1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi Ltd
*
* ISP controller
*/
#include <assert.h>
#include <libcamera/base/file.h>
#include <libcamera/base/log.h>
#include "libcamera/internal/yaml_parser.h"
#include "algorithm.h"
#include "controller.h"
using namespace RPiController;
using namespace libcamera;
using namespace std::literals::chrono_literals;
LOG_DEFINE_CATEGORY(RPiController)
static const std::map<std::string, Controller::HardwareConfig> HardwareConfigMap = {
{
"bcm2835",
{
/*
* There are only ever 15 AGC regions computed by the firmware
* due to zoning, but the HW defines AGC_REGIONS == 16!
*/
.agcRegions = { 15 , 1 },
.agcZoneWeights = { 15 , 1 },
.awbRegions = { 16, 12 },
.cacRegions = { 0, 0 },
.focusRegions = { 4, 3 },
.numHistogramBins = 128,
.numGammaPoints = 33,
.pipelineWidth = 13,
.statsInline = false,
.minPixelProcessingTime = 0s,
}
},
{
"pisp",
{
.agcRegions = { 0, 0 },
.agcZoneWeights = { 15, 15 },
.awbRegions = { 32, 32 },
.cacRegions = { 8, 8 },
.focusRegions = { 8, 8 },
.numHistogramBins = 1024,
.numGammaPoints = 64,
.pipelineWidth = 16,
.statsInline = true,
/*
* The constraint below is on the rate of pixels going
* from CSI2 peripheral to ISP-FE (400Mpix/s, plus tiny
* overheads per scanline, for which 380Mpix/s is a
* conservative bound).
*
* There is a 64kbit data FIFO before the bottleneck,
* which means that in all reasonable cases the
* constraint applies at a timescale >= 1 scanline, so
* adding horizontal blanking can prevent loss.
*
* If the backlog were to grow beyond 64kbit during a
* single scanline, there could still be loss. This
* could happen using 4 lanes at 1.5Gbps at 10bpp with
* frames wider than ~16,000 pixels.
*/
.minPixelProcessingTime = 1.0us / 380,
}
},
};
Controller::Controller()
: switchModeCalled_(false)
{
}
Controller::~Controller() {}
int Controller::read(char const *filename)
{
File file(filename);
if (!file.open(File::OpenModeFlag::ReadOnly)) {
LOG(RPiController, Warning)
<< "Failed to open tuning file '" << filename << "'";
return -EINVAL;
}
std::unique_ptr<YamlObject> root = YamlParser::parse(file);
if (!root)
return -EINVAL;
double version = (*root)["version"].get<double>(1.0);
target_ = (*root)["target"].get<std::string>("bcm2835");
if (version < 2.0) {
LOG(RPiController, Warning)
<< "This format of the tuning file will be deprecated soon!"
<< " Please use the convert_tuning.py utility to update to version 2.0.";
for (auto const &[key, value] : root->asDict()) {
int ret = createAlgorithm(key, value);
if (ret)
return ret;
}
} else if (version < 3.0) {
if (!root->contains("algorithms")) {
LOG(RPiController, Error)
<< "Tuning file " << filename
<< " does not have an \"algorithms\" list!";
return -EINVAL;
}
for (auto const &rootAlgo : (*root)["algorithms"].asList())
for (auto const &[key, value] : rootAlgo.asDict()) {
int ret = createAlgorithm(key, value);
if (ret)
return ret;
}
} else {
LOG(RPiController, Error)
<< "Unrecognised version " << version
<< " for the tuning file " << filename;
return -EINVAL;
}
return 0;
}
int Controller::createAlgorithm(const std::string &name, const YamlObject ¶ms)
{
auto it = getAlgorithms().find(name);
if (it == getAlgorithms().end()) {
LOG(RPiController, Warning)
<< "No algorithm found for \"" << name << "\"";
return 0;
}
Algorithm *algo = (*it->second)(this);
int ret = algo->read(params);
if (ret)
return ret;
algorithms_.push_back(AlgorithmPtr(algo));
return 0;
}
void Controller::initialise()
{
for (auto &algo : algorithms_)
algo->initialise();
}
void Controller::switchMode(CameraMode const &cameraMode, Metadata *metadata)
{
for (auto &algo : algorithms_)
algo->switchMode(cameraMode, metadata);
switchModeCalled_ = true;
}
void Controller::prepare(Metadata *imageMetadata)
{
assert(switchModeCalled_);
for (auto &algo : algorithms_)
algo->prepare(imageMetadata);
}
void Controller::process(StatisticsPtr stats, Metadata *imageMetadata)
{
assert(switchModeCalled_);
for (auto &algo : algorithms_)
algo->process(stats, imageMetadata);
}
Metadata &Controller::getGlobalMetadata()
{
return globalMetadata_;
}
Algorithm *Controller::getAlgorithm(std::string const &name) const
{
/*
* The passed name must be the entire algorithm name, or must match the
* last part of it with a period (.) just before.
*/
size_t nameLen = name.length();
for (auto &algo : algorithms_) {
char const *algoName = algo->name();
size_t algoNameLen = strlen(algoName);
if (algoNameLen >= nameLen &&
strcasecmp(name.c_str(),
algoName + algoNameLen - nameLen) == 0 &&
(nameLen == algoNameLen ||
algoName[algoNameLen - nameLen - 1] == '.'))
return algo.get();
}
return nullptr;
}
const std::string &Controller::getTarget() const
{
return target_;
}
const Controller::HardwareConfig &Controller::getHardwareConfig() const
{
auto cfg = HardwareConfigMap.find(getTarget());
/*
* This really should not happen, the IPA ought to validate the target
* on initialisation.
*/
ASSERT(cfg != HardwareConfigMap.end());
return cfg->second;
}
|