1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi Ltd
*
* alsc.h - ALSC (auto lens shading correction) control algorithm
*/
#pragma once
#include <array>
#include <mutex>
#include <condition_variable>
#include <thread>
#include <vector>
#include <libcamera/geometry.h>
#include "../algorithm.h"
#include "../alsc_status.h"
#include "../statistics.h"
namespace RPiController {
/* Algorithm to generate automagic LSC (Lens Shading Correction) tables. */
/*
* The Array2D class is a very thin wrapper round std::vector so that it can
* be used in exactly the same way in the code but carries its correct width
* and height ("dimensions") with it.
*/
template<typename T>
class Array2D
{
public:
using Size = libcamera::Size;
const Size &dimensions() const { return dimensions_; }
size_t size() const { return data_.size(); }
const std::vector<T> &data() const { return data_; }
void resize(const Size &dims)
{
dimensions_ = dims;
data_.resize(dims.width * dims.height);
}
void resize(const Size &dims, const T &value)
{
resize(dims);
std::fill(data_.begin(), data_.end(), value);
}
T &operator[](int index) { return data_[index]; }
const T &operator[](int index) const { return data_[index]; }
T *ptr() { return data_.data(); }
const T *ptr() const { return data_.data(); }
auto begin() { return data_.begin(); }
auto end() { return data_.end(); }
private:
Size dimensions_;
std::vector<T> data_;
};
/*
* We'll use the term SparseArray for the large sparse matrices that are
* XY tall but have only 4 non-zero elements on each row.
*/
template<typename T>
using SparseArray = std::vector<std::array<T, 4>>;
struct AlscCalibration {
double ct;
Array2D<double> table;
};
struct AlscConfig {
/* Only repeat the ALSC calculation every "this many" frames */
uint16_t framePeriod;
/* number of initial frames for which speed taken as 1.0 (maximum) */
uint16_t startupFrames;
/* IIR filter speed applied to algorithm results */
double speed;
double sigmaCr;
double sigmaCb;
double minCount;
uint16_t minG;
double omega;
uint32_t nIter;
Array2D<double> luminanceLut;
double luminanceStrength;
std::vector<AlscCalibration> calibrationsCr;
std::vector<AlscCalibration> calibrationsCb;
double defaultCt; /* colour temperature if no metadata found */
double threshold; /* iteration termination threshold */
double lambdaBound; /* upper/lower bound for lambda from a value of 1 */
libcamera::Size tableSize;
};
class Alsc : public Algorithm
{
public:
Alsc(Controller *controller = NULL);
~Alsc();
char const *name() const override;
void initialise() override;
void switchMode(CameraMode const &cameraMode, Metadata *metadata) override;
int read(const libcamera::YamlObject ¶ms) override;
void prepare(Metadata *imageMetadata) override;
void process(StatisticsPtr &stats, Metadata *imageMetadata) override;
private:
/* configuration is read-only, and available to both threads */
AlscConfig config_;
bool firstTime_;
CameraMode cameraMode_;
Array2D<double> luminanceTable_;
std::thread asyncThread_;
void asyncFunc(); /* asynchronous thread function */
std::mutex mutex_;
/* condvar for async thread to wait on */
std::condition_variable asyncSignal_;
/* condvar for synchronous thread to wait on */
std::condition_variable syncSignal_;
/* for sync thread to check if async thread finished (requires mutex) */
bool asyncFinished_;
/* for async thread to check if it's been told to run (requires mutex) */
bool asyncStart_;
/* for async thread to check if it's been told to quit (requires mutex) */
bool asyncAbort_;
/*
* The following are only for the synchronous thread to use:
* for sync thread to note its has asked async thread to run
*/
bool asyncStarted_;
/* counts up to framePeriod before restarting the async thread */
int framePhase_;
/* counts up to startupFrames */
int frameCount_;
/* counts up to startupFrames for Process function */
int frameCount2_;
std::array<Array2D<double>, 3> syncResults_;
std::array<Array2D<double>, 3> prevSyncResults_;
void waitForAysncThread();
/*
* The following are for the asynchronous thread to use, though the main
* thread can set/reset them if the async thread is known to be idle:
*/
void restartAsync(StatisticsPtr &stats, Metadata *imageMetadata);
/* copy out the results from the async thread so that it can be restarted */
void fetchAsyncResults();
double ct_;
RgbyRegions statistics_;
std::array<Array2D<double>, 3> asyncResults_;
Array2D<double> asyncLambdaR_;
Array2D<double> asyncLambdaB_;
void doAlsc();
Array2D<double> lambdaR_;
Array2D<double> lambdaB_;
/* Temporaries for the computations */
std::array<Array2D<double>, 5> tmpC_;
std::array<SparseArray<double>, 3> tmpM_;
};
} /* namespace RPiController */
|