according to the hardware + * documentation, and this successfully gets the expected documented + * predivider size for cases where: + * (width / predivider) * (height / predivider) * 3 == 65536. + * + * There's a bit of extra rounding math to make sure the rounding goes + * the correct direction so that the square of the step is big enough + * to encompass the `factor` number of pixels that we need to skip. + * + * \todo Take into account weights. That is, if the weights are low + * enough we can potentially reduce the predivider to increase + * precision. This needs some investigation however, as this hardware + * behavior is undocumented and is only an educated guess. + */ + int count = mode == RKISP1_CIF_ISP_HISTOGRAM_MODE_RGB_COMBINED ? 3 : 1; + double factor = size.width * size.height * count / 65536.0; + double root = std::sqrt(factor); + uint8_t predivider = static_cast<uint8_t>(std::ceil(root)); + + return std::clamp<uint8_t>(predivider, 3, 127); +} Agc::Agc() - : frameCount_(0), filteredExposure_(0s) { supportsRaw_ = true; } /** + * \brief Initialise the AGC algorithm from tuning files + * \param[in] context The shared IPA context + * \param[in] tuningData The YamlObject containing Agc tuning data + * + * This function calls the base class' tuningData parsers to discover which + * control values are supported. + * + * \return 0 on success or errors from the base class + */ +int Agc::init(IPAContext &context, const YamlObject &tuningData) +{ + int ret; + + ret = parseTuningData(tuningData); + if (ret) + return ret; + + const YamlObject &yamlMeteringModes = tuningData["AeMeteringMode"]; + ret = parseMeteringModes(context, yamlMeteringModes); + if (ret) + return ret; + + context.ctrlMap[&controls::ExposureTimeMode] = + ControlInfo({ { ControlValue(controls::ExposureTimeModeAuto), + ControlValue(controls::ExposureTimeModeManual) } }, + ControlValue(controls::ExposureTimeModeAuto)); + context.ctrlMap[&controls::AnalogueGainMode] = + ControlInfo({ { ControlValue(controls::AnalogueGainModeAuto), + ControlValue(controls::AnalogueGainModeManual) } }, + ControlValue(controls::AnalogueGainModeAuto)); + /* \todo Move this to the Camera class */ + context.ctrlMap[&controls::AeEnable] = ControlInfo(false, true, true); + context.ctrlMap.merge(controls()); + + return 0; +} + +/** * \brief Configure the AGC given a configInfo * \param[in] context The shared IPA context * \param[in] configInfo The IPA configuration data @@ -79,22 +178,33 @@ int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo) 10ms / context.configuration.sensor.lineDuration; context.activeState.agc.manual.gain = context.activeState.agc.automatic.gain; context.activeState.agc.manual.exposure = context.activeState.agc.automatic.exposure; - context.activeState.agc.autoEnabled = !context.configuration.raw; + context.activeState.agc.autoExposureEnabled = !context.configuration.raw; + context.activeState.agc.autoGainEnabled = !context.configuration.raw; - /* - * Define the measurement window for AGC as a centered rectangle - * covering 3/4 of the image width and height. - */ - context.configuration.agc.measureWindow.h_offs = configInfo.outputSize.width / 8; - context.configuration.agc.measureWindow.v_offs = configInfo.outputSize.height / 8; - context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4; - context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4; + context.activeState.agc.constraintMode = + static_cast<controls::AeConstraintModeEnum>(constraintModes().begin()->first); + context.activeState.agc.exposureMode = + static_cast<controls::AeExposureModeEnum>(exposureModeHelpers().begin()->first); + context.activeState.agc.meteringMode = + static_cast<controls::AeMeteringModeEnum>(meteringModes_.begin()->first); + + /* Limit the frame duration to match current initialisation */ + ControlInfo &frameDurationLimits = context.ctrlMap[&controls::FrameDurationLimits]; + context.activeState.agc.minFrameDuration = std::chrono::microseconds(frameDurationLimits.min().get<int64_t>()); + context.activeState.agc.maxFrameDuration = std::chrono::microseconds(frameDurationLimits.max().get<int64_t>()); + + context.configuration.agc.measureWindow.h_offs = 0; + context.configuration.agc.measureWindow.v_offs = 0; + context.configuration.agc.measureWindow.h_size = configInfo.outputSize.width; + context.configuration.agc.measureWindow.v_size = configInfo.outputSize.height; + + setLimits(context.configuration.sensor.minExposureTime, + context.configuration.sensor.maxExposureTime, + context.configuration.sensor.minAnalogueGain, + context.configuration.sensor.maxAnalogueGain); + + resetFrameCount(); - /* - * \todo Use the upcoming per-frame context API that will provide a - * frame index - */ - frameCount_ = 0; return 0; } @@ -109,18 +219,47 @@ void Agc::queueRequest(IPAContext &context, auto &agc = context.activeState.agc; if (!context.configuration.raw) { - const auto &agcEnable = controls.get(controls::AeEnable); - if (agcEnable && *agcEnable != agc.autoEnabled) { - agc.autoEnabled = *agcEnable; + const auto &aeEnable = controls.get(controls::ExposureTimeMode); + if (aeEnable && + (*aeEnable == controls::ExposureTimeModeAuto) != agc.autoExposureEnabled) { + agc.autoExposureEnabled = (*aeEnable == controls::ExposureTimeModeAuto); + + LOG(RkISP1Agc, Debug) + << (agc.autoExposureEnabled ? "Enabling" : "Disabling") + << " AGC (exposure)"; + + /* + * If we go from auto -> manual with no manual control + * set, use the last computed value, which we don't + * know until prepare() so save this information. + * + * \todo Check the previous frame at prepare() time + * instead of saving a flag here + */ + if (!agc.autoExposureEnabled && !controls.get(controls::ExposureTime)) + frameContext.agc.autoExposureModeChange = true; + } + + const auto &agEnable = controls.get(controls::AnalogueGainMode); + if (agEnable && + (*agEnable == controls::AnalogueGainModeAuto) != agc.autoGainEnabled) { + agc.autoGainEnabled = (*agEnable == controls::AnalogueGainModeAuto); LOG(RkISP1Agc, Debug) - << (agc.autoEnabled ? "Enabling" : "Disabling") - << " AGC"; + << (agc.autoGainEnabled ? "Enabling" : "Disabling") + << " AGC (gain)"; + /* + * If we go from auto -> manual with no manual control + * set, use the last computed value, which we don't + * know until prepare() so save this information. + */ + if (!agc.autoGainEnabled && !controls.get(controls::AnalogueGain)) + frameContext.agc.autoGainModeChange = true; } } const auto &exposure = controls.get(controls::ExposureTime); - if (exposure && !agc.autoEnabled) { + if (exposure && !agc.autoExposureEnabled) { agc.manual.exposure = *exposure * 1.0us / context.configuration.sensor.lineDuration; @@ -129,186 +268,150 @@ void Agc::queueRequest(IPAContext &context, } const auto &gain = controls.get(controls::AnalogueGain); - if (gain && !agc.autoEnabled) { + if (gain && !agc.autoGainEnabled) { agc.manual.gain = *gain; LOG(RkISP1Agc, Debug) << "Set gain to " << agc.manual.gain; } - frameContext.agc.autoEnabled = agc.autoEnabled; + frameContext.agc.autoExposureEnabled = agc.autoExposureEnabled; + frameContext.agc.autoGainEnabled = agc.autoGainEnabled; - if (!frameContext.agc.autoEnabled) { + if (!frameContext.agc.autoExposureEnabled) frameContext.agc.exposure = agc.manual.exposure; + if (!frameContext.agc.autoGainEnabled) frameContext.agc.gain = agc.manual.gain; + + const auto &meteringMode = controls.get(controls::AeMeteringMode); + if (meteringMode) { + frameContext.agc.updateMetering = agc.meteringMode != *meteringMode; + agc.meteringMode = + static_cast<controls::AeMeteringModeEnum>(*meteringMode); + } + frameContext.agc.meteringMode = agc.meteringMode; + + const auto &exposureMode = controls.get(controls::AeExposureMode); + if (exposureMode) + agc.exposureMode = + static_cast<controls::AeExposureModeEnum>(*exposureMode); + frameContext.agc.exposureMode = agc.exposureMode; + + const auto &constraintMode = controls.get(controls::AeConstraintMode); + if (constraintMode) + agc.constraintMode = + static_cast<controls::AeConstraintModeEnum>(*constraintMode); + frameContext.agc.constraintMode = agc.constraintMode; + + const auto &frameDurationLimits = controls.get(controls::FrameDurationLimits); + if (frameDurationLimits) { + /* Limit the control value to the limits in ControlInfo */ + ControlInfo &limits = context.ctrlMap[&controls::FrameDurationLimits]; + int64_t minFrameDuration = + std::clamp((*frameDurationLimits).front(), + limits.min().get<int64_t>(), + limits.max().get<int64_t>()); + int64_t maxFrameDuration = + std::clamp((*frameDurationLimits).back(), + limits.min().get<int64_t>(), + limits.max().get<int64_t>()); + + agc.minFrameDuration = std::chrono::microseconds(minFrameDuration); + agc.maxFrameDuration = std::chrono::microseconds(maxFrameDuration); } + frameContext.agc.minFrameDuration = agc.minFrameDuration; + frameContext.agc.maxFrameDuration = agc.maxFrameDuration; } /** * \copydoc libcamera::ipa::Algorithm::prepare */ void Agc::prepare(IPAContext &context, const uint32_t frame, - IPAFrameContext &frameContext, rkisp1_params_cfg *params) -{ - if (frameContext.agc.autoEnabled) { - frameContext.agc.exposure = context.activeState.agc.automatic.exposure; - frameContext.agc.gain = context.activeState.agc.automatic.gain; - } - - if (frame > 0) - return; - - /* Configure the measurement window. */ - params->meas.aec_config.meas_window = context.configuration.agc.measureWindow; - /* Use a continuous method for measure. */ - params->meas.aec_config.autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0; - /* Estimate Y as (R + G + B) x (85/256). */ - params->meas.aec_config.mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1; - - params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_AEC; - params->module_ens |= RKISP1_CIF_ISP_MODULE_AEC; - params->module_en_update |= RKISP1_CIF_ISP_MODULE_AEC; - - /* Configure histogram. */ - params->meas.hst_config.meas_window = context.configuration.agc.measureWindow; - /* Produce the luminance histogram. */ - params->meas.hst_config.mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM; - /* Set an average weighted histogram. */ - Span<uint8_t> weights{ - params->meas.hst_config.hist_weight, - context.hw->numHistogramWeights - }; - std::fill(weights.begin(), weights.end(), 1); - /* Step size can't be less than 3. */ - params->meas.hst_config.histogram_predivider = 4; - - /* Update the configuration for histogram. */ - params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_HST; - /* Enable the histogram measure unit. */ - params->module_ens |= RKISP1_CIF_ISP_MODULE_HST; - params->module_en_update |= RKISP1_CIF_ISP_MODULE_HST; -} - -/** - * \brief Apply a filter on the exposure value to limit the speed of changes - * \param[in] exposureValue The target exposure from the AGC algorithm - * - * The speed of the filter is adaptive, and will produce the target quicker - * during startup, or when the target exposure is within 20% of the most recent - * filter output. - * - * \return The filtered exposure - */ -utils::Duration Agc::filterExposure(utils::Duration exposureValue) + IPAFrameContext &frameContext, RkISP1Params *params) { - double speed = 0.2; + uint32_t activeAutoExposure = context.activeState.agc.automatic.exposure; + double activeAutoGain = context.activeState.agc.automatic.gain; - /* Adapt instantly if we are in startup phase. */ - if (frameCount_ < kNumStartupFrames) - speed = 1.0; + /* Populate exposure and gain in auto mode */ + if (frameContext.agc.autoExposureEnabled) + frameContext.agc.exposure = activeAutoExposure; + if (frameContext.agc.autoGainEnabled) + frameContext.agc.gain = activeAutoGain; /* - * If we are close to the desired result, go faster to avoid making - * multiple micro-adjustments. - * \todo Make this customisable? + * Populate manual exposure and gain from the active auto values when + * transitioning from auto to manual */ - if (filteredExposure_ < 1.2 * exposureValue && - filteredExposure_ > 0.8 * exposureValue) - speed = sqrt(speed); - - filteredExposure_ = speed * exposureValue + - filteredExposure_ * (1.0 - speed); - - LOG(RkISP1Agc, Debug) << "After filtering, exposure " << filteredExposure_; - - return filteredExposure_; -} - -/** - * \brief Estimate the new exposure and gain values - * \param[inout] context The shared IPA Context - * \param[in] frameContext The FrameContext for this frame - * \param[in] yGain The gain calculated on the current brightness level - * \param[in] iqMeanGain The gain calculated based on the relative luminance target - */ -void Agc::computeExposure(IPAContext &context, IPAFrameContext &frameContext, - double yGain, double iqMeanGain) -{ - IPASessionConfiguration &configuration = context.configuration; - IPAActiveState &activeState = context.activeState; - - /* Get the effective exposure and gain applied on the sensor. */ - uint32_t exposure = frameContext.sensor.exposure; - double analogueGain = frameContext.sensor.gain; - - /* Use the highest of the two gain estimates. */ - double evGain = std::max(yGain, iqMeanGain); - - utils::Duration minShutterSpeed = configuration.sensor.minShutterSpeed; - utils::Duration maxShutterSpeed = std::min(configuration.sensor.maxShutterSpeed, - kMaxShutterSpeed); - - double minAnalogueGain = std::max(configuration.sensor.minAnalogueGain, - kMinAnalogueGain); - double maxAnalogueGain = configuration.sensor.maxAnalogueGain; + if (!frameContext.agc.autoExposureEnabled && frameContext.agc.autoExposureModeChange) { + context.activeState.agc.manual.exposure = activeAutoExposure; + frameContext.agc.exposure = activeAutoExposure; + } + if (!frameContext.agc.autoGainEnabled && frameContext.agc.autoGainModeChange) { + context.activeState.agc.manual.gain = activeAutoGain; + frameContext.agc.gain = activeAutoGain; + } - /* Consider within 1% of the target as correctly exposed. */ - if (utils::abs_diff(evGain, 1.0) < 0.01) + if (frame > 0 && !frameContext.agc.updateMetering) return; - /* extracted from Rpi::Agc::computeTargetExposure. */ - - /* Calculate the shutter time in seconds. */ - utils::Duration currentShutter = exposure * configuration.sensor.lineDuration; - /* - * Update the exposure value for the next computation using the values - * of exposure and gain really used by the sensor. + * Configure the AEC measurements. Set the window, measure + * continuously, and estimate Y as (R + G + B) x (85/256). */ - utils::Duration effectiveExposureValue = currentShutter * analogueGain; + auto aecConfig = params->block<BlockType::Aec>(); + aecConfig.setEnabled(true); - LOG(RkISP1Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain - << " Shutter speed " << currentShutter - << " Gain " << analogueGain - << " Needed ev gain " << evGain; + aecConfig->meas_window = context.configuration.agc.measureWindow; + aecConfig->autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0; + aecConfig->mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1; /* - * Calculate the current exposure value for the scene as the latest - * exposure value applied multiplied by the new estimated gain. + * Configure the histogram measurement. Set the window, produce a + * luminance histogram, and set the weights and predivider. */ - utils::Duration exposureValue = effectiveExposureValue * evGain; + auto hstConfig = params->block<BlockType::Hst>(); + hstConfig.setEnabled(true); - /* Clamp the exposure value to the min and max authorized. */ - utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain; - exposureValue = std::min(exposureValue, maxTotalExposure); - LOG(RkISP1Agc, Debug) << "Target total exposure " << exposureValue - << ", maximum is " << maxTotalExposure; + hstConfig->meas_window = context.configuration.agc.measureWindow; + hstConfig->mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM; - /* - * Divide the exposure value as new exposure and gain values. - * \todo estimate if we need to desaturate - */ - exposureValue = filterExposure(exposureValue); - - /* - * Push the shutter time up to the maximum first, and only then - * increase the gain. - */ - utils::Duration shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain, - minShutterSpeed, maxShutterSpeed); - double stepGain = std::clamp(exposureValue / shutterTime, - minAnalogueGain, maxAnalogueGain); - LOG(RkISP1Agc, Debug) << "Divided up shutter and gain are " - << shutterTime << " and " - << stepGain; + Span<uint8_t> weights{ + hstConfig->hist_weight, + context.hw->numHistogramWeights + }; + std::vector<uint8_t> &modeWeights = meteringModes_.at(frameContext.agc.meteringMode); + std::copy(modeWeights.begin(), modeWeights.end(), weights.begin()); + + struct rkisp1_cif_isp_window window = hstConfig->meas_window; + Size windowSize = { window.h_size, window.v_size }; + hstConfig->histogram_predivider = + computeHistogramPredivider(windowSize, + static_cast<rkisp1_cif_isp_histogram_mode>(hstConfig->mode)); +} - /* Update the estimated exposure and gain. */ - activeState.agc.automatic.exposure = shutterTime / configuration.sensor.lineDuration; - activeState.agc.automatic.gain = stepGain; +void Agc::fillMetadata(IPAContext &context, IPAFrameContext &frameContext, + ControlList &metadata) +{ + utils::Duration exposureTime = context.configuration.sensor.lineDuration + * frameContext.sensor.exposure; + metadata.set(controls::AnalogueGain, frameContext.sensor.gain); + metadata.set(controls::ExposureTime, exposureTime.get<std::micro>()); + metadata.set(controls::FrameDuration, frameContext.agc.frameDuration.get<std::micro>()); + metadata.set(controls::ExposureTimeMode, + frameContext.agc.autoExposureEnabled + ? controls::ExposureTimeModeAuto + : controls::ExposureTimeModeManual); + metadata.set(controls::AnalogueGainMode, + frameContext.agc.autoGainEnabled + ? controls::AnalogueGainModeAuto + : controls::AnalogueGainModeManual); + + metadata.set(controls::AeMeteringMode, frameContext.agc.meteringMode); + metadata.set(controls::AeExposureMode, frameContext.agc.exposureMode); + metadata.set(controls::AeConstraintMode, frameContext.agc.constraintMode); } /** * \brief Estimate the relative luminance of the frame with a given gain - * \param[in] expMeans The mean luminance values, from the RkISP1 statistics * \param[in] gain The gain to apply to the frame * * This function estimates the average relative luminance of the frame that @@ -322,8 +425,6 @@ void Agc::computeExposure(IPAContext &context, IPAFrameContext &frameContext, * YUV doesn't take into account the fact that the R, G and B components * contribute differently to the relative luminance. * - * \todo Have a dedicated YUV algorithm ? - * * The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a * theoretical perfect reflector of 100% reference white. * @@ -332,45 +433,43 @@ void Agc::computeExposure(IPAContext &context, IPAFrameContext &frameContext, * * \return The relative luminance */ -double Agc::estimateLuminance(Span<const uint8_t> expMeans, double gain) +double Agc::estimateLuminance(double gain) const { + ASSERT(expMeans_.size() == weights_.size()); double ySum = 0.0; + double wSum = 0.0; /* Sum the averages, saturated to 255. */ - for (uint8_t expMean : expMeans) - ySum += std::min(expMean * gain, 255.0); + for (unsigned i = 0; i < expMeans_.size(); i++) { + double w = weights_[i]; + ySum += std::min(expMeans_[i] * gain, 255.0) * w; + wSum += w; + } /* \todo Weight with the AWB gains */ - return ySum / expMeans.size() / 255; + return ySum / wSum / 255; } /** - * \brief Estimate the mean value of the top 2% of the histogram - * \param[in] hist The histogram statistics computed by the RkISP1 - * \return The mean value of the top 2% of the histogram + * \brief Process frame duration and compute vblank + * \param[in] context The shared IPA context + * \param[in] frameContext The current frame context + * \param[in] frameDuration The target frame duration + * + * Compute and populate vblank from the target frame duration. */ -double Agc::measureBrightness(Span<const uint32_t> hist) const +void Agc::processFrameDuration(IPAContext &context, + IPAFrameContext &frameContext, + utils::Duration frameDuration) { - Histogram histogram{ hist }; - /* Estimate the quantile mean of the top 2% of the histogram. */ - return histogram.interQuantileMean(0.98, 1.0); -} + IPACameraSensorInfo &sensorInfo = context.sensorInfo; + utils::Duration lineDuration = context.configuration.sensor.lineDuration; -void Agc::fillMetadata(IPAContext &context, IPAFrameContext &frameContext, - ControlList &metadata) -{ - utils::Duration exposureTime = context.configuration.sensor.lineDuration - * frameContext.sensor.exposure; - metadata.set(controls::AnalogueGain, frameContext.sensor.gain); - metadata.set(controls::ExposureTime, exposureTime.get<std::micro>()); + frameContext.agc.vblank = (frameDuration / lineDuration) - sensorInfo.outputSize.height; - /* \todo Use VBlank value calculated from each frame exposure. */ - uint32_t vTotal = context.configuration.sensor.size.height - + context.configuration.sensor.defVBlank; - utils::Duration frameDuration = context.configuration.sensor.lineDuration - * vTotal; - metadata.set(controls::FrameDuration, frameDuration.get<std::micro>()); + /* Update frame duration accounting for line length quantization. */ + frameContext.agc.frameDuration = (sensorInfo.outputSize.height + frameContext.agc.vblank) * lineDuration; } /** @@ -389,10 +488,20 @@ void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame, ControlList &metadata) { if (!stats) { + processFrameDuration(context, frameContext, + frameContext.agc.minFrameDuration); + fillMetadata(context, frameContext, metadata); + return; + } + + if (!(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP)) { fillMetadata(context, frameContext, metadata); + LOG(RkISP1Agc, Error) << "AUTOEXP data is missing in statistics"; return; } + const utils::Duration &lineDuration = context.configuration.sensor.lineDuration; + /* * \todo Verify that the exposure and gain applied by the sensor for * this frame match what has been requested. This isn't a hard @@ -402,43 +511,77 @@ void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame, */ const rkisp1_cif_isp_stat *params = &stats->params; - ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP); - Span<const uint8_t> ae{ params->ae.exp_mean, context.hw->numAeCells }; - Span<const uint32_t> hist{ - params->hist.hist_bins, - context.hw->numHistogramBins - }; - - double iqMean = measureBrightness(hist); - double iqMeanGain = kEvGainTarget * hist.size() / iqMean; + /* The lower 4 bits are fractional and meant to be discarded. */ + Histogram hist({ params->hist.hist_bins, context.hw->numHistogramBins }, + [](uint32_t x) { return x >> 4; }); + expMeans_ = { params->ae.exp_mean, context.hw->numAeCells }; + std::vector<uint8_t> &modeWeights = meteringModes_.at(frameContext.agc.meteringMode); + weights_ = { modeWeights.data(), modeWeights.size() }; /* - * Estimate the gain needed to achieve a relative luminance target. To - * account for non-linearity caused by saturation, the value needs to be - * estimated in an iterative process, as multiplying by a gain will not - * increase the relative luminance by the same factor if some image - * regions are saturated. + * Set the AGC limits using the fixed exposure time and/or gain in + * manual mode, or the sensor limits in auto mode. */ - double yGain = 1.0; - double yTarget = kRelativeLuminanceTarget; - - for (unsigned int i = 0; i < 8; i++) { - double yValue = estimateLuminance(ae, yGain); - double extra_gain = std::min(10.0, yTarget / (yValue + .001)); - - yGain *= extra_gain; - LOG(RkISP1Agc, Debug) << "Y value: " << yValue - << ", Y target: " << yTarget - << ", gives gain " << yGain; - if (extra_gain < 1.01) - break; + utils::Duration minExposureTime; + utils::Duration maxExposureTime; + double minAnalogueGain; + double maxAnalogueGain; + + if (frameContext.agc.autoExposureEnabled) { + minExposureTime = context.configuration.sensor.minExposureTime; + maxExposureTime = std::clamp(frameContext.agc.maxFrameDuration, + context.configuration.sensor.minExposureTime, + context.configuration.sensor.maxExposureTime); + } else { + minExposureTime = context.configuration.sensor.lineDuration + * frameContext.agc.exposure; + maxExposureTime = minExposureTime; + } + + if (frameContext.agc.autoGainEnabled) { + minAnalogueGain = context.configuration.sensor.minAnalogueGain; + maxAnalogueGain = context.configuration.sensor.maxAnalogueGain; + } else { + minAnalogueGain = frameContext.agc.gain; + maxAnalogueGain = frameContext.agc.gain; } - computeExposure(context, frameContext, yGain, iqMeanGain); - frameCount_++; + setLimits(minExposureTime, maxExposureTime, minAnalogueGain, maxAnalogueGain); + + /* + * The Agc algorithm needs to know the effective exposure value that was + * applied to the sensor when the statistics were collected. + */ + utils::Duration exposureTime = lineDuration * frameContext.sensor.exposure; + double analogueGain = frameContext.sensor.gain; + utils::Duration effectiveExposureValue = exposureTime * analogueGain; + + utils::Duration newExposureTime; + double aGain, dGain; + std::tie(newExposureTime, aGain, dGain) = + calculateNewEv(frameContext.agc.constraintMode, + frameContext.agc.exposureMode, + hist, effectiveExposureValue); + + LOG(RkISP1Agc, Debug) + << "Divided up exposure time, analogue gain and digital gain are " + << newExposureTime << ", " << aGain << " and " << dGain; + + IPAActiveState &activeState = context.activeState; + /* Update the estimated exposure and gain. */ + activeState.agc.automatic.exposure = newExposureTime / lineDuration; + activeState.agc.automatic.gain = aGain; + + /* + * Expand the target frame duration so that we do not run faster than + * the minimum frame duration when we have short exposures. + */ + processFrameDuration(context, frameContext, + std::max(frameContext.agc.minFrameDuration, newExposureTime)); fillMetadata(context, frameContext, metadata); + expMeans_ = {}; } REGISTER_IPA_ALGORITHM(Agc, "Agc") |