summaryrefslogtreecommitdiff
path: root/src/libcamera/pipeline/rpi/common/pipeline_base.cpp
blob: 4b147fdb379ae92a8e339c2462f2ca1fe26df999 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019-2023, Raspberry Pi Ltd
 *
 * Pipeline handler base class for Raspberry Pi devices
 */

#include "pipeline_base.h"

#include <chrono>

#include <linux/media-bus-format.h>
#include <linux/videodev2.h>

#include <libcamera/base/file.h>
#include <libcamera/base/utils.h>

#include <libcamera/formats.h>
#include <libcamera/logging.h>
#include <libcamera/property_ids.h>

#include "libcamera/internal/camera_lens.h"
#include "libcamera/internal/ipa_manager.h"
#include "libcamera/internal/v4l2_subdevice.h"

using namespace std::chrono_literals;

namespace libcamera {

using namespace RPi;

LOG_DEFINE_CATEGORY(RPI)

using StreamFlag = RPi::Stream::StreamFlag;

namespace {

constexpr unsigned int defaultRawBitDepth = 12;

PixelFormat mbusCodeToPixelFormat(unsigned int code,
				  BayerFormat::Packing packingReq)
{
	BayerFormat bayer = BayerFormat::fromMbusCode(code);

	ASSERT(bayer.isValid());

	bayer.packing = packingReq;
	PixelFormat pix = bayer.toPixelFormat();

	/*
	 * Not all formats (e.g. 8-bit or 16-bit Bayer formats) can have packed
	 * variants. So if the PixelFormat returns as invalid, use the non-packed
	 * conversion instead.
	 */
	if (!pix.isValid()) {
		bayer.packing = BayerFormat::Packing::None;
		pix = bayer.toPixelFormat();
	}

	return pix;
}

bool isMonoSensor(std::unique_ptr<CameraSensor> &sensor)
{
	unsigned int mbusCode = sensor->mbusCodes()[0];
	const BayerFormat &bayer = BayerFormat::fromMbusCode(mbusCode);

	return bayer.order == BayerFormat::Order::MONO;
}

const std::vector<ColorSpace> validColorSpaces = {
	ColorSpace::Sycc,
	ColorSpace::Smpte170m,
	ColorSpace::Rec709
};

std::optional<ColorSpace> findValidColorSpace(const ColorSpace &colourSpace)
{
	for (auto cs : validColorSpaces) {
		if (colourSpace.primaries == cs.primaries &&
		    colourSpace.transferFunction == cs.transferFunction)
			return cs;
	}

	return std::nullopt;
}

} /* namespace */

/*
 * Raspberry Pi drivers expect the following colour spaces:
 * - V4L2_COLORSPACE_RAW for raw streams.
 * - One of V4L2_COLORSPACE_JPEG, V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_REC709 for
 *   non-raw streams. Other fields such as transfer function, YCbCr encoding and
 *   quantisation are not used.
 *
 * The libcamera colour spaces that we wish to use corresponding to these are therefore:
 * - ColorSpace::Raw for V4L2_COLORSPACE_RAW
 * - ColorSpace::Sycc for V4L2_COLORSPACE_JPEG
 * - ColorSpace::Smpte170m for V4L2_COLORSPACE_SMPTE170M
 * - ColorSpace::Rec709 for V4L2_COLORSPACE_REC709
 */
CameraConfiguration::Status RPiCameraConfiguration::validateColorSpaces([[maybe_unused]] ColorSpaceFlags flags)
{
	Status status = Valid;
	yuvColorSpace_.reset();

	for (auto &cfg : config_) {
		/* First fix up raw streams to have the "raw" colour space. */
		if (PipelineHandlerBase::isRaw(cfg.pixelFormat)) {
			/* If there was no value here, that doesn't count as "adjusted". */
			if (cfg.colorSpace && cfg.colorSpace != ColorSpace::Raw)
				status = Adjusted;
			cfg.colorSpace = ColorSpace::Raw;
			continue;
		}

		/* Next we need to find our shared colour space. The first valid one will do. */
		if (cfg.colorSpace && !yuvColorSpace_)
			yuvColorSpace_ = findValidColorSpace(cfg.colorSpace.value());
	}

	/* If no colour space was given anywhere, choose sYCC. */
	if (!yuvColorSpace_)
		yuvColorSpace_ = ColorSpace::Sycc;

	/* Note the version of this that any RGB streams will have to use. */
	rgbColorSpace_ = yuvColorSpace_;
	rgbColorSpace_->ycbcrEncoding = ColorSpace::YcbcrEncoding::None;
	rgbColorSpace_->range = ColorSpace::Range::Full;

	/* Go through the streams again and force everyone to the same colour space. */
	for (auto &cfg : config_) {
		if (cfg.colorSpace == ColorSpace::Raw)
			continue;

		if (PipelineHandlerBase::isYuv(cfg.pixelFormat) && cfg.colorSpace != yuvColorSpace_) {
			/* Again, no value means "not adjusted". */
			if (cfg.colorSpace)
				status = Adjusted;
			cfg.colorSpace = yuvColorSpace_;
		}
		if (PipelineHandlerBase::isRgb(cfg.pixelFormat) && cfg.colorSpace != rgbColorSpace_) {
			/* Be nice, and let the YUV version count as non-adjusted too. */
			if (cfg.colorSpace && cfg.colorSpace != yuvColorSpace_)
				status = Adjusted;
			cfg.colorSpace = rgbColorSpace_;
		}
	}

	return status;
}

CameraConfiguration::Status RPiCameraConfiguration::validate()
{
	Status status = Valid;

	if (config_.empty())
		return Invalid;

	/*
	 * Make sure that if a sensor configuration has been requested it
	 * is valid.
	 */
	if (sensorConfig && !sensorConfig->isValid()) {
		LOG(RPI, Error) << "Invalid sensor configuration request";
		return Invalid;
	}

	status = validateColorSpaces(ColorSpaceFlag::StreamsShareColorSpace);

	/*
	 * Validate the requested transform against the sensor capabilities and
	 * rotation and store the final combined transform that configure() will
	 * need to apply to the sensor to save us working it out again.
	 */
	Orientation requestedOrientation = orientation;
	combinedTransform_ = data_->sensor_->computeTransform(&orientation);
	if (orientation != requestedOrientation)
		status = Adjusted;

	rawStreams_.clear();
	outStreams_.clear();
	unsigned int rawStreamIndex = 0;
	unsigned int outStreamIndex = 0;

	for (auto &cfg : config_) {
		if (PipelineHandlerBase::isRaw(cfg.pixelFormat))
			rawStreams_.emplace_back(rawStreamIndex++, &cfg);
		else
			outStreams_.emplace_back(outStreamIndex++, &cfg);
	}

	/* Sort the streams so the highest resolution is first. */
	std::sort(rawStreams_.begin(), rawStreams_.end(),
		  [](auto &l, auto &r) { return l.cfg->size > r.cfg->size; });

	std::sort(outStreams_.begin(), outStreams_.end(),
		  [](auto &l, auto &r) { return l.cfg->size > r.cfg->size; });

	/* Compute the sensor's format then do any platform specific fixups. */
	unsigned int bitDepth;
	Size sensorSize;

	if (sensorConfig) {
		/* Use the application provided sensor configuration. */
		bitDepth = sensorConfig->bitDepth;
		sensorSize = sensorConfig->outputSize;
	} else if (!rawStreams_.empty()) {
		/* Use the RAW stream format and size. */
		BayerFormat bayerFormat = BayerFormat::fromPixelFormat(rawStreams_[0].cfg->pixelFormat);
		bitDepth = bayerFormat.bitDepth;
		sensorSize = rawStreams_[0].cfg->size;
	} else {
		bitDepth = defaultRawBitDepth;
		sensorSize = outStreams_[0].cfg->size;
	}

	sensorFormat_ = data_->findBestFormat(sensorSize, bitDepth);

	/*
	 * If a sensor configuration has been requested, it should apply
	 * without modifications.
	 */
	if (sensorConfig) {
		BayerFormat bayer = BayerFormat::fromMbusCode(sensorFormat_.code);

		if (bayer.bitDepth != sensorConfig->bitDepth ||
		    sensorFormat_.size != sensorConfig->outputSize) {
			LOG(RPI, Error) << "Invalid sensor configuration: "
					<< "bitDepth/size mismatch";
			return Invalid;
		}
	}

	/* Start with some initial generic RAW stream adjustments. */
	for (auto &raw : rawStreams_) {
		StreamConfiguration *rawStream = raw.cfg;

		/*
		 * Some sensors change their Bayer order when they are
		 * h-flipped or v-flipped, according to the transform. Adjust
		 * the RAW stream to match the computed sensor format by
		 * applying the sensor Bayer order resulting from the transform
		 * to the user request.
		 */

		BayerFormat cfgBayer = BayerFormat::fromPixelFormat(rawStream->pixelFormat);
		cfgBayer.order = data_->sensor_->bayerOrder(combinedTransform_);

		if (rawStream->pixelFormat != cfgBayer.toPixelFormat()) {
			rawStream->pixelFormat = cfgBayer.toPixelFormat();
			status = Adjusted;
		}
	}

	/* Do any platform specific fixups. */
	Status st = data_->platformValidate(this);
	if (st == Invalid)
		return Invalid;
	else if (st == Adjusted)
		status = Adjusted;

	/* Further fixups on the RAW streams. */
	for (auto &raw : rawStreams_) {
		int ret = raw.dev->tryFormat(&raw.format);
		if (ret)
			return Invalid;

		if (RPi::PipelineHandlerBase::updateStreamConfig(raw.cfg, raw.format))
			status = Adjusted;
	}

	/* Further fixups on the ISP output streams. */
	for (auto &out : outStreams_) {

		/*
		 * We want to send the associated YCbCr info through to the driver.
		 *
		 * But for RGB streams, the YCbCr info gets overwritten on the way back
		 * so we must check against what the stream cfg says, not what we actually
		 * requested (which carefully included the YCbCr info)!
		 */
		out.format.colorSpace = yuvColorSpace_;

		LOG(RPI, Debug)
			<< "Try color space " << ColorSpace::toString(out.cfg->colorSpace);

		int ret = out.dev->tryFormat(&out.format);
		if (ret)
			return Invalid;

		if (RPi::PipelineHandlerBase::updateStreamConfig(out.cfg, out.format))
			status = Adjusted;
	}

	return status;
}

bool PipelineHandlerBase::isRgb(const PixelFormat &pixFmt)
{
	const PixelFormatInfo &info = PixelFormatInfo::info(pixFmt);
	return info.colourEncoding == PixelFormatInfo::ColourEncodingRGB;
}

bool PipelineHandlerBase::isYuv(const PixelFormat &pixFmt)
{
	/* The code below would return true for raw mono streams, so weed those out first. */
	if (PipelineHandlerBase::isRaw(pixFmt))
		return false;

	const PixelFormatInfo &info = PixelFormatInfo::info(pixFmt);
	return info.colourEncoding == PixelFormatInfo::ColourEncodingYUV;
}

bool PipelineHandlerBase::isRaw(const PixelFormat &pixFmt)
{
	/* This test works for both Bayer and raw mono formats. */
	return BayerFormat::fromPixelFormat(pixFmt).isValid();
}

/*
 * Adjust a StreamConfiguration fields to match a video device format.
 * Returns true if the StreamConfiguration has been adjusted.
 */
bool PipelineHandlerBase::updateStreamConfig(StreamConfiguration *stream,
					     const V4L2DeviceFormat &format)
{
	const PixelFormat &pixFormat = format.fourcc.toPixelFormat();
	bool adjusted = false;

	if (stream->pixelFormat != pixFormat || stream->size != format.size) {
		stream->pixelFormat = pixFormat;
		stream->size = format.size;
		adjusted = true;
	}

	if (stream->colorSpace != format.colorSpace) {
		stream->colorSpace = format.colorSpace;
		adjusted = true;
		LOG(RPI, Debug)
			<< "Color space changed from "
			<< ColorSpace::toString(stream->colorSpace) << " to "
			<< ColorSpace::toString(format.colorSpace);
	}

	stream->stride = format.planes[0].bpl;
	stream->frameSize = format.planes[0].size;

	return adjusted;
}

/*
 * Populate and return a video device format using a StreamConfiguration. */
V4L2DeviceFormat PipelineHandlerBase::toV4L2DeviceFormat(const V4L2VideoDevice *dev,
							 const StreamConfiguration *stream)
{
	V4L2DeviceFormat deviceFormat;

	const PixelFormatInfo &info = PixelFormatInfo::info(stream->pixelFormat);
	deviceFormat.planesCount = info.numPlanes();
	deviceFormat.fourcc = dev->toV4L2PixelFormat(stream->pixelFormat);
	deviceFormat.size = stream->size;
	deviceFormat.planes[0].bpl = stream->stride;
	deviceFormat.colorSpace = stream->colorSpace;

	return deviceFormat;
}

V4L2DeviceFormat PipelineHandlerBase::toV4L2DeviceFormat(const V4L2VideoDevice *dev,
							 const V4L2SubdeviceFormat &format,
							 BayerFormat::Packing packingReq)
{
	unsigned int code = format.code;
	const PixelFormat pix = mbusCodeToPixelFormat(code, packingReq);
	V4L2DeviceFormat deviceFormat;

	deviceFormat.fourcc = dev->toV4L2PixelFormat(pix);
	deviceFormat.size = format.size;
	deviceFormat.colorSpace = format.colorSpace;
	return deviceFormat;
}

std::unique_ptr<CameraConfiguration>
PipelineHandlerBase::generateConfiguration(Camera *camera, Span<const StreamRole> roles)
{
	CameraData *data = cameraData(camera);
	std::unique_ptr<CameraConfiguration> config =
		std::make_unique<RPiCameraConfiguration>(data);
	V4L2SubdeviceFormat sensorFormat;
	unsigned int bufferCount;
	PixelFormat pixelFormat;
	V4L2VideoDevice::Formats fmts;
	Size size;
	std::optional<ColorSpace> colorSpace;

	if (roles.empty())
		return config;

	Size sensorSize = data->sensor_->resolution();
	for (const StreamRole role : roles) {
		switch (role) {
		case StreamRole::Raw:
			size = sensorSize;
			sensorFormat = data->findBestFormat(size, defaultRawBitDepth);
			pixelFormat = mbusCodeToPixelFormat(sensorFormat.code,
							    BayerFormat::Packing::CSI2);
			ASSERT(pixelFormat.isValid());
			colorSpace = ColorSpace::Raw;
			bufferCount = 2;
			break;

		case StreamRole::StillCapture:
			fmts = data->ispFormats();
			pixelFormat = formats::YUV420;
			/*
			 * Still image codecs usually expect the sYCC color space.
			 * Even RGB codecs will be fine as the RGB we get with the
			 * sYCC color space is the same as sRGB.
			 */
			colorSpace = ColorSpace::Sycc;
			/* Return the largest sensor resolution. */
			size = sensorSize;
			bufferCount = 1;
			break;

		case StreamRole::VideoRecording:
			/*
			 * The colour denoise algorithm requires the analysis
			 * image, produced by the second ISP output, to be in
			 * YUV420 format. Select this format as the default, to
			 * maximize chances that it will be picked by
			 * applications and enable usage of the colour denoise
			 * algorithm.
			 */
			fmts = data->ispFormats();
			pixelFormat = formats::YUV420;
			/*
			 * Choose a color space appropriate for video recording.
			 * Rec.709 will be a good default for HD resolutions.
			 */
			colorSpace = ColorSpace::Rec709;
			size = { 1920, 1080 };
			bufferCount = 4;
			break;

		case StreamRole::Viewfinder:
			fmts = data->ispFormats();
			pixelFormat = formats::XRGB8888;
			colorSpace = ColorSpace::Sycc;
			size = { 800, 600 };
			bufferCount = 4;
			break;

		default:
			LOG(RPI, Error) << "Requested stream role not supported: "
					<< role;
			return nullptr;
		}

		std::map<PixelFormat, std::vector<SizeRange>> deviceFormats;
		if (role == StreamRole::Raw) {
			/* Translate the MBUS codes to a PixelFormat. */
			for (const auto &format : data->sensorFormats_) {
				PixelFormat pf = mbusCodeToPixelFormat(format.first,
								       BayerFormat::Packing::CSI2);
				if (pf.isValid())
					deviceFormats.emplace(std::piecewise_construct, std::forward_as_tuple(pf),
							      std::forward_as_tuple(format.second.begin(), format.second.end()));
			}
		} else {
			/*
			 * Translate the V4L2PixelFormat to PixelFormat. Note that we
			 * limit the recommended largest ISP output size to match the
			 * sensor resolution.
			 */
			for (const auto &format : fmts) {
				PixelFormat pf = format.first.toPixelFormat();
				/*
				 * Some V4L2 formats translate to the same pixel format (e.g. YU12, YM12
				 * both give YUV420). We must avoid duplicating the range in this case.
				 */
				if (pf.isValid() && deviceFormats.find(pf) == deviceFormats.end()) {
					const SizeRange &ispSizes = format.second[0];
					deviceFormats[pf].emplace_back(ispSizes.min, sensorSize,
								       ispSizes.hStep, ispSizes.vStep);
				}
			}
		}

		/* Add the stream format based on the device node used for the use case. */
		StreamFormats formats(deviceFormats);
		StreamConfiguration cfg(formats);
		cfg.size = size;
		cfg.pixelFormat = pixelFormat;
		cfg.colorSpace = colorSpace;
		cfg.bufferCount = bufferCount;
		config->addConfiguration(cfg);
	}

	return config;
}

int PipelineHandlerBase::configure(Camera *camera, CameraConfiguration *config)
{
	CameraData *data = cameraData(camera);
	int ret;

	/* Start by freeing all buffers and reset the stream states. */
	data->freeBuffers();
	for (auto const stream : data->streams_)
		stream->clearFlags(StreamFlag::External);

	/*
	 * Apply the format on the sensor with any cached transform.
	 *
	 * If the application has provided a sensor configuration apply it
	 * instead of just applying a format.
	 */
	RPiCameraConfiguration *rpiConfig = static_cast<RPiCameraConfiguration *>(config);
	V4L2SubdeviceFormat *sensorFormat = &rpiConfig->sensorFormat_;

	if (rpiConfig->sensorConfig) {
		ret = data->sensor_->applyConfiguration(*rpiConfig->sensorConfig,
							rpiConfig->combinedTransform_,
							sensorFormat);
	} else {
		ret = data->sensor_->setFormat(sensorFormat,
					       rpiConfig->combinedTransform_);
	}
	if (ret)
		return ret;

	/*
	 * Platform specific internal stream configuration. This also assigns
	 * external streams which get configured below.
	 */
	data->cropParams_.clear();
	ret = data->platformConfigure(rpiConfig);
	if (ret)
		return ret;

	ipa::RPi::ConfigResult result;
	ret = data->configureIPA(config, &result);
	if (ret) {
		LOG(RPI, Error) << "Failed to configure the IPA: " << ret;
		return ret;
	}

	/*
	 * Update the ScalerCropMaximum to the correct value for this camera mode.
	 * For us, it's the same as the "analogue crop".
	 *
	 * \todo Make this property the ScalerCrop maximum value when dynamic
	 * controls are available and set it at validate() time
	 */
	data->properties_.set(properties::ScalerCropMaximum, data->sensorInfo_.analogCrop);

	/* Store the mode sensitivity for the application. */
	data->properties_.set(properties::SensorSensitivity, result.modeSensitivity);

	/* Update the controls that the Raspberry Pi IPA can handle. */
	ControlInfoMap::Map ctrlMap;
	for (auto const &c : result.controlInfo)
		ctrlMap.emplace(c.first, c.second);

	const auto cropParamsIt = data->cropParams_.find(0);
	if (cropParamsIt != data->cropParams_.end()) {
		const CameraData::CropParams &cropParams = cropParamsIt->second;
		/*
		 * Add the ScalerCrop control limits based on the current mode and
		 * the first configured stream.
		 */
		Rectangle ispMinCrop = data->scaleIspCrop(Rectangle(cropParams.ispMinCropSize));
		ctrlMap[&controls::ScalerCrop] = ControlInfo(ispMinCrop, data->sensorInfo_.analogCrop,
							     data->scaleIspCrop(cropParams.ispCrop));
		if (data->cropParams_.size() == 2) {
			/*
			 * The control map for rpi::ScalerCrops has the min value
			 * as the default crop for stream 0, max value as the default
			 * value for stream 1.
			 */
			ctrlMap[&controls::rpi::ScalerCrops] =
				ControlInfo(data->scaleIspCrop(data->cropParams_.at(0).ispCrop),
					    data->scaleIspCrop(data->cropParams_.at(1).ispCrop),
					    ctrlMap[&controls::ScalerCrop].def());
		}
	}

	data->controlInfo_ = ControlInfoMap(std::move(ctrlMap), result.controlInfo.idmap());

	/* Setup the Video Mux/Bridge entities. */
	for (auto &[device, link] : data->bridgeDevices_) {
		/*
		 * Start by disabling all the sink pad links on the devices in the
		 * cascade, with the exception of the link connecting the device.
		 */
		for (const MediaPad *p : device->entity()->pads()) {
			if (!(p->flags() & MEDIA_PAD_FL_SINK))
				continue;

			for (MediaLink *l : p->links()) {
				if (l != link)
					l->setEnabled(false);
			}
		}

		/*
		 * Next, enable the entity -> entity links, and setup the pad format.
		 *
		 * \todo Some bridge devices may chainge the media bus code, so we
		 * ought to read the source pad format and propagate it to the sink pad.
		 */
		link->setEnabled(true);
		const MediaPad *sinkPad = link->sink();
		ret = device->setFormat(sinkPad->index(), sensorFormat);
		if (ret) {
			LOG(RPI, Error) << "Failed to set format on " << device->entity()->name()
					<< " pad " << sinkPad->index()
					<< " with format  " << *sensorFormat
					<< ": " << ret;
			return ret;
		}

		LOG(RPI, Debug) << "Configured media link on device " << device->entity()->name()
				<< " on pad " << sinkPad->index();
	}

	return 0;
}

int PipelineHandlerBase::exportFrameBuffers([[maybe_unused]] Camera *camera, libcamera::Stream *stream,
					    std::vector<std::unique_ptr<FrameBuffer>> *buffers)
{
	RPi::Stream *s = static_cast<RPi::Stream *>(stream);
	unsigned int count = stream->configuration().bufferCount;
	int ret = s->dev()->exportBuffers(count, buffers);

	s->setExportedBuffers(buffers);

	return ret;
}

int PipelineHandlerBase::start(Camera *camera, const ControlList *controls)
{
	CameraData *data = cameraData(camera);
	int ret;

	/* Check if a ScalerCrop control was specified. */
	if (controls)
		data->applyScalerCrop(*controls);

	/* Start the IPA. */
	ipa::RPi::StartResult result;
	data->ipa_->start(controls ? *controls : ControlList{ controls::controls },
			  &result);

	/* Apply any gain/exposure settings that the IPA may have passed back. */
	if (!result.controls.empty())
		data->setSensorControls(result.controls);

	/* Configure the number of dropped frames required on startup. */
	data->dropFrameCount_ = data->config_.disableStartupFrameDrops
			      ? 0 : result.dropFrameCount;

	for (auto const stream : data->streams_)
		stream->resetBuffers();

	if (!data->buffersAllocated_) {
		/* Allocate buffers for internal pipeline usage. */
		ret = prepareBuffers(camera);
		if (ret) {
			LOG(RPI, Error) << "Failed to allocate buffers";
			data->freeBuffers();
			stop(camera);
			return ret;
		}
		data->buffersAllocated_ = true;
	}

	/* We need to set the dropFrameCount_ before queueing buffers. */
	ret = queueAllBuffers(camera);
	if (ret) {
		LOG(RPI, Error) << "Failed to queue buffers";
		stop(camera);
		return ret;
	}

	/*
	 * Reset the delayed controls with the gain and exposure values set by
	 * the IPA.
	 */
	data->delayedCtrls_->reset(0);
	data->state_ = CameraData::State::Idle;

	/* Enable SOF event generation. */
	data->frontendDevice()->setFrameStartEnabled(true);

	data->platformStart();

	/* Start all streams. */
	for (auto const stream : data->streams_) {
		ret = stream->dev()->streamOn();
		if (ret) {
			stop(camera);
			return ret;
		}
	}

	return 0;
}

void PipelineHandlerBase::stopDevice(Camera *camera)
{
	CameraData *data = cameraData(camera);

	data->state_ = CameraData::State::Stopped;
	data->platformStop();

	for (auto const stream : data->streams_)
		stream->dev()->streamOff();

	/* Disable SOF event generation. */
	data->frontendDevice()->setFrameStartEnabled(false);

	data->clearIncompleteRequests();

	/* Stop the IPA. */
	data->ipa_->stop();
}

void PipelineHandlerBase::releaseDevice(Camera *camera)
{
	CameraData *data = cameraData(camera);
	data->freeBuffers();
}

int PipelineHandlerBase::queueRequestDevice(Camera *camera, Request *request)
{
	CameraData *data = cameraData(camera);

	if (!data->isRunning())
		return -EINVAL;

	LOG(RPI, Debug) << "queueRequestDevice: New request sequence: "
			<< request->sequence();

	/* Push all buffers supplied in the Request to the respective streams. */
	for (auto stream : data->streams_) {
		if (!(stream->getFlags() & StreamFlag::External))
			continue;

		FrameBuffer *buffer = request->findBuffer(stream);
		if (buffer && !stream->getBufferId(buffer)) {
			/*
			 * This buffer is not recognised, so it must have been allocated
			 * outside the v4l2 device. Store it in the stream buffer list
			 * so we can track it.
			 */
			stream->setExportedBuffer(buffer);
		}

		/*
		 * If no buffer is provided by the request for this stream, we
		 * queue a nullptr to the stream to signify that it must use an
		 * internally allocated buffer for this capture request. This
		 * buffer will not be given back to the application, but is used
		 * to support the internal pipeline flow.
		 *
		 * The below queueBuffer() call will do nothing if there are not
		 * enough internal buffers allocated, but this will be handled by
		 * queuing the request for buffers in the RPiStream object.
		 */
		int ret = stream->queueBuffer(buffer);
		if (ret)
			return ret;
	}

	/* Push the request to the back of the queue. */
	data->requestQueue_.push(request);
	data->handleState();

	return 0;
}

int PipelineHandlerBase::registerCamera(std::unique_ptr<RPi::CameraData> &cameraData,
					MediaDevice *frontend, const std::string &frontendName,
					MediaDevice *backend, MediaEntity *sensorEntity)
{
	CameraData *data = cameraData.get();
	int ret;

	data->sensor_ = CameraSensorFactoryBase::create(sensorEntity);
	if (!data->sensor_)
		return -EINVAL;

	/* Populate the map of sensor supported formats and sizes. */
	for (auto const mbusCode : data->sensor_->mbusCodes())
		data->sensorFormats_.emplace(mbusCode,
					     data->sensor_->sizes(mbusCode));

	/*
	 * Enumerate all the Video Mux/Bridge devices across the sensor -> Fr
	 * chain. There may be a cascade of devices in this chain!
	 */
	MediaLink *link = sensorEntity->getPadByIndex(0)->links()[0];
	data->enumerateVideoDevices(link, frontendName);

	ipa::RPi::InitResult result;
	if (data->loadIPA(&result)) {
		LOG(RPI, Error) << "Failed to load a suitable IPA library";
		return -EINVAL;
	}

	/*
	 * Setup our delayed control writer with the sensor default
	 * gain and exposure delays. Mark VBLANK for priority write.
	 */
	const CameraSensorProperties::SensorDelays &delays = data->sensor_->sensorDelays();
	std::unordered_map<uint32_t, RPi::DelayedControls::ControlParams> params = {
		{ V4L2_CID_ANALOGUE_GAIN, { delays.gainDelay, false } },
		{ V4L2_CID_EXPOSURE, { delays.exposureDelay, false } },
		{ V4L2_CID_HBLANK, { delays.hblankDelay, false } },
		{ V4L2_CID_VBLANK, { delays.vblankDelay, true } }
	};
	data->delayedCtrls_ = std::make_unique<RPi::DelayedControls>(data->sensor_->device(), params);
	data->sensorMetadata_ = result.sensorConfig.sensorMetadata;

	/* Register initial controls that the Raspberry Pi IPA can handle. */
	data->controlInfo_ = std::move(result.controlInfo);

	/* Initialize the camera properties. */
	data->properties_ = data->sensor_->properties();

	/*
	 * The V4L2_CID_NOTIFY_GAINS control, if present, is used to inform the
	 * sensor of the colour gains. It is defined to be a linear gain where
	 * the default value represents a gain of exactly one.
	 */
	auto it = data->sensor_->controls().find(V4L2_CID_NOTIFY_GAINS);
	if (it != data->sensor_->controls().end())
		data->notifyGainsUnity_ = it->second.def().get<int32_t>();

	/*
	 * Set a default value for the ScalerCropMaximum property to show
	 * that we support its use, however, initialise it to zero because
	 * it's not meaningful until a camera mode has been chosen.
	 */
	data->properties_.set(properties::ScalerCropMaximum, Rectangle{});

	ret = platformRegister(cameraData, frontend, backend);
	if (ret)
		return ret;

	ret = data->loadPipelineConfiguration();
	if (ret) {
		LOG(RPI, Error) << "Unable to load pipeline configuration";
		return ret;
	}

	/* Setup the general IPA signal handlers. */
	data->frontendDevice()->dequeueTimeout.connect(data, &RPi::CameraData::cameraTimeout);
	data->frontendDevice()->frameStart.connect(data, &RPi::CameraData::frameStarted);
	data->ipa_->setDelayedControls.connect(data, &CameraData::setDelayedControls);
	data->ipa_->setLensControls.connect(data, &CameraData::setLensControls);
	data->ipa_->metadataReady.connect(data, &CameraData::metadataReady);

	return 0;
}

void PipelineHandlerBase::mapBuffers(Camera *camera, const BufferMap &buffers, unsigned int mask)
{
	CameraData *data = cameraData(camera);
	std::vector<IPABuffer> bufferIds;
	/*
	 * Link the FrameBuffers with the id (key value) in the map stored in
	 * the RPi stream object - along with an identifier mask.
	 *
	 * This will allow us to identify buffers passed between the pipeline
	 * handler and the IPA.
	 */
	for (auto const &it : buffers) {
		bufferIds.push_back(IPABuffer(mask | it.first,
					      it.second.buffer->planes()));
		data->bufferIds_.insert(mask | it.first);
	}

	data->ipa_->mapBuffers(bufferIds);
}

int PipelineHandlerBase::queueAllBuffers(Camera *camera)
{
	CameraData *data = cameraData(camera);
	int ret;

	for (auto const stream : data->streams_) {
		if (!(stream->getFlags() & StreamFlag::External)) {
			ret = stream->queueAllBuffers();
			if (ret < 0)
				return ret;
		} else {
			/*
			 * For external streams, we must queue up a set of internal
			 * buffers to handle the number of drop frames requested by
			 * the IPA. This is done by passing nullptr in queueBuffer().
			 *
			 * The below queueBuffer() call will do nothing if there
			 * are not enough internal buffers allocated, but this will
			 * be handled by queuing the request for buffers in the
			 * RPiStream object.
			 */
			unsigned int i;
			for (i = 0; i < data->dropFrameCount_; i++) {
				ret = stream->queueBuffer(nullptr);
				if (ret)
					return ret;
			}
		}
	}

	return 0;
}

double CameraData::scoreFormat(double desired, double actual) const
{
	double score = desired - actual;
	/* Smaller desired dimensions are preferred. */
	if (score < 0.0)
		score = (-score) / 8;
	/* Penalise non-exact matches. */
	if (actual != desired)
		score *= 2;

	return score;
}

V4L2SubdeviceFormat CameraData::findBestFormat(const Size &req, unsigned int bitDepth) const
{
	double bestScore = std::numeric_limits<double>::max(), score;
	V4L2SubdeviceFormat bestFormat;
	bestFormat.colorSpace = ColorSpace::Raw;

	constexpr float penaltyAr = 1500.0;
	constexpr float penaltyBitDepth = 500.0;

	/* Calculate the closest/best mode from the user requested size. */
	for (const auto &iter : sensorFormats_) {
		const unsigned int mbusCode = iter.first;
		const PixelFormat format = mbusCodeToPixelFormat(mbusCode,
								 BayerFormat::Packing::None);
		const PixelFormatInfo &info = PixelFormatInfo::info(format);

		for (const Size &size : iter.second) {
			double reqAr = static_cast<double>(req.width) / req.height;
			double fmtAr = static_cast<double>(size.width) / size.height;

			/* Score the dimensions for closeness. */
			score = scoreFormat(req.width, size.width);
			score += scoreFormat(req.height, size.height);
			score += penaltyAr * scoreFormat(reqAr, fmtAr);

			/* Add any penalties... this is not an exact science! */
			score += utils::abs_diff(info.bitsPerPixel, bitDepth) * penaltyBitDepth;

			if (score <= bestScore) {
				bestScore = score;
				bestFormat.code = mbusCode;
				bestFormat.size = size;
			}

			LOG(RPI, Debug) << "Format: " << size
					<< " fmt " << format
					<< " Score: " << score
					<< " (best " << bestScore << ")";
		}
	}

	return bestFormat;
}

void CameraData::freeBuffers()
{
	if (ipa_) {
		/*
		 * Copy the buffer ids from the unordered_set to a vector to
		 * pass to the IPA.
		 */
		std::vector<unsigned int> bufferIds(bufferIds_.begin(),
						    bufferIds_.end());
		ipa_->unmapBuffers(bufferIds);
		bufferIds_.clear();
	}

	for (auto const stream : streams_)
		stream->releaseBuffers();

	platformFreeBuffers();

	buffersAllocated_ = false;
}

/*
 * enumerateVideoDevices() iterates over the Media Controller topology, starting
 * at the sensor and finishing at the frontend. For each sensor, CameraData stores
 * a unique list of any intermediate video mux or bridge devices connected in a
 * cascade, together with the entity to entity link.
 *
 * Entity pad configuration and link enabling happens at the end of configure().
 * We first disable all pad links on each entity device in the chain, and then
 * selectively enabling the specific links to link sensor to the frontend across
 * all intermediate muxes and bridges.
 *
 * In the cascaded topology below, if Sensor1 is used, the Mux2 -> Mux1 link
 * will be disabled, and Sensor1 -> Mux1 -> Frontend links enabled. Alternatively,
 * if Sensor3 is used, the Sensor2 -> Mux2 and Sensor1 -> Mux1 links are disabled,
 * and Sensor3 -> Mux2 -> Mux1 -> Frontend links are enabled. All other links will
 * remain unchanged.
 *
 *  +----------+
 *  |     FE   |
 *  +-----^----+
 *        |
 *    +---+---+
 *    | Mux1  |<------+
 *    +--^----        |
 *       |            |
 * +-----+---+    +---+---+
 * | Sensor1 |    |  Mux2 |<--+
 * +---------+    +-^-----+   |
 *                  |         |
 *          +-------+-+   +---+-----+
 *          | Sensor2 |   | Sensor3 |
 *          +---------+   +---------+
 */
void CameraData::enumerateVideoDevices(MediaLink *link, const std::string &frontend)
{
	const MediaPad *sinkPad = link->sink();
	const MediaEntity *entity = sinkPad->entity();
	bool frontendFound = false;

	/* We only deal with Video Mux and Bridge devices in cascade. */
	if (entity->function() != MEDIA_ENT_F_VID_MUX &&
	    entity->function() != MEDIA_ENT_F_VID_IF_BRIDGE)
		return;

	/* Find the source pad for this Video Mux or Bridge device. */
	const MediaPad *sourcePad = nullptr;
	for (const MediaPad *pad : entity->pads()) {
		if (pad->flags() & MEDIA_PAD_FL_SOURCE) {
			/*
			 * We can only deal with devices that have a single source
			 * pad. If this device has multiple source pads, ignore it
			 * and this branch in the cascade.
			 */
			if (sourcePad)
				return;

			sourcePad = pad;
		}
	}

	LOG(RPI, Debug) << "Found video mux device " << entity->name()
			<< " linked to sink pad " << sinkPad->index();

	bridgeDevices_.emplace_back(std::make_unique<V4L2Subdevice>(entity), link);
	bridgeDevices_.back().first->open();

	/*
	 * Iterate through all the sink pad links down the cascade to find any
	 * other Video Mux and Bridge devices.
	 */
	for (MediaLink *l : sourcePad->links()) {
		enumerateVideoDevices(l, frontend);
		/* Once we reach the Frontend entity, we are done. */
		if (l->sink()->entity()->name() == frontend) {
			frontendFound = true;
			break;
		}
	}

	/* This identifies the end of our entity enumeration recursion. */
	if (link->source()->entity()->function() == MEDIA_ENT_F_CAM_SENSOR) {
		/*
		 * If the frontend is not at the end of this cascade, we cannot
		 * configure this topology automatically, so remove all entity
		 * references.
		 */
		if (!frontendFound) {
			LOG(RPI, Warning) << "Cannot automatically configure this MC topology!";
			bridgeDevices_.clear();
		}
	}
}

int CameraData::loadPipelineConfiguration()
{
	config_ = {
		.disableStartupFrameDrops = false,
		.cameraTimeoutValue = 0,
	};

	/* Initial configuration of the platform, in case no config file is present */
	platformPipelineConfigure({});

	char const *configFromEnv = utils::secure_getenv("LIBCAMERA_RPI_CONFIG_FILE");
	if (!configFromEnv || *configFromEnv == '\0')
		return 0;

	std::string filename = std::string(configFromEnv);
	File file(filename);

	if (!file.open(File::OpenModeFlag::ReadOnly)) {
		LOG(RPI, Warning) << "Failed to open configuration file '" << filename << "'"
				  << ", using defaults";
		return 0;
	}

	LOG(RPI, Info) << "Using configuration file '" << filename << "'";

	std::unique_ptr<YamlObject> root = YamlParser::parse(file);
	if (!root) {
		LOG(RPI, Warning) << "Failed to parse configuration file, using defaults";
		return 0;
	}

	std::optional<double> ver = (*root)["version"].get<double>();
	if (!ver || *ver != 1.0) {
		LOG(RPI, Warning) << "Unexpected configuration file version reported: "
				  << *ver;
		return 0;
	}

	const YamlObject &phConfig = (*root)["pipeline_handler"];

	config_.disableStartupFrameDrops =
		phConfig["disable_startup_frame_drops"].get<bool>(config_.disableStartupFrameDrops);

	config_.cameraTimeoutValue =
		phConfig["camera_timeout_value_ms"].get<unsigned int>(config_.cameraTimeoutValue);

	if (config_.cameraTimeoutValue) {
		/* Disable the IPA signal to control timeout and set the user requested value. */
		ipa_->setCameraTimeout.disconnect();
		frontendDevice()->setDequeueTimeout(config_.cameraTimeoutValue * 1ms);
	}

	return platformPipelineConfigure(root);
}

int CameraData::loadIPA(ipa::RPi::InitResult *result)
{
	int ret;

	ipa_ = IPAManager::createIPA<ipa::RPi::IPAProxyRPi>(pipe(), 1, 1);

	if (!ipa_)
		return -ENOENT;

	/*
	 * The configuration (tuning file) is made from the sensor name unless
	 * the environment variable overrides it.
	 */
	std::string configurationFile;
	char const *configFromEnv = utils::secure_getenv("LIBCAMERA_RPI_TUNING_FILE");
	if (!configFromEnv || *configFromEnv == '\0') {
		std::string model = sensor_->model();
		if (isMonoSensor(sensor_))
			model += "_mono";
		configurationFile = ipa_->configurationFile(model + ".json");
	} else {
		configurationFile = std::string(configFromEnv);
	}

	IPASettings settings(configurationFile, sensor_->model());
	ipa::RPi::InitParams params;

	ret = sensor_->sensorInfo(&params.sensorInfo);
	if (ret) {
		LOG(RPI, Error) << "Failed to retrieve camera sensor info";
		return ret;
	}

	params.lensPresent = !!sensor_->focusLens();
	ret = platformInitIpa(params);
	if (ret)
		return ret;

	return ipa_->init(settings, params, result);
}

int CameraData::configureIPA(const CameraConfiguration *config, ipa::RPi::ConfigResult *result)
{
	ipa::RPi::ConfigParams params;
	int ret;

	params.sensorControls = sensor_->controls();
	if (sensor_->focusLens())
		params.lensControls = sensor_->focusLens()->controls();

	ret = platformConfigureIpa(params);
	if (ret)
		return ret;

	/* We store the IPACameraSensorInfo for digital zoom calculations. */
	ret = sensor_->sensorInfo(&sensorInfo_);
	if (ret) {
		LOG(RPI, Error) << "Failed to retrieve camera sensor info";
		return ret;
	}

	/* Always send the user transform to the IPA. */
	Transform transform = config->orientation / Orientation::Rotate0;
	params.transform = static_cast<unsigned int>(transform);

	/* Ready the IPA - it must know about the sensor resolution. */
	ret = ipa_->configure(sensorInfo_, params, result);
	if (ret < 0) {
		LOG(RPI, Error) << "IPA configuration failed!";
		return -EPIPE;
	}

	if (!result->sensorControls.empty())
		setSensorControls(result->sensorControls);
	if (!result->lensControls.empty())
		setLensControls(result->lensControls);

	return 0;
}

void CameraData::metadataReady(const ControlList &metadata)
{
	if (!isRunning())
		return;

	/* Add to the Request metadata buffer what the IPA has provided. */
	/* Last thing to do is to fill up the request metadata. */
	Request *request = requestQueue_.front();
	request->metadata().merge(metadata);

	/*
	 * Inform the sensor of the latest colour gains if it has the
	 * V4L2_CID_NOTIFY_GAINS control (which means notifyGainsUnity_ is set).
	 */
	const auto &colourGains = metadata.get(libcamera::controls::ColourGains);
	if (notifyGainsUnity_ && colourGains) {
		/* The control wants linear gains in the order B, Gb, Gr, R. */
		ControlList ctrls(sensor_->controls());
		std::array<int32_t, 4> gains{
			static_cast<int32_t>((*colourGains)[1] * *notifyGainsUnity_),
			*notifyGainsUnity_,
			*notifyGainsUnity_,
			static_cast<int32_t>((*colourGains)[0] * *notifyGainsUnity_)
		};
		ctrls.set(V4L2_CID_NOTIFY_GAINS, Span<const int32_t>{ gains });

		sensor_->setControls(&ctrls);
	}
}

void CameraData::setDelayedControls(const ControlList &controls, uint32_t delayContext)
{
	if (!delayedCtrls_->push(controls, delayContext))
		LOG(RPI, Error) << "V4L2 DelayedControl set failed";
}

void CameraData::setLensControls(const ControlList &controls)
{
	CameraLens *lens = sensor_->focusLens();

	if (lens && controls.contains(V4L2_CID_FOCUS_ABSOLUTE)) {
		ControlValue const &focusValue = controls.get(V4L2_CID_FOCUS_ABSOLUTE);
		lens->setFocusPosition(focusValue.get<int32_t>());
	}
}

void CameraData::setSensorControls(ControlList &controls)
{
	/*
	 * We need to ensure that if both VBLANK and EXPOSURE are present, the
	 * former must be written ahead of, and separately from EXPOSURE to avoid
	 * V4L2 rejecting the latter. This is identical to what DelayedControls
	 * does with the priority write flag.
	 *
	 * As a consequence of the below logic, VBLANK gets set twice, and we
	 * rely on the v4l2 framework to not pass the second control set to the
	 * driver as the actual control value has not changed.
	 */
	if (controls.contains(V4L2_CID_EXPOSURE) && controls.contains(V4L2_CID_VBLANK)) {
		ControlList vblank_ctrl;

		vblank_ctrl.set(V4L2_CID_VBLANK, controls.get(V4L2_CID_VBLANK));
		sensor_->setControls(&vblank_ctrl);
	}

	sensor_->setControls(&controls);
}

Rectangle CameraData::scaleIspCrop(const Rectangle &ispCrop) const
{
	/*
	 * Scale a crop rectangle defined in the ISP's coordinates into native sensor
	 * coordinates.
	 */
	Rectangle nativeCrop = ispCrop.scaledBy(sensorInfo_.analogCrop.size(),
						sensorInfo_.outputSize);
	nativeCrop.translateBy(sensorInfo_.analogCrop.topLeft());
	return nativeCrop;
}

void CameraData::applyScalerCrop(const ControlList &controls)
{
	const auto &scalerCropRPi = controls.get<Span<const Rectangle>>(controls::rpi::ScalerCrops);
	const auto &scalerCropCore = controls.get<Rectangle>(controls::ScalerCrop);
	std::vector<Rectangle> scalerCrops;

	/*
	 * First thing to do is create a vector of crops to apply to each ISP output
	 * based on either controls::ScalerCrop or controls::rpi::ScalerCrops if
	 * present.
	 *
	 * If controls::rpi::ScalerCrops is preset, apply the given crops to the
	 * ISP output streams, indexed by the same order in which they had been
	 * configured. This is not the same as the ISP output index. Otherwise
	 * if controls::ScalerCrop is present, apply the same crop to all ISP
	 * output streams.
	 */
	for (unsigned int i = 0; i < cropParams_.size(); i++) {
		if (scalerCropRPi && i < scalerCropRPi->size())
			scalerCrops.push_back(scalerCropRPi->data()[i]);
		else if (scalerCropCore)
			scalerCrops.push_back(*scalerCropCore);
	}

	for (auto const &[i, scalerCrop] : utils::enumerate(scalerCrops)) {
		Rectangle nativeCrop = scalerCrop;

		if (!nativeCrop.width || !nativeCrop.height)
			nativeCrop = { 0, 0, 1, 1 };

		/* Create a version of the crop scaled to ISP (camera mode) pixels. */
		Rectangle ispCrop = nativeCrop.translatedBy(-sensorInfo_.analogCrop.topLeft());
		ispCrop.scaleBy(sensorInfo_.outputSize, sensorInfo_.analogCrop.size());

		/*
		 * The crop that we set must be:
		 * 1. At least as big as ispMinCropSize_, once that's been
		 *    enlarged to the same aspect ratio.
		 * 2. With the same mid-point, if possible.
		 * 3. But it can't go outside the sensor area.
		 */
		Size minSize = cropParams_.at(i).ispMinCropSize.expandedToAspectRatio(nativeCrop.size());
		Size size = ispCrop.size().expandedTo(minSize);
		ispCrop = size.centeredTo(ispCrop.center()).enclosedIn(Rectangle(sensorInfo_.outputSize));

		if (ispCrop != cropParams_.at(i).ispCrop) {
			cropParams_.at(i).ispCrop = ispCrop;
			platformSetIspCrop(cropParams_.at(i).ispIndex, ispCrop);
		}
	}
}

void CameraData::cameraTimeout()
{
	LOG(RPI, Error) << "Camera frontend has timed out!";
	LOG(RPI, Error) << "Please check that your camera sensor connector is attached securely.";
	LOG(RPI, Error) << "Alternatively, try another cable and/or sensor.";

	state_ = CameraData::State::Error;
	platformStop();

	/*
	 * To allow the application to attempt a recovery from this timeout,
	 * stop all devices streaming, and return any outstanding requests as
	 * incomplete and cancelled.
	 */
	for (auto const stream : streams_)
		stream->dev()->streamOff();

	clearIncompleteRequests();
}

void CameraData::frameStarted(uint32_t sequence)
{
	LOG(RPI, Debug) << "Frame start " << sequence;

	/* Write any controls for the next frame as soon as we can. */
	delayedCtrls_->applyControls(sequence);
}

void CameraData::clearIncompleteRequests()
{
	/*
	 * All outstanding requests (and associated buffers) must be returned
	 * back to the application.
	 */
	while (!requestQueue_.empty()) {
		Request *request = requestQueue_.front();

		for (auto &b : request->buffers()) {
			FrameBuffer *buffer = b.second;
			/*
			 * Has the buffer already been handed back to the
			 * request? If not, do so now.
			 */
			if (buffer->request()) {
				buffer->_d()->cancel();
				pipe()->completeBuffer(request, buffer);
			}
		}

		pipe()->completeRequest(request);
		requestQueue_.pop();
	}
}

void CameraData::handleStreamBuffer(FrameBuffer *buffer, RPi::Stream *stream)
{
	/*
	 * It is possible to be here without a pending request, so check
	 * that we actually have one to action, otherwise we just return
	 * buffer back to the stream.
	 */
	Request *request = requestQueue_.empty() ? nullptr : requestQueue_.front();
	if (!dropFrameCount_ && request && request->findBuffer(stream) == buffer) {
		/*
		 * Tag the buffer as completed, returning it to the
		 * application.
		 */
		LOG(RPI, Debug) << "Completing request buffer for stream "
				<< stream->name();
		pipe()->completeBuffer(request, buffer);
	} else {
		/*
		 * This buffer was not part of the Request (which happens if an
		 * internal buffer was used for an external stream, or
		 * unconditionally for internal streams), or there is no pending
		 * request, so we can recycle it.
		 */
		LOG(RPI, Debug) << "Returning buffer to stream "
				<< stream->name();
		stream->returnBuffer(buffer);
	}
}

void CameraData::handleState()
{
	switch (state_) {
	case State::Stopped:
	case State::Busy:
	case State::Error:
		break;

	case State::IpaComplete:
		/* If the request is completed, we will switch to Idle state. */
		checkRequestCompleted();
		/*
		 * No break here, we want to try running the pipeline again.
		 * The fallthrough clause below suppresses compiler warnings.
		 */
		[[fallthrough]];

	case State::Idle:
		tryRunPipeline();
		break;
	}
}

void CameraData::checkRequestCompleted()
{
	bool requestCompleted = false;
	/*
	 * If we are dropping this frame, do not touch the request, simply
	 * change the state to IDLE when ready.
	 */
	if (!dropFrameCount_) {
		Request *request = requestQueue_.front();
		if (request->hasPendingBuffers())
			return;

		/* Must wait for metadata to be filled in before completing. */
		if (state_ != State::IpaComplete)
			return;

		LOG(RPI, Debug) << "Completing request sequence: "
				<< request->sequence();

		pipe()->completeRequest(request);
		requestQueue_.pop();
		requestCompleted = true;
	}

	/*
	 * Make sure we have three outputs completed in the case of a dropped
	 * frame.
	 */
	if (state_ == State::IpaComplete &&
	    ((ispOutputCount_ == ispOutputTotal_ && dropFrameCount_) ||
	     requestCompleted)) {
		LOG(RPI, Debug) << "Going into Idle state";
		state_ = State::Idle;
		if (dropFrameCount_) {
			dropFrameCount_--;
			LOG(RPI, Debug) << "Dropping frame at the request of the IPA ("
					<< dropFrameCount_ << " left)";
		}
	}
}

void CameraData::fillRequestMetadata(const ControlList &bufferControls, Request *request)
{
	request->metadata().set(controls::SensorTimestamp,
				bufferControls.get(controls::SensorTimestamp).value_or(0));

	if (cropParams_.size()) {
		std::vector<Rectangle> crops;

		for (auto const &[k, v] : cropParams_)
			crops.push_back(scaleIspCrop(v.ispCrop));

		request->metadata().set(controls::ScalerCrop, crops[0]);
		if (crops.size() > 1) {
			request->metadata().set(controls::rpi::ScalerCrops,
						Span<const Rectangle>(crops.data(), crops.size()));
		}
	}
}

} /* namespace libcamera */