1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021, Ideas On Board
*
* AGC/AEC mean-based control algorithm
*/
#include "agc.h"
#include <algorithm>
#include <chrono>
#include <libcamera/base/log.h>
#include <libcamera/base/utils.h>
#include <libcamera/control_ids.h>
#include <libcamera/ipa/core_ipa_interface.h>
#include "libipa/histogram.h"
/**
* \file agc.h
*/
namespace libcamera {
using namespace std::literals::chrono_literals;
namespace ipa::ipu3::algorithms {
/**
* \class Agc
* \brief A mean-based auto-exposure algorithm
*
* This algorithm calculates a shutter time and an analogue gain so that the
* average value of the green channel of the brightest 2% of pixels approaches
* 0.5. The AWB gains are not used here, and all cells in the grid have the same
* weight, like an average-metering case. In this metering mode, the camera uses
* light information from the entire scene and creates an average for the final
* exposure setting, giving no weighting to any particular portion of the
* metered area.
*
* Reference: Battiato, Messina & Castorina. (2008). Exposure
* Correction for Imaging Devices: An Overview. 10.1201/9781420054538.ch12.
*/
LOG_DEFINE_CATEGORY(IPU3Agc)
/* Minimum limit for analogue gain value */
static constexpr double kMinAnalogueGain = 1.0;
/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
static constexpr utils::Duration kMaxShutterSpeed = 60ms;
/* Histogram constants */
static constexpr uint32_t knumHistogramBins = 256;
Agc::Agc()
: minShutterSpeed_(0s), maxShutterSpeed_(0s)
{
}
/**
* \brief Initialise the AGC algorithm from tuning files
* \param[in] context The shared IPA context
* \param[in] tuningData The YamlObject containing Agc tuning data
*
* This function calls the base class' tuningData parsers to discover which
* control values are supported.
*
* \return 0 on success or errors from the base class
*/
int Agc::init(IPAContext &context, const YamlObject &tuningData)
{
int ret;
ret = parseTuningData(tuningData);
if (ret)
return ret;
context.ctrlMap.merge(controls());
return 0;
}
/**
* \brief Configure the AGC given a configInfo
* \param[in] context The shared IPA context
* \param[in] configInfo The IPA configuration data
*
* \return 0
*/
int Agc::configure(IPAContext &context,
[[maybe_unused]] const IPAConfigInfo &configInfo)
{
const IPASessionConfiguration &configuration = context.configuration;
IPAActiveState &activeState = context.activeState;
stride_ = configuration.grid.stride;
bdsGrid_ = configuration.grid.bdsGrid;
minShutterSpeed_ = configuration.agc.minShutterSpeed;
maxShutterSpeed_ = std::min(configuration.agc.maxShutterSpeed,
kMaxShutterSpeed);
minAnalogueGain_ = std::max(configuration.agc.minAnalogueGain, kMinAnalogueGain);
maxAnalogueGain_ = configuration.agc.maxAnalogueGain;
/* Configure the default exposure and gain. */
activeState.agc.gain = minAnalogueGain_;
activeState.agc.exposure = 10ms / configuration.sensor.lineDuration;
context.activeState.agc.constraintMode = constraintModes().begin()->first;
context.activeState.agc.exposureMode = exposureModeHelpers().begin()->first;
/* \todo Run this again when FrameDurationLimits is passed in */
setLimits(minShutterSpeed_, maxShutterSpeed_, minAnalogueGain_,
maxAnalogueGain_);
resetFrameCount();
return 0;
}
Histogram Agc::parseStatistics(const ipu3_uapi_stats_3a *stats,
const ipu3_uapi_grid_config &grid)
{
uint32_t hist[knumHistogramBins] = { 0 };
rgbTriples_.clear();
for (unsigned int cellY = 0; cellY < grid.height; cellY++) {
for (unsigned int cellX = 0; cellX < grid.width; cellX++) {
uint32_t cellPosition = cellY * stride_ + cellX;
const ipu3_uapi_awb_set_item *cell =
reinterpret_cast<const ipu3_uapi_awb_set_item *>(
&stats->awb_raw_buffer.meta_data[cellPosition]);
rgbTriples_.push_back({
cell->R_avg,
(cell->Gr_avg + cell->Gb_avg) / 2,
cell->B_avg
});
/*
* Store the average green value to estimate the
* brightness. Even the overexposed pixels are
* taken into account.
*/
hist[(cell->Gr_avg + cell->Gb_avg) / 2]++;
}
}
return Histogram(Span<uint32_t>(hist));
}
/**
* \brief Estimate the relative luminance of the frame with a given gain
* \param[in] gain The gain to apply in estimating luminance
*
* The estimation is based on the AWB statistics for the current frame. Red,
* green and blue averages for all cells are first multiplied by the gain, and
* then saturated to approximate the sensor behaviour at high brightness
* values. The approximation is quite rough, as it doesn't take into account
* non-linearities when approaching saturation.
*
* The relative luminance (Y) is computed from the linear RGB components using
* the Rec. 601 formula. The values are normalized to the [0.0, 1.0] range,
* where 1.0 corresponds to a theoretical perfect reflector of 100% reference
* white.
*
* More detailed information can be found in:
* https://en.wikipedia.org/wiki/Relative_luminance
*
* \return The relative luminance of the frame
*/
double Agc::estimateLuminance(double gain) const
{
double redSum = 0, greenSum = 0, blueSum = 0;
for (unsigned int i = 0; i < rgbTriples_.size(); i++) {
redSum += std::min(std::get<0>(rgbTriples_[i]) * gain, 255.0);
greenSum += std::min(std::get<1>(rgbTriples_[i]) * gain, 255.0);
blueSum += std::min(std::get<2>(rgbTriples_[i]) * gain, 255.0);
}
double ySum = redSum * rGain_ * 0.299
+ greenSum * gGain_ * 0.587
+ blueSum * bGain_ * 0.114;
return ySum / (bdsGrid_.height * bdsGrid_.width) / 255;
}
/**
* \brief Process IPU3 statistics, and run AGC operations
* \param[in] context The shared IPA context
* \param[in] frame The current frame sequence number
* \param[in] frameContext The current frame context
* \param[in] stats The IPU3 statistics and ISP results
* \param[out] metadata Metadata for the frame, to be filled by the algorithm
*
* Identify the current image brightness, and use that to estimate the optimal
* new exposure and gain for the scene.
*/
void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame,
IPAFrameContext &frameContext,
const ipu3_uapi_stats_3a *stats,
ControlList &metadata)
{
Histogram hist = parseStatistics(stats, context.configuration.grid.bdsGrid);
rGain_ = context.activeState.awb.gains.red;
gGain_ = context.activeState.awb.gains.blue;
bGain_ = context.activeState.awb.gains.green;
/*
* The Agc algorithm needs to know the effective exposure value that was
* applied to the sensor when the statistics were collected.
*/
utils::Duration exposureTime = context.configuration.sensor.lineDuration
* frameContext.sensor.exposure;
double analogueGain = frameContext.sensor.gain;
utils::Duration effectiveExposureValue = exposureTime * analogueGain;
utils::Duration shutterTime;
double aGain, dGain;
std::tie(shutterTime, aGain, dGain) =
calculateNewEv(context.activeState.agc.constraintMode,
context.activeState.agc.exposureMode, hist,
effectiveExposureValue);
LOG(IPU3Agc, Debug)
<< "Divided up shutter, analogue gain and digital gain are "
<< shutterTime << ", " << aGain << " and " << dGain;
IPAActiveState &activeState = context.activeState;
/* Update the estimated exposure and gain. */
activeState.agc.exposure = shutterTime / context.configuration.sensor.lineDuration;
activeState.agc.gain = aGain;
metadata.set(controls::AnalogueGain, frameContext.sensor.gain);
metadata.set(controls::ExposureTime, exposureTime.get<std::micro>());
/* \todo Use VBlank value calculated from each frame exposure. */
uint32_t vTotal = context.configuration.sensor.size.height
+ context.configuration.sensor.defVBlank;
utils::Duration frameDuration = context.configuration.sensor.lineDuration
* vTotal;
metadata.set(controls::FrameDuration, frameDuration.get<std::micro>());
}
REGISTER_IPA_ALGORITHM(Agc, "Agc")
} /* namespace ipa::ipu3::algorithms */
} /* namespace libcamera */
|