summaryrefslogtreecommitdiff
path: root/src/libcamera/pipeline/rkisp1/timeline.cpp
blob: f5194608ced7421f1cfe63cfd1a9ebc38f6c6599 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * timeline.cpp - Timeline for per-frame control
 */

#include "timeline.h"

#include "libcamera/internal/log.h"

/**
 * \file timeline.h
 * \brief Timeline for per-frame control
 */

namespace libcamera {

LOG_DEFINE_CATEGORY(Timeline)

/**
 * \class FrameAction
 * \brief Action that can be schedule on a Timeline
 *
 * A frame action is an event schedule to be executed on a Timeline. A frame
 * action has two primal attributes a frame number and a type.
 *
 * The frame number describes the frame to which the action is associated. The
 * type is a numerical ID which identifies the action within the pipeline and
 * IPA protocol.
 */

/**
 * \class Timeline
 * \brief Executor of FrameAction
 *
 * The timeline has three primary functions:
 *
 * 1. Keep track of the Start of Exposure (SOE) for every frame processed by
 *    the hardware. Using this information it shall keep an up-to-date estimate
 *    of the frame interval (time between two consecutive SOE events).
 *
 *    The estimated frame interval together with recorded SOE events are the
 *    foundation for how the timeline schedule FrameAction at specific points
 *    in time.
 *    \todo Improve the frame interval estimation algorithm.
 *
 * 2. Keep track of current delays for different types of actions. The delays
 *    for different actions might differ during a capture session. Exposure time
 *    effects the over all FPS and different ISP parameters might impacts its
 *    processing time.
 *
 *    The action type delays shall be updated by the IPA in conjunction with
 *    how it changes the capture parameters.
 *
 * 3. Schedule actions on the timeline. This is the process of taking a
 *    FrameAction which contains an abstract description of what frame and
 *    what type of action it contains and turning that into an time point
 *    and make sure the action is executed at that time.
 */

Timeline::Timeline()
	: frameInterval_(0)
{
	timer_.timeout.connect(this, &Timeline::timeout);
}

/**
 * \brief Reset and stop the timeline
 *
 * The timeline needs to be reset when the timeline should no longer execute
 * actions. A timeline should be reset between two capture sessions to prevent
 * the old capture session to effect the second one.
 */
void Timeline::reset()
{
	timer_.stop();

	actions_.clear();
	history_.clear();
}

/**
 * \brief Schedule an action on the timeline
 * \param[in] action FrameAction to schedule
 *
 * The act of scheduling an action to the timeline is the process of taking
 * the properties of the action (type, frame and time offsets) and translating
 * that to a time point using the current values for the action type timings
 * value recorded in the timeline. If an action is scheduled too late, execute
 * it immediately.
 */
void Timeline::scheduleAction(std::unique_ptr<FrameAction> action)
{
	unsigned int lastFrame;
	utils::time_point lastTime;

	if (history_.empty()) {
		lastFrame = 0;
		lastTime = std::chrono::steady_clock::now();
	} else {
		lastFrame = history_.back().first;
		lastTime = history_.back().second;
	}

	/*
	 * Calculate when the action shall be schedule by first finding out how
	 * many frames in the future the action acts on and then add the actions
	 * frame offset. After the spatial frame offset is found out translate
	 * that to a time point by using the last estimated start of exposure
	 * (SOE) as the fixed offset. Lastly add the action time offset to the
	 * time point.
	 */
	int frame = action->frame() - lastFrame + frameOffset(action->type());
	utils::time_point deadline = lastTime + frame * frameInterval_
		+ timeOffset(action->type());

	utils::time_point now = std::chrono::steady_clock::now();
	if (deadline < now) {
		LOG(Timeline, Warning)
			<< "Action scheduled too late "
			<< utils::time_point_to_string(deadline)
			<< ", run now " << utils::time_point_to_string(now);
		action->run();
	} else {
		actions_.emplace(deadline, std::move(action));
		updateDeadline();
	}
}

void Timeline::notifyStartOfExposure(unsigned int frame, utils::time_point time)
{
	history_.push_back(std::make_pair(frame, time));

	if (history_.size() <= HISTORY_DEPTH / 2)
		return;

	while (history_.size() > HISTORY_DEPTH)
		history_.pop_front();

	/* Update esitmated time between two start of exposures. */
	utils::duration sumExposures(0);
	unsigned int numExposures = 0;

	utils::time_point lastTime;
	for (auto it = history_.begin(); it != history_.end(); it++) {
		if (it != history_.begin()) {
			sumExposures += it->second - lastTime;
			numExposures++;
		}

		lastTime = it->second;
	}

	frameInterval_ = sumExposures;
	if (numExposures)
		frameInterval_ /= numExposures;
}

int Timeline::frameOffset(unsigned int type) const
{
	const auto it = delays_.find(type);
	if (it == delays_.end()) {
		LOG(Timeline, Error)
			<< "No frame offset set for action type " << type;
		return 0;
	}

	return it->second.first;
}

utils::duration Timeline::timeOffset(unsigned int type) const
{
	const auto it = delays_.find(type);
	if (it == delays_.end()) {
		LOG(Timeline, Error)
			<< "No time offset set for action type " << type;
		return utils::duration::zero();
	}

	return it->second.second;
}

void Timeline::setRawDelay(unsigned int type, int frame, utils::duration time)
{
	delays_[type] = std::make_pair(frame, time);
}

void Timeline::updateDeadline()
{
	if (actions_.empty())
		return;

	const utils::time_point &deadline = actions_.begin()->first;

	if (timer_.isRunning() && deadline >= timer_.deadline())
		return;

	if (deadline <= std::chrono::steady_clock::now()) {
		timeout(&timer_);
		return;
	}

	timer_.start(deadline);
}

void Timeline::timeout(Timer *timer)
{
	utils::time_point now = std::chrono::steady_clock::now();

	for (auto it = actions_.begin(); it != actions_.end();) {
		const utils::time_point &sched = it->first;

		if (sched > now)
			break;

		FrameAction *action = it->second.get();

		action->run();

		it = actions_.erase(it);
	}

	updateDeadline();
}

} /* namespace libcamera */