summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/raspberrypi.cpp
blob: 3b126bb5175e3c2b714da4c5b75acbdbe1ac8792 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019-2021, Raspberry Pi (Trading) Ltd.
 *
 * rpi.cpp - Raspberry Pi Image Processing Algorithms
 */

#include <algorithm>
#include <array>
#include <fcntl.h>
#include <math.h>
#include <stdint.h>
#include <string.h>
#include <sys/mman.h>

#include <linux/bcm2835-isp.h>

#include <libcamera/base/log.h>
#include <libcamera/base/shared_fd.h>
#include <libcamera/base/span.h>

#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/framebuffer.h>
#include <libcamera/ipa/ipa_interface.h>
#include <libcamera/ipa/ipa_module_info.h>
#include <libcamera/ipa/raspberrypi.h>
#include <libcamera/ipa/raspberrypi_ipa_interface.h>
#include <libcamera/request.h>

#include "libcamera/internal/mapped_framebuffer.h"

#include "agc_algorithm.hpp"
#include "agc_status.h"
#include "alsc_status.h"
#include "awb_algorithm.hpp"
#include "awb_status.h"
#include "black_level_status.h"
#include "cam_helper.hpp"
#include "ccm_algorithm.hpp"
#include "ccm_status.h"
#include "contrast_algorithm.hpp"
#include "contrast_status.h"
#include "controller.hpp"
#include "denoise_algorithm.hpp"
#include "denoise_status.h"
#include "dpc_status.h"
#include "focus_status.h"
#include "geq_status.h"
#include "lux_status.h"
#include "metadata.hpp"
#include "noise_status.h"
#include "sharpen_algorithm.hpp"
#include "sharpen_status.h"

namespace libcamera {

using namespace std::literals::chrono_literals;
using utils::Duration;

/* Configure the sensor with these values initially. */
constexpr double defaultAnalogueGain = 1.0;
constexpr Duration defaultExposureTime = 20.0ms;
constexpr Duration defaultMinFrameDuration = 1.0s / 30.0;
constexpr Duration defaultMaxFrameDuration = 250.0s;

/*
 * Determine the minimum allowable inter-frame duration to run the controller
 * algorithms. If the pipeline handler provider frames at a rate higher than this,
 * we rate-limit the controller Prepare() and Process() calls to lower than or
 * equal to this rate.
 */
constexpr Duration controllerMinFrameDuration = 1.0s / 30.0;

LOG_DEFINE_CATEGORY(IPARPI)

namespace ipa::RPi {

class IPARPi : public IPARPiInterface
{
public:
	IPARPi()
		: controller_(), frameCount_(0), checkCount_(0), mistrustCount_(0),
		  lastRunTimestamp_(0), lsTable_(nullptr), firstStart_(true)
	{
	}

	~IPARPi()
	{
		if (lsTable_)
			munmap(lsTable_, MaxLsGridSize);
	}

	int init(const IPASettings &settings, SensorConfig *sensorConfig) override;
	void start(const ControlList &controls, StartConfig *startConfig) override;
	void stop() override {}

	int configure(const IPACameraSensorInfo &sensorInfo,
		      const std::map<unsigned int, IPAStream> &streamConfig,
		      const std::map<unsigned int, ControlInfoMap> &entityControls,
		      const IPAConfig &data,
		      ControlList *controls, IPAConfigResult *result) override;
	void mapBuffers(const std::vector<IPABuffer> &buffers) override;
	void unmapBuffers(const std::vector<unsigned int> &ids) override;
	void signalStatReady(const uint32_t bufferId) override;
	void signalQueueRequest(const ControlList &controls) override;
	void signalIspPrepare(const ISPConfig &data) override;

private:
	void setMode(const IPACameraSensorInfo &sensorInfo);
	bool validateSensorControls();
	bool validateIspControls();
	void queueRequest(const ControlList &controls);
	void returnEmbeddedBuffer(unsigned int bufferId);
	void prepareISP(const ISPConfig &data);
	void reportMetadata();
	void fillDeviceStatus(const ControlList &sensorControls);
	void processStats(unsigned int bufferId);
	void applyFrameDurations(Duration minFrameDuration, Duration maxFrameDuration);
	void applyAGC(const struct AgcStatus *agcStatus, ControlList &ctrls);
	void applyAWB(const struct AwbStatus *awbStatus, ControlList &ctrls);
	void applyDG(const struct AgcStatus *dgStatus, ControlList &ctrls);
	void applyCCM(const struct CcmStatus *ccmStatus, ControlList &ctrls);
	void applyBlackLevel(const struct BlackLevelStatus *blackLevelStatus, ControlList &ctrls);
	void applyGamma(const struct ContrastStatus *contrastStatus, ControlList &ctrls);
	void applyGEQ(const struct GeqStatus *geqStatus, ControlList &ctrls);
	void applyDenoise(const struct DenoiseStatus *denoiseStatus, ControlList &ctrls);
	void applySharpen(const struct SharpenStatus *sharpenStatus, ControlList &ctrls);
	void applyDPC(const struct DpcStatus *dpcStatus, ControlList &ctrls);
	void applyLS(const struct AlscStatus *lsStatus, ControlList &ctrls);
	void resampleTable(uint16_t dest[], double const src[12][16], int destW, int destH);

	std::map<unsigned int, MappedFrameBuffer> buffers_;

	ControlInfoMap sensorCtrls_;
	ControlInfoMap ispCtrls_;
	ControlList libcameraMetadata_;

	/* Camera sensor params. */
	CameraMode mode_;

	/* Raspberry Pi controller specific defines. */
	std::unique_ptr<RPiController::CamHelper> helper_;
	RPiController::Controller controller_;
	RPiController::Metadata rpiMetadata_;

	/*
	 * We count frames to decide if the frame must be hidden (e.g. from
	 * display) or mistrusted (i.e. not given to the control algos).
	 */
	uint64_t frameCount_;

	/* For checking the sequencing of Prepare/Process calls. */
	uint64_t checkCount_;

	/* How many frames we should avoid running control algos on. */
	unsigned int mistrustCount_;

	/* Number of frames that need to be dropped on startup. */
	unsigned int dropFrameCount_;

	/* Frame timestamp for the last run of the controller. */
	uint64_t lastRunTimestamp_;

	/* Do we run a Controller::process() for this frame? */
	bool processPending_;

	/* LS table allocation passed in from the pipeline handler. */
	SharedFD lsTableHandle_;
	void *lsTable_;

	/* Distinguish the first camera start from others. */
	bool firstStart_;

	/* Frame duration (1/fps) limits. */
	Duration minFrameDuration_;
	Duration maxFrameDuration_;

	/* Maximum gain code for the sensor. */
	uint32_t maxSensorGainCode_;
};

int IPARPi::init(const IPASettings &settings, SensorConfig *sensorConfig)
{
	/*
	 * Load the "helper" for this sensor. This tells us all the device specific stuff
	 * that the kernel driver doesn't. We only do this the first time; we don't need
	 * to re-parse the metadata after a simple mode-switch for no reason.
	 */
	helper_ = std::unique_ptr<RPiController::CamHelper>(RPiController::CamHelper::Create(settings.sensorModel));
	if (!helper_) {
		LOG(IPARPI, Error) << "Could not create camera helper for "
				   << settings.sensorModel;
		return -EINVAL;
	}

	/*
	 * Pass out the sensor config to the pipeline handler in order
	 * to setup the staggered writer class.
	 */
	int gainDelay, exposureDelay, vblankDelay, sensorMetadata;
	helper_->GetDelays(exposureDelay, gainDelay, vblankDelay);
	sensorMetadata = helper_->SensorEmbeddedDataPresent();

	sensorConfig->gainDelay = gainDelay;
	sensorConfig->exposureDelay = exposureDelay;
	sensorConfig->vblankDelay = vblankDelay;
	sensorConfig->sensorMetadata = sensorMetadata;

	/* Load the tuning file for this sensor. */
	controller_.Read(settings.configurationFile.c_str());
	controller_.Initialise();

	return 0;
}

void IPARPi::start(const ControlList &controls, StartConfig *startConfig)
{
	RPiController::Metadata metadata;

	ASSERT(startConfig);
	if (!controls.empty()) {
		/* We have been given some controls to action before start. */
		queueRequest(controls);
	}

	controller_.SwitchMode(mode_, &metadata);

	/* SwitchMode may supply updated exposure/gain values to use. */
	AgcStatus agcStatus;
	agcStatus.shutter_time = 0.0s;
	agcStatus.analogue_gain = 0.0;

	metadata.Get("agc.status", agcStatus);
	if (agcStatus.shutter_time && agcStatus.analogue_gain) {
		ControlList ctrls(sensorCtrls_);
		applyAGC(&agcStatus, ctrls);
		startConfig->controls = std::move(ctrls);
	}

	/*
	 * Initialise frame counts, and decide how many frames must be hidden or
	 * "mistrusted", which depends on whether this is a startup from cold,
	 * or merely a mode switch in a running system.
	 */
	frameCount_ = 0;
	checkCount_ = 0;
	if (firstStart_) {
		dropFrameCount_ = helper_->HideFramesStartup();
		mistrustCount_ = helper_->MistrustFramesStartup();

		/*
		 * Query the AGC/AWB for how many frames they may take to
		 * converge sufficiently. Where these numbers are non-zero
		 * we must allow for the frames with bad statistics
		 * (mistrustCount_) that they won't see. But if zero (i.e.
		 * no convergence necessary), no frames need to be dropped.
		 */
		unsigned int agcConvergenceFrames = 0;
		RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
			controller_.GetAlgorithm("agc"));
		if (agc) {
			agcConvergenceFrames = agc->GetConvergenceFrames();
			if (agcConvergenceFrames)
				agcConvergenceFrames += mistrustCount_;
		}

		unsigned int awbConvergenceFrames = 0;
		RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
			controller_.GetAlgorithm("awb"));
		if (awb) {
			awbConvergenceFrames = awb->GetConvergenceFrames();
			if (awbConvergenceFrames)
				awbConvergenceFrames += mistrustCount_;
		}

		dropFrameCount_ = std::max({ dropFrameCount_, agcConvergenceFrames, awbConvergenceFrames });
		LOG(IPARPI, Debug) << "Drop " << dropFrameCount_ << " frames on startup";
	} else {
		dropFrameCount_ = helper_->HideFramesModeSwitch();
		mistrustCount_ = helper_->MistrustFramesModeSwitch();
	}

	startConfig->dropFrameCount = dropFrameCount_;
	const Duration maxSensorFrameDuration = mode_.max_frame_length * mode_.line_length;
	startConfig->maxSensorFrameLengthMs = maxSensorFrameDuration.get<std::milli>();

	firstStart_ = false;
	lastRunTimestamp_ = 0;
}

void IPARPi::setMode(const IPACameraSensorInfo &sensorInfo)
{
	mode_.bitdepth = sensorInfo.bitsPerPixel;
	mode_.width = sensorInfo.outputSize.width;
	mode_.height = sensorInfo.outputSize.height;
	mode_.sensor_width = sensorInfo.activeAreaSize.width;
	mode_.sensor_height = sensorInfo.activeAreaSize.height;
	mode_.crop_x = sensorInfo.analogCrop.x;
	mode_.crop_y = sensorInfo.analogCrop.y;

	/*
	 * Calculate scaling parameters. The scale_[xy] factors are determined
	 * by the ratio between the crop rectangle size and the output size.
	 */
	mode_.scale_x = sensorInfo.analogCrop.width / sensorInfo.outputSize.width;
	mode_.scale_y = sensorInfo.analogCrop.height / sensorInfo.outputSize.height;

	/*
	 * We're not told by the pipeline handler how scaling is split between
	 * binning and digital scaling. For now, as a heuristic, assume that
	 * downscaling up to 2 is achieved through binning, and that any
	 * additional scaling is achieved through digital scaling.
	 *
	 * \todo Get the pipeline handle to provide the full data
	 */
	mode_.bin_x = std::min(2, static_cast<int>(mode_.scale_x));
	mode_.bin_y = std::min(2, static_cast<int>(mode_.scale_y));

	/* The noise factor is the square root of the total binning factor. */
	mode_.noise_factor = sqrt(mode_.bin_x * mode_.bin_y);

	/*
	 * Calculate the line length as the ratio between the line length in
	 * pixels and the pixel rate.
	 */
	mode_.line_length = sensorInfo.lineLength * (1.0s / sensorInfo.pixelRate);

	/*
	 * Set the frame length limits for the mode to ensure exposure and
	 * framerate calculations are clipped appropriately.
	 */
	mode_.min_frame_length = sensorInfo.minFrameLength;
	mode_.max_frame_length = sensorInfo.maxFrameLength;

	/*
	 * Some sensors may have different sensitivities in different modes;
	 * the CamHelper will know the correct value.
	 */
	mode_.sensitivity = helper_->GetModeSensitivity(mode_);
}

int IPARPi::configure(const IPACameraSensorInfo &sensorInfo,
		      [[maybe_unused]] const std::map<unsigned int, IPAStream> &streamConfig,
		      const std::map<unsigned int, ControlInfoMap> &entityControls,
		      const IPAConfig &ipaConfig,
		      ControlList *controls, IPAConfigResult *result)
{
	if (entityControls.size() != 2) {
		LOG(IPARPI, Error) << "No ISP or sensor controls found.";
		return -1;
	}

	sensorCtrls_ = entityControls.at(0);
	ispCtrls_ = entityControls.at(1);

	if (!validateSensorControls()) {
		LOG(IPARPI, Error) << "Sensor control validation failed.";
		return -1;
	}

	if (!validateIspControls()) {
		LOG(IPARPI, Error) << "ISP control validation failed.";
		return -1;
	}

	maxSensorGainCode_ = sensorCtrls_.at(V4L2_CID_ANALOGUE_GAIN).max().get<int32_t>();

	/* Setup a metadata ControlList to output metadata. */
	libcameraMetadata_ = ControlList(controls::controls);

	/* Re-assemble camera mode using the sensor info. */
	setMode(sensorInfo);

	mode_.transform = static_cast<libcamera::Transform>(ipaConfig.transform);

	/* Store the lens shading table pointer and handle if available. */
	if (ipaConfig.lsTableHandle.isValid()) {
		/* Remove any previous table, if there was one. */
		if (lsTable_) {
			munmap(lsTable_, MaxLsGridSize);
			lsTable_ = nullptr;
		}

		/* Map the LS table buffer into user space. */
		lsTableHandle_ = std::move(ipaConfig.lsTableHandle);
		if (lsTableHandle_.isValid()) {
			lsTable_ = mmap(nullptr, MaxLsGridSize, PROT_READ | PROT_WRITE,
					MAP_SHARED, lsTableHandle_.get(), 0);

			if (lsTable_ == MAP_FAILED) {
				LOG(IPARPI, Error) << "dmaHeap mmap failure for LS table.";
				lsTable_ = nullptr;
			}
		}
	}

	/* Pass the camera mode to the CamHelper to setup algorithms. */
	helper_->SetCameraMode(mode_);

	/*
	 * Initialise this ControlList correctly, even if empty, in case the IPA is
	 * running is isolation mode (passing the ControlList through the IPC layer).
	 */
	ControlList ctrls(sensorCtrls_);

	/* The pipeline handler passes out the mode's sensitivity. */
	result->modeSensitivity = mode_.sensitivity;

	if (firstStart_) {
		/* Supply initial values for frame durations. */
		applyFrameDurations(defaultMinFrameDuration, defaultMaxFrameDuration);

		/* Supply initial values for gain and exposure. */
		AgcStatus agcStatus;
		agcStatus.shutter_time = defaultExposureTime;
		agcStatus.analogue_gain = defaultAnalogueGain;
		applyAGC(&agcStatus, ctrls);
	}

	ASSERT(controls);
	*controls = std::move(ctrls);

	return 0;
}

void IPARPi::mapBuffers(const std::vector<IPABuffer> &buffers)
{
	for (const IPABuffer &buffer : buffers) {
		const FrameBuffer fb(buffer.planes);
		buffers_.emplace(buffer.id,
				 MappedFrameBuffer(&fb, MappedFrameBuffer::MapFlag::ReadWrite));
	}
}

void IPARPi::unmapBuffers(const std::vector<unsigned int> &ids)
{
	for (unsigned int id : ids) {
		auto it = buffers_.find(id);
		if (it == buffers_.end())
			continue;

		buffers_.erase(id);
	}
}

void IPARPi::signalStatReady(uint32_t bufferId)
{
	if (++checkCount_ != frameCount_) /* assert here? */
		LOG(IPARPI, Error) << "WARNING: Prepare/Process mismatch!!!";
	if (processPending_ && frameCount_ > mistrustCount_)
		processStats(bufferId);

	reportMetadata();

	statsMetadataComplete.emit(bufferId & MaskID, libcameraMetadata_);
}

void IPARPi::signalQueueRequest(const ControlList &controls)
{
	queueRequest(controls);
}

void IPARPi::signalIspPrepare(const ISPConfig &data)
{
	/*
	 * At start-up, or after a mode-switch, we may want to
	 * avoid running the control algos for a few frames in case
	 * they are "unreliable".
	 */
	prepareISP(data);
	frameCount_++;

	/* Ready to push the input buffer into the ISP. */
	runIsp.emit(data.bayerBufferId & MaskID);
}

void IPARPi::reportMetadata()
{
	std::unique_lock<RPiController::Metadata> lock(rpiMetadata_);

	/*
	 * Certain information about the current frame and how it will be
	 * processed can be extracted and placed into the libcamera metadata
	 * buffer, where an application could query it.
	 */
	DeviceStatus *deviceStatus = rpiMetadata_.GetLocked<DeviceStatus>("device.status");
	if (deviceStatus) {
		libcameraMetadata_.set(controls::ExposureTime,
				       deviceStatus->shutter_speed.get<std::micro>());
		libcameraMetadata_.set(controls::AnalogueGain, deviceStatus->analogue_gain);
		libcameraMetadata_.set(controls::FrameDuration,
				       helper_->Exposure(deviceStatus->frame_length).get<std::micro>());
	}

	AgcStatus *agcStatus = rpiMetadata_.GetLocked<AgcStatus>("agc.status");
	if (agcStatus) {
		libcameraMetadata_.set(controls::AeLocked, agcStatus->locked);
		libcameraMetadata_.set(controls::DigitalGain, agcStatus->digital_gain);
	}

	LuxStatus *luxStatus = rpiMetadata_.GetLocked<LuxStatus>("lux.status");
	if (luxStatus)
		libcameraMetadata_.set(controls::Lux, luxStatus->lux);

	AwbStatus *awbStatus = rpiMetadata_.GetLocked<AwbStatus>("awb.status");
	if (awbStatus) {
		libcameraMetadata_.set(controls::ColourGains, { static_cast<float>(awbStatus->gain_r),
								static_cast<float>(awbStatus->gain_b) });
		libcameraMetadata_.set(controls::ColourTemperature, awbStatus->temperature_K);
	}

	BlackLevelStatus *blackLevelStatus = rpiMetadata_.GetLocked<BlackLevelStatus>("black_level.status");
	if (blackLevelStatus)
		libcameraMetadata_.set(controls::SensorBlackLevels,
				       { static_cast<int32_t>(blackLevelStatus->black_level_r),
					 static_cast<int32_t>(blackLevelStatus->black_level_g),
					 static_cast<int32_t>(blackLevelStatus->black_level_g),
					 static_cast<int32_t>(blackLevelStatus->black_level_b) });

	FocusStatus *focusStatus = rpiMetadata_.GetLocked<FocusStatus>("focus.status");
	if (focusStatus && focusStatus->num == 12) {
		/*
		 * We get a 4x3 grid of regions by default. Calculate the average
		 * FoM over the central two positions to give an overall scene FoM.
		 * This can change later if it is not deemed suitable.
		 */
		int32_t focusFoM = (focusStatus->focus_measures[5] + focusStatus->focus_measures[6]) / 2;
		libcameraMetadata_.set(controls::FocusFoM, focusFoM);
	}

	CcmStatus *ccmStatus = rpiMetadata_.GetLocked<CcmStatus>("ccm.status");
	if (ccmStatus) {
		float m[9];
		for (unsigned int i = 0; i < 9; i++)
			m[i] = ccmStatus->matrix[i];
		libcameraMetadata_.set(controls::ColourCorrectionMatrix, m);
	}
}

bool IPARPi::validateSensorControls()
{
	static const uint32_t ctrls[] = {
		V4L2_CID_ANALOGUE_GAIN,
		V4L2_CID_EXPOSURE,
		V4L2_CID_VBLANK,
	};

	for (auto c : ctrls) {
		if (sensorCtrls_.find(c) == sensorCtrls_.end()) {
			LOG(IPARPI, Error) << "Unable to find sensor control "
					   << utils::hex(c);
			return false;
		}
	}

	return true;
}

bool IPARPi::validateIspControls()
{
	static const uint32_t ctrls[] = {
		V4L2_CID_RED_BALANCE,
		V4L2_CID_BLUE_BALANCE,
		V4L2_CID_DIGITAL_GAIN,
		V4L2_CID_USER_BCM2835_ISP_CC_MATRIX,
		V4L2_CID_USER_BCM2835_ISP_GAMMA,
		V4L2_CID_USER_BCM2835_ISP_BLACK_LEVEL,
		V4L2_CID_USER_BCM2835_ISP_GEQ,
		V4L2_CID_USER_BCM2835_ISP_DENOISE,
		V4L2_CID_USER_BCM2835_ISP_SHARPEN,
		V4L2_CID_USER_BCM2835_ISP_DPC,
		V4L2_CID_USER_BCM2835_ISP_LENS_SHADING,
		V4L2_CID_USER_BCM2835_ISP_CDN,
	};

	for (auto c : ctrls) {
		if (ispCtrls_.find(c) == ispCtrls_.end()) {
			LOG(IPARPI, Error) << "Unable to find ISP control "
					   << utils::hex(c);
			return false;
		}
	}

	return true;
}

/*
 * Converting between enums (used in the libcamera API) and the names that
 * we use to identify different modes. Unfortunately, the conversion tables
 * must be kept up-to-date by hand.
 */
static const std::map<int32_t, std::string> MeteringModeTable = {
	{ controls::MeteringCentreWeighted, "centre-weighted" },
	{ controls::MeteringSpot, "spot" },
	{ controls::MeteringMatrix, "matrix" },
	{ controls::MeteringCustom, "custom" },
};

static const std::map<int32_t, std::string> ConstraintModeTable = {
	{ controls::ConstraintNormal, "normal" },
	{ controls::ConstraintHighlight, "highlight" },
	{ controls::ConstraintCustom, "custom" },
};

static const std::map<int32_t, std::string> ExposureModeTable = {
	{ controls::ExposureNormal, "normal" },
	{ controls::ExposureShort, "short" },
	{ controls::ExposureLong, "long" },
	{ controls::ExposureCustom, "custom" },
};

static const std::map<int32_t, std::string> AwbModeTable = {
	{ controls::AwbAuto, "auto" },
	{ controls::AwbIncandescent, "incandescent" },
	{ controls::AwbTungsten, "tungsten" },
	{ controls::AwbFluorescent, "fluorescent" },
	{ controls::AwbIndoor, "indoor" },
	{ controls::AwbDaylight, "daylight" },
	{ controls::AwbCloudy, "cloudy" },
	{ controls::AwbCustom, "custom" },
};

static const std::map<int32_t, RPiController::DenoiseMode> DenoiseModeTable = {
	{ controls::draft::NoiseReductionModeOff, RPiController::DenoiseMode::Off },
	{ controls::draft::NoiseReductionModeFast, RPiController::DenoiseMode::ColourFast },
	{ controls::draft::NoiseReductionModeHighQuality, RPiController::DenoiseMode::ColourHighQuality },
	{ controls::draft::NoiseReductionModeMinimal, RPiController::DenoiseMode::ColourOff },
	{ controls::draft::NoiseReductionModeZSL, RPiController::DenoiseMode::ColourHighQuality },
};

void IPARPi::queueRequest(const ControlList &controls)
{
	/* Clear the return metadata buffer. */
	libcameraMetadata_.clear();

	for (auto const &ctrl : controls) {
		LOG(IPARPI, Debug) << "Request ctrl: "
				   << controls::controls.at(ctrl.first)->name()
				   << " = " << ctrl.second.toString();

		switch (ctrl.first) {
		case controls::AE_ENABLE: {
			RPiController::Algorithm *agc = controller_.GetAlgorithm("agc");
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set AE_ENABLE - no AGC algorithm";
				break;
			}

			if (ctrl.second.get<bool>() == false)
				agc->Pause();
			else
				agc->Resume();

			libcameraMetadata_.set(controls::AeEnable, ctrl.second.get<bool>());
			break;
		}

		case controls::EXPOSURE_TIME: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set EXPOSURE_TIME - no AGC algorithm";
				break;
			}

			/* The control provides units of microseconds. */
			agc->SetFixedShutter(ctrl.second.get<int32_t>() * 1.0us);

			libcameraMetadata_.set(controls::ExposureTime, ctrl.second.get<int32_t>());
			break;
		}

		case controls::ANALOGUE_GAIN: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set ANALOGUE_GAIN - no AGC algorithm";
				break;
			}

			agc->SetFixedAnalogueGain(ctrl.second.get<float>());

			libcameraMetadata_.set(controls::AnalogueGain,
					       ctrl.second.get<float>());
			break;
		}

		case controls::AE_METERING_MODE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set AE_METERING_MODE - no AGC algorithm";
				break;
			}

			int32_t idx = ctrl.second.get<int32_t>();
			if (MeteringModeTable.count(idx)) {
				agc->SetMeteringMode(MeteringModeTable.at(idx));
				libcameraMetadata_.set(controls::AeMeteringMode, idx);
			} else {
				LOG(IPARPI, Error) << "Metering mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::AE_CONSTRAINT_MODE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set AE_CONSTRAINT_MODE - no AGC algorithm";
				break;
			}

			int32_t idx = ctrl.second.get<int32_t>();
			if (ConstraintModeTable.count(idx)) {
				agc->SetConstraintMode(ConstraintModeTable.at(idx));
				libcameraMetadata_.set(controls::AeConstraintMode, idx);
			} else {
				LOG(IPARPI, Error) << "Constraint mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::AE_EXPOSURE_MODE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set AE_EXPOSURE_MODE - no AGC algorithm";
				break;
			}

			int32_t idx = ctrl.second.get<int32_t>();
			if (ExposureModeTable.count(idx)) {
				agc->SetExposureMode(ExposureModeTable.at(idx));
				libcameraMetadata_.set(controls::AeExposureMode, idx);
			} else {
				LOG(IPARPI, Error) << "Exposure mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::EXPOSURE_VALUE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			if (!agc) {
				LOG(IPARPI, Warning)
					<< "Could not set EXPOSURE_VALUE - no AGC algorithm";
				break;
			}

			/*
			 * The SetEv() function takes in a direct exposure multiplier.
			 * So convert to 2^EV
			 */
			double ev = pow(2.0, ctrl.second.get<float>());
			agc->SetEv(ev);
			libcameraMetadata_.set(controls::ExposureValue,
					       ctrl.second.get<float>());
			break;
		}

		case controls::AWB_ENABLE: {
			RPiController::Algorithm *awb = controller_.GetAlgorithm("awb");
			if (!awb) {
				LOG(IPARPI, Warning)
					<< "Could not set AWB_ENABLE - no AWB algorithm";
				break;
			}

			if (ctrl.second.get<bool>() == false)
				awb->Pause();
			else
				awb->Resume();

			libcameraMetadata_.set(controls::AwbEnable,
					       ctrl.second.get<bool>());
			break;
		}

		case controls::AWB_MODE: {
			RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
				controller_.GetAlgorithm("awb"));
			if (!awb) {
				LOG(IPARPI, Warning)
					<< "Could not set AWB_MODE - no AWB algorithm";
				break;
			}

			int32_t idx = ctrl.second.get<int32_t>();
			if (AwbModeTable.count(idx)) {
				awb->SetMode(AwbModeTable.at(idx));
				libcameraMetadata_.set(controls::AwbMode, idx);
			} else {
				LOG(IPARPI, Error) << "AWB mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::COLOUR_GAINS: {
			auto gains = ctrl.second.get<Span<const float>>();
			RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
				controller_.GetAlgorithm("awb"));
			if (!awb) {
				LOG(IPARPI, Warning)
					<< "Could not set COLOUR_GAINS - no AWB algorithm";
				break;
			}

			awb->SetManualGains(gains[0], gains[1]);
			if (gains[0] != 0.0f && gains[1] != 0.0f)
				/* A gain of 0.0f will switch back to auto mode. */
				libcameraMetadata_.set(controls::ColourGains,
						       { gains[0], gains[1] });
			break;
		}

		case controls::BRIGHTNESS: {
			RPiController::ContrastAlgorithm *contrast = dynamic_cast<RPiController::ContrastAlgorithm *>(
				controller_.GetAlgorithm("contrast"));
			if (!contrast) {
				LOG(IPARPI, Warning)
					<< "Could not set BRIGHTNESS - no contrast algorithm";
				break;
			}

			contrast->SetBrightness(ctrl.second.get<float>() * 65536);
			libcameraMetadata_.set(controls::Brightness,
					       ctrl.second.get<float>());
			break;
		}

		case controls::CONTRAST: {
			RPiController::ContrastAlgorithm *contrast = dynamic_cast<RPiController::ContrastAlgorithm *>(
				controller_.GetAlgorithm("contrast"));
			if (!contrast) {
				LOG(IPARPI, Warning)
					<< "Could not set CONTRAST - no contrast algorithm";
				break;
			}

			contrast->SetContrast(ctrl.second.get<float>());
			libcameraMetadata_.set(controls::Contrast,
					       ctrl.second.get<float>());
			break;
		}

		case controls::SATURATION: {
			RPiController::CcmAlgorithm *ccm = dynamic_cast<RPiController::CcmAlgorithm *>(
				controller_.GetAlgorithm("ccm"));
			if (!ccm) {
				LOG(IPARPI, Warning)
					<< "Could not set SATURATION - no ccm algorithm";
				break;
			}

			ccm->SetSaturation(ctrl.second.get<float>());
			libcameraMetadata_.set(controls::Saturation,
					       ctrl.second.get<float>());
			break;
		}

		case controls::SHARPNESS: {
			RPiController::SharpenAlgorithm *sharpen = dynamic_cast<RPiController::SharpenAlgorithm *>(
				controller_.GetAlgorithm("sharpen"));
			if (!sharpen) {
				LOG(IPARPI, Warning)
					<< "Could not set SHARPNESS - no sharpen algorithm";
				break;
			}

			sharpen->SetStrength(ctrl.second.get<float>());
			libcameraMetadata_.set(controls::Sharpness,
					       ctrl.second.get<float>());
			break;
		}

		case controls::SCALER_CROP: {
			/* We do nothing with this, but should avoid the warning below. */
			break;
		}

		case controls::FRAME_DURATION_LIMITS: {
			auto frameDurations = ctrl.second.get<Span<const int64_t>>();
			applyFrameDurations(frameDurations[0] * 1.0us, frameDurations[1] * 1.0us);
			break;
		}

		case controls::NOISE_REDUCTION_MODE: {
			RPiController::DenoiseAlgorithm *sdn = dynamic_cast<RPiController::DenoiseAlgorithm *>(
				controller_.GetAlgorithm("SDN"));
			if (!sdn) {
				LOG(IPARPI, Warning)
					<< "Could not set NOISE_REDUCTION_MODE - no SDN algorithm";
				break;
			}

			int32_t idx = ctrl.second.get<int32_t>();
			auto mode = DenoiseModeTable.find(idx);
			if (mode != DenoiseModeTable.end()) {
				sdn->SetMode(mode->second);

				/*
				 * \todo If the colour denoise is not going to run due to an
				 * analysis image resolution or format mismatch, we should
				 * report the status correctly in the metadata.
				 */
				libcameraMetadata_.set(controls::draft::NoiseReductionMode, idx);
			} else {
				LOG(IPARPI, Error) << "Noise reduction mode " << idx
						   << " not recognised";
			}
			break;
		}

		default:
			LOG(IPARPI, Warning)
				<< "Ctrl " << controls::controls.at(ctrl.first)->name()
				<< " is not handled.";
			break;
		}
	}
}

void IPARPi::returnEmbeddedBuffer(unsigned int bufferId)
{
	embeddedComplete.emit(bufferId & MaskID);
}

void IPARPi::prepareISP(const ISPConfig &data)
{
	int64_t frameTimestamp = data.controls.get(controls::SensorTimestamp);
	RPiController::Metadata lastMetadata;
	Span<uint8_t> embeddedBuffer;

	lastMetadata = std::move(rpiMetadata_);
	fillDeviceStatus(data.controls);

	if (data.embeddedBufferPresent) {
		/*
		 * Pipeline handler has supplied us with an embedded data buffer,
		 * we must pass it to the CamHelper for parsing.
		 */
		auto it = buffers_.find(data.embeddedBufferId);
		ASSERT(it != buffers_.end());
		embeddedBuffer = it->second.planes()[0];
	}

	/*
	 * This may overwrite the DeviceStatus using values from the sensor
	 * metadata, and may also do additional custom processing.
	 */
	helper_->Prepare(embeddedBuffer, rpiMetadata_);

	/* Done with embedded data now, return to pipeline handler asap. */
	if (data.embeddedBufferPresent)
		returnEmbeddedBuffer(data.embeddedBufferId);

	/* Allow a 10% margin on the comparison below. */
	Duration delta = (frameTimestamp - lastRunTimestamp_) * 1.0ns;
	if (lastRunTimestamp_ && frameCount_ > dropFrameCount_ &&
	    delta < controllerMinFrameDuration * 0.9) {
		/*
		 * Ensure we merge the previous frame's metadata with the current
		 * frame. This will not overwrite exposure/gain values for the
		 * current frame, or any other bits of metadata that were added
		 * in helper_->Prepare().
		 */
		rpiMetadata_.Merge(lastMetadata);
		processPending_ = false;
		return;
	}

	lastRunTimestamp_ = frameTimestamp;
	processPending_ = true;

	ControlList ctrls(ispCtrls_);

	controller_.Prepare(&rpiMetadata_);

	/* Lock the metadata buffer to avoid constant locks/unlocks. */
	std::unique_lock<RPiController::Metadata> lock(rpiMetadata_);

	AwbStatus *awbStatus = rpiMetadata_.GetLocked<AwbStatus>("awb.status");
	if (awbStatus)
		applyAWB(awbStatus, ctrls);

	CcmStatus *ccmStatus = rpiMetadata_.GetLocked<CcmStatus>("ccm.status");
	if (ccmStatus)
		applyCCM(ccmStatus, ctrls);

	AgcStatus *dgStatus = rpiMetadata_.GetLocked<AgcStatus>("agc.status");
	if (dgStatus)
		applyDG(dgStatus, ctrls);

	AlscStatus *lsStatus = rpiMetadata_.GetLocked<AlscStatus>("alsc.status");
	if (lsStatus)
		applyLS(lsStatus, ctrls);

	ContrastStatus *contrastStatus = rpiMetadata_.GetLocked<ContrastStatus>("contrast.status");
	if (contrastStatus)
		applyGamma(contrastStatus, ctrls);

	BlackLevelStatus *blackLevelStatus = rpiMetadata_.GetLocked<BlackLevelStatus>("black_level.status");
	if (blackLevelStatus)
		applyBlackLevel(blackLevelStatus, ctrls);

	GeqStatus *geqStatus = rpiMetadata_.GetLocked<GeqStatus>("geq.status");
	if (geqStatus)
		applyGEQ(geqStatus, ctrls);

	DenoiseStatus *denoiseStatus = rpiMetadata_.GetLocked<DenoiseStatus>("denoise.status");
	if (denoiseStatus)
		applyDenoise(denoiseStatus, ctrls);

	SharpenStatus *sharpenStatus = rpiMetadata_.GetLocked<SharpenStatus>("sharpen.status");
	if (sharpenStatus)
		applySharpen(sharpenStatus, ctrls);

	DpcStatus *dpcStatus = rpiMetadata_.GetLocked<DpcStatus>("dpc.status");
	if (dpcStatus)
		applyDPC(dpcStatus, ctrls);

	if (!ctrls.empty())
		setIspControls.emit(ctrls);
}

void IPARPi::fillDeviceStatus(const ControlList &sensorControls)
{
	DeviceStatus deviceStatus = {};

	int32_t exposureLines = sensorControls.get(V4L2_CID_EXPOSURE).get<int32_t>();
	int32_t gainCode = sensorControls.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>();
	int32_t vblank = sensorControls.get(V4L2_CID_VBLANK).get<int32_t>();

	deviceStatus.shutter_speed = helper_->Exposure(exposureLines);
	deviceStatus.analogue_gain = helper_->Gain(gainCode);
	deviceStatus.frame_length = mode_.height + vblank;

	LOG(IPARPI, Debug) << "Metadata - " << deviceStatus;

	rpiMetadata_.Set("device.status", deviceStatus);
}

void IPARPi::processStats(unsigned int bufferId)
{
	auto it = buffers_.find(bufferId);
	if (it == buffers_.end()) {
		LOG(IPARPI, Error) << "Could not find stats buffer!";
		return;
	}

	Span<uint8_t> mem = it->second.planes()[0];
	bcm2835_isp_stats *stats = reinterpret_cast<bcm2835_isp_stats *>(mem.data());
	RPiController::StatisticsPtr statistics = std::make_shared<bcm2835_isp_stats>(*stats);
	helper_->Process(statistics, rpiMetadata_);
	controller_.Process(statistics, &rpiMetadata_);

	struct AgcStatus agcStatus;
	if (rpiMetadata_.Get("agc.status", agcStatus) == 0) {
		ControlList ctrls(sensorCtrls_);
		applyAGC(&agcStatus, ctrls);

		setDelayedControls.emit(ctrls);
	}
}

void IPARPi::applyAWB(const struct AwbStatus *awbStatus, ControlList &ctrls)
{
	LOG(IPARPI, Debug) << "Applying WB R: " << awbStatus->gain_r << " B: "
			   << awbStatus->gain_b;

	ctrls.set(V4L2_CID_RED_BALANCE,
		  static_cast<int32_t>(awbStatus->gain_r * 1000));
	ctrls.set(V4L2_CID_BLUE_BALANCE,
		  static_cast<int32_t>(awbStatus->gain_b * 1000));
}

void IPARPi::applyFrameDurations(Duration minFrameDuration, Duration maxFrameDuration)
{
	const Duration minSensorFrameDuration = mode_.min_frame_length * mode_.line_length;
	const Duration maxSensorFrameDuration = mode_.max_frame_length * mode_.line_length;

	/*
	 * This will only be applied once AGC recalculations occur.
	 * The values may be clamped based on the sensor mode capabilities as well.
	 */
	minFrameDuration_ = minFrameDuration ? minFrameDuration : defaultMaxFrameDuration;
	maxFrameDuration_ = maxFrameDuration ? maxFrameDuration : defaultMinFrameDuration;
	minFrameDuration_ = std::clamp(minFrameDuration_,
				       minSensorFrameDuration, maxSensorFrameDuration);
	maxFrameDuration_ = std::clamp(maxFrameDuration_,
				       minSensorFrameDuration, maxSensorFrameDuration);
	maxFrameDuration_ = std::max(maxFrameDuration_, minFrameDuration_);

	/* Return the validated limits via metadata. */
	libcameraMetadata_.set(controls::FrameDurationLimits,
			       { static_cast<int64_t>(minFrameDuration_.get<std::micro>()),
				 static_cast<int64_t>(maxFrameDuration_.get<std::micro>()) });

	/*
	 * Calculate the maximum exposure time possible for the AGC to use.
	 * GetVBlanking() will update maxShutter with the largest exposure
	 * value possible.
	 */
	Duration maxShutter = Duration::max();
	helper_->GetVBlanking(maxShutter, minFrameDuration_, maxFrameDuration_);

	RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
		controller_.GetAlgorithm("agc"));
	agc->SetMaxShutter(maxShutter);
}

void IPARPi::applyAGC(const struct AgcStatus *agcStatus, ControlList &ctrls)
{
	int32_t gainCode = helper_->GainCode(agcStatus->analogue_gain);

	/*
	 * Ensure anything larger than the max gain code will not be passed to
	 * DelayedControls. The AGC will correctly handle a lower gain returned
	 * by the sensor, provided it knows the actual gain used.
	 */
	gainCode = std::min<int32_t>(gainCode, maxSensorGainCode_);

	/* GetVBlanking might clip exposure time to the fps limits. */
	Duration exposure = agcStatus->shutter_time;
	int32_t vblanking = helper_->GetVBlanking(exposure, minFrameDuration_, maxFrameDuration_);
	int32_t exposureLines = helper_->ExposureLines(exposure);

	LOG(IPARPI, Debug) << "Applying AGC Exposure: " << exposure
			   << " (Shutter lines: " << exposureLines << ", AGC requested "
			   << agcStatus->shutter_time << ") Gain: "
			   << agcStatus->analogue_gain << " (Gain Code: "
			   << gainCode << ")";

	/*
	 * Due to the behavior of V4L2, the current value of VBLANK could clip the
	 * exposure time without us knowing. The next time though this function should
	 * clip exposure correctly.
	 */
	ctrls.set(V4L2_CID_VBLANK, vblanking);
	ctrls.set(V4L2_CID_EXPOSURE, exposureLines);
	ctrls.set(V4L2_CID_ANALOGUE_GAIN, gainCode);
}

void IPARPi::applyDG(const struct AgcStatus *dgStatus, ControlList &ctrls)
{
	ctrls.set(V4L2_CID_DIGITAL_GAIN,
		  static_cast<int32_t>(dgStatus->digital_gain * 1000));
}

void IPARPi::applyCCM(const struct CcmStatus *ccmStatus, ControlList &ctrls)
{
	bcm2835_isp_custom_ccm ccm;

	for (int i = 0; i < 9; i++) {
		ccm.ccm.ccm[i / 3][i % 3].den = 1000;
		ccm.ccm.ccm[i / 3][i % 3].num = 1000 * ccmStatus->matrix[i];
	}

	ccm.enabled = 1;
	ccm.ccm.offsets[0] = ccm.ccm.offsets[1] = ccm.ccm.offsets[2] = 0;

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&ccm),
					    sizeof(ccm) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_CC_MATRIX, c);
}

void IPARPi::applyGamma(const struct ContrastStatus *contrastStatus, ControlList &ctrls)
{
	struct bcm2835_isp_gamma gamma;

	gamma.enabled = 1;
	for (int i = 0; i < CONTRAST_NUM_POINTS; i++) {
		gamma.x[i] = contrastStatus->points[i].x;
		gamma.y[i] = contrastStatus->points[i].y;
	}

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&gamma),
					    sizeof(gamma) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_GAMMA, c);
}

void IPARPi::applyBlackLevel(const struct BlackLevelStatus *blackLevelStatus, ControlList &ctrls)
{
	bcm2835_isp_black_level blackLevel;

	blackLevel.enabled = 1;
	blackLevel.black_level_r = blackLevelStatus->black_level_r;
	blackLevel.black_level_g = blackLevelStatus->black_level_g;
	blackLevel.black_level_b = blackLevelStatus->black_level_b;

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&blackLevel),
					    sizeof(blackLevel) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_BLACK_LEVEL, c);
}

void IPARPi::applyGEQ(const struct GeqStatus *geqStatus, ControlList &ctrls)
{
	bcm2835_isp_geq geq;

	geq.enabled = 1;
	geq.offset = geqStatus->offset;
	geq.slope.den = 1000;
	geq.slope.num = 1000 * geqStatus->slope;

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&geq),
					    sizeof(geq) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_GEQ, c);
}

void IPARPi::applyDenoise(const struct DenoiseStatus *denoiseStatus, ControlList &ctrls)
{
	using RPiController::DenoiseMode;

	bcm2835_isp_denoise denoise;
	DenoiseMode mode = static_cast<DenoiseMode>(denoiseStatus->mode);

	denoise.enabled = mode != DenoiseMode::Off;
	denoise.constant = denoiseStatus->noise_constant;
	denoise.slope.num = 1000 * denoiseStatus->noise_slope;
	denoise.slope.den = 1000;
	denoise.strength.num = 1000 * denoiseStatus->strength;
	denoise.strength.den = 1000;

	/* Set the CDN mode to match the SDN operating mode. */
	bcm2835_isp_cdn cdn;
	switch (mode) {
	case DenoiseMode::ColourFast:
		cdn.enabled = 1;
		cdn.mode = CDN_MODE_FAST;
		break;
	case DenoiseMode::ColourHighQuality:
		cdn.enabled = 1;
		cdn.mode = CDN_MODE_HIGH_QUALITY;
		break;
	default:
		cdn.enabled = 0;
	}

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&denoise),
					    sizeof(denoise) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_DENOISE, c);

	c = ControlValue(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&cdn),
					      sizeof(cdn) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_CDN, c);
}

void IPARPi::applySharpen(const struct SharpenStatus *sharpenStatus, ControlList &ctrls)
{
	bcm2835_isp_sharpen sharpen;

	sharpen.enabled = 1;
	sharpen.threshold.num = 1000 * sharpenStatus->threshold;
	sharpen.threshold.den = 1000;
	sharpen.strength.num = 1000 * sharpenStatus->strength;
	sharpen.strength.den = 1000;
	sharpen.limit.num = 1000 * sharpenStatus->limit;
	sharpen.limit.den = 1000;

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&sharpen),
					    sizeof(sharpen) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_SHARPEN, c);
}

void IPARPi::applyDPC(const struct DpcStatus *dpcStatus, ControlList &ctrls)
{
	bcm2835_isp_dpc dpc;

	dpc.enabled = 1;
	dpc.strength = dpcStatus->strength;

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&dpc),
					    sizeof(dpc) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_DPC, c);
}

void IPARPi::applyLS(const struct AlscStatus *lsStatus, ControlList &ctrls)
{
	/*
	 * Program lens shading tables into pipeline.
	 * Choose smallest cell size that won't exceed 63x48 cells.
	 */
	const int cellSizes[] = { 16, 32, 64, 128, 256 };
	unsigned int numCells = std::size(cellSizes);
	unsigned int i, w, h, cellSize;
	for (i = 0; i < numCells; i++) {
		cellSize = cellSizes[i];
		w = (mode_.width + cellSize - 1) / cellSize;
		h = (mode_.height + cellSize - 1) / cellSize;
		if (w < 64 && h <= 48)
			break;
	}

	if (i == numCells) {
		LOG(IPARPI, Error) << "Cannot find cell size";
		return;
	}

	/* We're going to supply corner sampled tables, 16 bit samples. */
	w++, h++;
	bcm2835_isp_lens_shading ls = {
		.enabled = 1,
		.grid_cell_size = cellSize,
		.grid_width = w,
		.grid_stride = w,
		.grid_height = h,
		/* .dmabuf will be filled in by pipeline handler. */
		.dmabuf = 0,
		.ref_transform = 0,
		.corner_sampled = 1,
		.gain_format = GAIN_FORMAT_U4P10
	};

	if (!lsTable_ || w * h * 4 * sizeof(uint16_t) > MaxLsGridSize) {
		LOG(IPARPI, Error) << "Do not have a correctly allocate lens shading table!";
		return;
	}

	if (lsStatus) {
		/* Format will be u4.10 */
		uint16_t *grid = static_cast<uint16_t *>(lsTable_);

		resampleTable(grid, lsStatus->r, w, h);
		resampleTable(grid + w * h, lsStatus->g, w, h);
		std::memcpy(grid + 2 * w * h, grid + w * h, w * h * sizeof(uint16_t));
		resampleTable(grid + 3 * w * h, lsStatus->b, w, h);
	}

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&ls),
					    sizeof(ls) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_LENS_SHADING, c);
}

/*
 * Resamples a 16x12 table with central sampling to destW x destH with corner
 * sampling.
 */
void IPARPi::resampleTable(uint16_t dest[], double const src[12][16],
			   int destW, int destH)
{
	/*
	 * Precalculate and cache the x sampling locations and phases to
	 * save recomputing them on every row.
	 */
	assert(destW > 1 && destH > 1 && destW <= 64);
	int xLo[64], xHi[64];
	double xf[64];
	double x = -0.5, xInc = 16.0 / (destW - 1);
	for (int i = 0; i < destW; i++, x += xInc) {
		xLo[i] = floor(x);
		xf[i] = x - xLo[i];
		xHi[i] = xLo[i] < 15 ? xLo[i] + 1 : 15;
		xLo[i] = xLo[i] > 0 ? xLo[i] : 0;
	}

	/* Now march over the output table generating the new values. */
	double y = -0.5, yInc = 12.0 / (destH - 1);
	for (int j = 0; j < destH; j++, y += yInc) {
		int yLo = floor(y);
		double yf = y - yLo;
		int yHi = yLo < 11 ? yLo + 1 : 11;
		yLo = yLo > 0 ? yLo : 0;
		double const *rowAbove = src[yLo];
		double const *rowBelow = src[yHi];
		for (int i = 0; i < destW; i++) {
			double above = rowAbove[xLo[i]] * (1 - xf[i]) + rowAbove[xHi[i]] * xf[i];
			double below = rowBelow[xLo[i]] * (1 - xf[i]) + rowBelow[xHi[i]] * xf[i];
			int result = floor(1024 * (above * (1 - yf) + below * yf) + .5);
			*(dest++) = result > 16383 ? 16383 : result; /* want u4.10 */
		}
	}
}

} /* namespace ipa::RPi */

/*
 * External IPA module interface
 */
extern "C" {
const struct IPAModuleInfo ipaModuleInfo = {
	IPA_MODULE_API_VERSION,
	1,
	"PipelineHandlerRPi",
	"raspberrypi",
};

IPAInterface *ipaCreate()
{
	return new ipa::RPi::IPARPi();
}

} /* extern "C" */

} /* namespace libcamera */