summaryrefslogtreecommitdiff
path: root/src/ipa/libipa/histogram.cpp
blob: 10e44b54a0cfa2fea3a16d9fda96b811a01fab5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi Ltd
 *
 * histogram calculations
 */
#include "histogram.h"

#include <cmath>

#include <libcamera/base/log.h>

/**
 * \file histogram.h
 * \brief Class to represent Histograms and manipulate them
 */

namespace libcamera {

namespace ipa {

/**
 * \class Histogram
 * \brief The base class for creating histograms
 *
 * This class stores a cumulative frequency histogram, which is a mapping that
 * counts the cumulative number of observations in all of the bins up to the
 * specified bin. It can be used to find quantiles and averages between quantiles.
 */

/**
 * \fn Histogram::Histogram()
 * \brief Construct an empty Histogram
 *
 * This empty constructor exists largely to allow Histograms to be embedded in
 * other classes which may be created before the contents of the Histogram are
 * known.
 */

/**
 * \brief Create a cumulative histogram
 * \param[in] data A (non-cumulative) histogram
 */
Histogram::Histogram(Span<const uint32_t> data)
{
	cumulative_.resize(data.size() + 1);
	cumulative_[0] = 0;
	for (const auto &[i, value] : utils::enumerate(data))
		cumulative_[i + 1] = cumulative_[i] + value;
}

/**
 * \fn Histogram::Histogram(Span<const uint32_t> data, Transform transform)
 * \brief Create a cumulative histogram
 * \param[in] data A (non-cumulative) histogram
 * \param[in] transform The transformation function to apply to every bin
 */

/**
 * \fn Histogram::bins()
 * \brief Retrieve the number of bins currently used by the Histogram
 * \return Number of bins
 */

/**
 * \fn Histogram::data()
 * \brief Retrieve the internal data
 * \return The data
 */

/**
 * \fn Histogram::total()
 * \brief Retrieve the total number of values in the data set
 * \return Number of values
 */

/**
 * \brief Cumulative frequency up to a (fractional) point in a bin
 * \param[in] bin The bin up to which to cumulate
 *
 * With F(p) the cumulative frequency of the histogram, the value is 0 at
 * the bottom of the histogram, and the maximum is the number of bins.
 * The pixels are spread evenly throughout the “bin” in which they lie, so that
 * F(p) is a continuous (monotonically increasing) function.
 *
 * \return The cumulative frequency from 0 up to the specified bin
 */
uint64_t Histogram::cumulativeFrequency(double bin) const
{
	if (bin <= 0)
		return 0;
	else if (bin >= bins())
		return total();
	int b = static_cast<int32_t>(bin);
	return cumulative_[b] +
	       (bin - b) * (cumulative_[b + 1] - cumulative_[b]);
}

/**
 * \brief Return the (fractional) bin of the point through the histogram
 * \param[in] q the desired point (0 <= q <= 1)
 * \param[in] first low limit (default is 0)
 * \param[in] last high limit (default is UINT_MAX)
 *
 * A quantile gives us the point p = Q(q) in the range such that a proportion
 * q of the pixels lie below p. A familiar quantile is Q(0.5) which is the median
 * of a distribution.
 *
 * \return The fractional bin of the point
 */
double Histogram::quantile(double q, uint32_t first, uint32_t last) const
{
	if (last == UINT_MAX)
		last = cumulative_.size() - 2;
	ASSERT(first <= last);

	uint64_t item = q * total();
	/* Binary search to find the right bin */
	while (first < last) {
		int middle = (first + last) / 2;
		/* Is it between first and middle ? */
		if (cumulative_[middle + 1] > item)
			last = middle;
		else
			first = middle + 1;
	}
	ASSERT(item >= cumulative_[first] && item <= cumulative_[last + 1]);

	double frac;
	if (cumulative_[first + 1] == cumulative_[first])
		frac = 0;
	else
		frac = (item - cumulative_[first]) / (cumulative_[first + 1] - cumulative_[first]);
	return first + frac;
}

/**
 * \brief Calculate the mean between two quantiles
 * \param[in] lowQuantile low Quantile
 * \param[in] highQuantile high Quantile
 *
 * Quantiles are not ideal for metering as they suffer several limitations.
 * Instead, a concept is introduced here: inter-quantile mean.
 * It returns the mean of all pixels between lowQuantile and highQuantile.
 *
 * \return The mean histogram bin value between the two quantiles
 */
double Histogram::interQuantileMean(double lowQuantile, double highQuantile) const
{
	ASSERT(highQuantile > lowQuantile);
	/* Proportion of pixels which lies below lowQuantile */
	double lowPoint = quantile(lowQuantile);
	/* Proportion of pixels which lies below highQuantile */
	double highPoint = quantile(highQuantile, static_cast<uint32_t>(lowPoint));
	double sumBinFreq = 0, cumulFreq = 0;

	for (double p_next = floor(lowPoint) + 1.0;
	     p_next <= ceil(highPoint);
	     lowPoint = p_next, p_next += 1.0) {
		int bin = floor(lowPoint);
		double freq = (cumulative_[bin + 1] - cumulative_[bin])
			* (std::min(p_next, highPoint) - lowPoint);

		/* Accumulate weighted bin */
		sumBinFreq += bin * freq;
		/* Accumulate weights */
		cumulFreq += freq;
	}
	/* add 0.5 to give an average for bin mid-points */
	return sumBinFreq / cumulFreq + 0.5;
}

} /* namespace ipa */

} /* namespace libcamera */