1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi Ltd
# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com>
#
# Utilities for libtuning
import cv2
import decimal
import math
import numpy as np
import os
from pathlib import Path
import re
import sys
import logging
import libtuning as lt
from libtuning.image import Image
from libtuning.macbeth import locate_macbeth
logger = logging.getLogger(__name__)
# Utility functions
def get_module_by_type_name(modules, name):
for module in modules:
if module.type == name:
return module
return None
# Private utility functions
def _list_image_files(directory):
d = Path(directory)
files = [d.joinpath(f) for f in os.listdir(d)
if re.search(r'\.(jp[e]g$)|(dng$)', f)]
files.sort()
return files
def _parse_image_filename(fn: Path):
result = re.search(r'^(alsc_)?(\d+)[kK]_(\d+)?[lLuU]?.\w{3,4}$', fn.name)
if result is None:
logger.error(f'The file name of {fn.name} is incorrectly formatted')
return None, None, None
color = int(result.group(2))
lsc_only = result.group(1) is not None
lux = None if lsc_only else int(result.group(3))
return color, lux, lsc_only
# \todo Implement this from check_imgs() in ctt.py
def _validate_images(images):
return True
# Public utility functions
# @brief Load images into a single list of Image instances
# @param input_dir Directory from which to load image files
# @param config Configuration dictionary
# @param load_nonlsc Whether or not to load non-lsc images
# @param load_lsc Whether or not to load lsc-only images
# @return A list of Image instances
def load_images(input_dir: str, config: dict, load_nonlsc: bool, load_lsc: bool) -> list:
files = _list_image_files(input_dir)
if len(files) == 0:
logger.error(f'No images found in {input_dir}')
return None
images = []
for f in files:
color, lux, lsc_only = _parse_image_filename(f)
if color is None:
continue
# Skip lsc image if we don't need it
if lsc_only and not load_lsc:
logger.warning(f'Skipping {f.name} as this tuner has no LSC module')
continue
# Skip non-lsc image if we don't need it
if not lsc_only and not load_nonlsc:
logger.warning(f'Skipping {f.name} as this tuner only has an LSC module')
continue
# Load image
try:
image = Image(f)
except Exception as e:
logger.error(f'Failed to load image {f.name}: {e}')
continue
# Populate simple fields
image.lsc_only = lsc_only
image.color = color
image.lux = lux
# Black level comes from the TIFF tags, but they are overridable by the
# config file.
if 'blacklevel' in config['general']:
image.blacklevel_16 = config['general']['blacklevel']
if lsc_only:
images.append(image)
continue
# Handle macbeth
macbeth = locate_macbeth(config)
if macbeth is None:
continue
images.append(image)
if not _validate_images(images):
return None
return images
"""
Some code that will save virtual macbeth charts that show the difference between optimised matrices and non optimised matrices
The function creates an image that is 1550 by 1050 pixels wide, and fills it with patches which are 200x200 pixels in size
Each patch contains the ideal color, the color from the original matrix, and the color from the final matrix
_________________
| |
| Ideal Color |
|_______________|
| Old | new |
| Color | Color |
|_______|_______|
Nice way of showing how the optimisation helps change the colors and the color matricies
"""
def visualise_macbeth_chart(macbeth_rgb, original_rgb, new_rgb, output_filename):
image = np.zeros((1050, 1550, 3), dtype=np.uint8)
colorindex = -1
for y in range(6):
for x in range(4): # Creates 6 x 4 grid of macbeth chart
colorindex += 1
xlocation = 50 + 250 * x # Means there is 50px of black gap between each square, more like the real macbeth chart.
ylocation = 50 + 250 * y
for g in range(200):
for i in range(100):
image[xlocation + i, ylocation + g] = macbeth_rgb[colorindex]
xlocation = 150 + 250 * x
ylocation = 50 + 250 * y
for i in range(100):
for g in range(100):
image[xlocation + i, ylocation + g] = original_rgb[colorindex] # Smaller squares below to compare the old colors with the new ones
xlocation = 150 + 250 * x
ylocation = 150 + 250 * y
for i in range(100):
for g in range(100):
image[xlocation + i, ylocation + g] = new_rgb[colorindex]
im_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imwrite(f'{output_filename} Generated Macbeth Chart.png', im_bgr)
|