summaryrefslogtreecommitdiff
path: root/src/ipa/ipu3/algorithms/af.cpp
blob: cf68fb59c49bc4ffea2a0ab582d758495a84d4e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021, Red Hat
 *
 * IPU3 auto focus algorithm
 */

#include "af.h"

#include <algorithm>
#include <chrono>
#include <cmath>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#include <linux/videodev2.h>

#include <libcamera/base/log.h>

#include <libcamera/ipa/core_ipa_interface.h>

/**
 * \file af.h
 */

/*
 * Static variables from ChromiumOS Intel Camera HAL and ia_imaging library:
 * - https://chromium.googlesource.com/chromiumos/platform/arc-camera/+/master/hal/intel/psl/ipu3/statsConverter/ipu3-stats.h
 * - https://chromium.googlesource.com/chromiumos/platform/camera/+/refs/heads/main/hal/intel/ipu3/include/ia_imaging/af_public.h
 */

/** The minimum horizontal grid dimension. */
static constexpr uint8_t kAfMinGridWidth = 16;
/** The minimum vertical grid dimension. */
static constexpr uint8_t kAfMinGridHeight = 16;
/** The maximum horizontal grid dimension. */
static constexpr uint8_t kAfMaxGridWidth = 32;
/** The maximum vertical grid dimension. */
static constexpr uint8_t kAfMaxGridHeight = 24;
/** The minimum value of Log2 of the width of the grid cell. */
static constexpr uint16_t kAfMinGridBlockWidth = 4;
/** The minimum value of Log2 of the height of the grid cell. */
static constexpr uint16_t kAfMinGridBlockHeight = 3;
/** The maximum value of Log2 of the width of the grid cell. */
static constexpr uint16_t kAfMaxGridBlockWidth = 6;
/** The maximum value of Log2 of the height of the grid cell. */
static constexpr uint16_t kAfMaxGridBlockHeight = 6;
/** The number of blocks in vertical axis per slice. */
static constexpr uint16_t kAfDefaultHeightPerSlice = 2;

namespace libcamera {

using namespace std::literals::chrono_literals;

namespace ipa::ipu3::algorithms {

LOG_DEFINE_CATEGORY(IPU3Af)

/**
 * Maximum focus steps of the VCM control
 * \todo should be obtained from the VCM driver
 */
static constexpr uint32_t kMaxFocusSteps = 1023;

/* Minimum focus step for searching appropriate focus */
static constexpr uint32_t kCoarseSearchStep = 30;
static constexpr uint32_t kFineSearchStep = 1;

/* Max ratio of variance change, 0.0 < kMaxChange < 1.0 */
static constexpr double kMaxChange = 0.5;

/* The numbers of frame to be ignored, before performing focus scan. */
static constexpr uint32_t kIgnoreFrame = 10;

/* Fine scan range 0 < kFineRange < 1 */
static constexpr double kFineRange = 0.05;

/* Settings for IPU3 AF filter */
static struct ipu3_uapi_af_filter_config afFilterConfigDefault = {
	.y1_coeff_0 = { 0, 1, 3, 7 },
	.y1_coeff_1 = { 11, 13, 1, 2 },
	.y1_coeff_2 = { 8, 19, 34, 242 },
	.y1_sign_vec = 0x7fdffbfe,
	.y2_coeff_0 = { 0, 1, 6, 6 },
	.y2_coeff_1 = { 13, 25, 3, 0 },
	.y2_coeff_2 = { 25, 3, 177, 254 },
	.y2_sign_vec = 0x4e53ca72,
	.y_calc = { 8, 8, 8, 8 },
	.nf = { 0, 9, 0, 9, 0 },
};

/**
 * \class Af
 * \brief An auto-focus algorithm based on IPU3 statistics
 *
 * This algorithm is used to determine the position of the lens to make a
 * focused image. The IPU3 AF processing block computes the statistics that
 * are composed by two types of filtered value and stores in a AF buffer.
 * Typically, for a clear image, it has a relatively higher contrast than a
 * blurred one. Therefore, if an image with the highest contrast can be
 * found through the scan, the position of the len indicates to a clearest
 * image.
 */
Af::Af()
	: focus_(0), bestFocus_(0), currentVariance_(0.0), previousVariance_(0.0),
	  coarseCompleted_(false), fineCompleted_(false)
{
}

/**
 * \brief Configure the Af given a configInfo
 * \param[in] context The shared IPA context
 * \param[in] configInfo The IPA configuration data
 * \return 0 on success, a negative error code otherwise
 */
int Af::configure(IPAContext &context, const IPAConfigInfo &configInfo)
{
	struct ipu3_uapi_grid_config &grid = context.configuration.af.afGrid;
	grid.width = kAfMinGridWidth;
	grid.height = kAfMinGridHeight;
	grid.block_width_log2 = kAfMinGridBlockWidth;
	grid.block_height_log2 = kAfMinGridBlockHeight;

	/*
	 * \todo - while this clamping code is effectively a no-op, it satisfies
	 * the compiler that the constant definitions of the hardware limits
	 * are used, and paves the way to support dynamic grid sizing in the
	 * future. While the block_{width,height}_log2 remain assigned to the
	 * minimum, this code should be optimized out by the compiler.
	 */
	grid.width = std::clamp(grid.width, kAfMinGridWidth, kAfMaxGridWidth);
	grid.height = std::clamp(grid.height, kAfMinGridHeight, kAfMaxGridHeight);

	grid.block_width_log2 = std::clamp(grid.block_width_log2,
					   kAfMinGridBlockWidth,
					   kAfMaxGridBlockWidth);

	grid.block_height_log2 = std::clamp(grid.block_height_log2,
					    kAfMinGridBlockHeight,
					    kAfMaxGridBlockHeight);

	grid.height_per_slice = kAfDefaultHeightPerSlice;

	/* Position the AF grid in the center of the BDS output. */
	Rectangle bds(configInfo.bdsOutputSize);
	Size gridSize(grid.width << grid.block_width_log2,
		      grid.height << grid.block_height_log2);

	/*
	 * \todo - Support request metadata
	 * - Set the ROI based on any input controls in the request
	 * - Return the AF ROI as metadata in the Request
	 */
	Rectangle roi = gridSize.centeredTo(bds.center());
	Point start = roi.topLeft();

	/* x_start and y_start should be even */
	grid.x_start = utils::alignDown(start.x, 2);
	grid.y_start = utils::alignDown(start.y, 2);
	grid.y_start |= IPU3_UAPI_GRID_Y_START_EN;

	/* Initial max focus step */
	maxStep_ = kMaxFocusSteps;

	/* Initial frame ignore counter */
	afIgnoreFrameReset();

	/* Initial focus value */
	context.activeState.af.focus = 0;
	/* Maximum variance of the AF statistics */
	context.activeState.af.maxVariance = 0;
	/* The stable AF value flag. if it is true, the AF should be in a stable state. */
	context.activeState.af.stable = false;

	return 0;
}

/**
 * \copydoc libcamera::ipa::Algorithm::prepare
 */
void Af::prepare(IPAContext &context,
		 [[maybe_unused]] const uint32_t frame,
		 [[maybe_unused]] IPAFrameContext &frameContext,
		 ipu3_uapi_params *params)
{
	const struct ipu3_uapi_grid_config &grid = context.configuration.af.afGrid;
	params->acc_param.af.grid_cfg = grid;
	params->acc_param.af.filter_config = afFilterConfigDefault;

	/* Enable AF processing block */
	params->use.acc_af = 1;
}

/**
 * \brief AF coarse scan
 * \param[in] context The shared IPA context
 *
 * Find a near focused image using a coarse step. The step is determined by
 * kCoarseSearchStep.
 */
void Af::afCoarseScan(IPAContext &context)
{
	if (coarseCompleted_)
		return;

	if (afNeedIgnoreFrame())
		return;

	if (afScan(context, kCoarseSearchStep)) {
		coarseCompleted_ = true;
		context.activeState.af.maxVariance = 0;
		focus_ = context.activeState.af.focus -
			 (context.activeState.af.focus * kFineRange);
		context.activeState.af.focus = focus_;
		previousVariance_ = 0;
		maxStep_ = std::clamp(focus_ + static_cast<uint32_t>((focus_ * kFineRange)),
				      0U, kMaxFocusSteps);
	}
}

/**
 * \brief AF fine scan
 * \param[in] context The shared IPA context
 *
 * Find an optimum lens position with moving 1 step for each search.
 */
void Af::afFineScan(IPAContext &context)
{
	if (!coarseCompleted_)
		return;

	if (afNeedIgnoreFrame())
		return;

	if (afScan(context, kFineSearchStep)) {
		context.activeState.af.stable = true;
		fineCompleted_ = true;
	}
}

/**
 * \brief AF reset
 * \param[in] context The shared IPA context
 *
 * Reset all the parameters to start over the AF process.
 */
void Af::afReset(IPAContext &context)
{
	if (afNeedIgnoreFrame())
		return;

	context.activeState.af.maxVariance = 0;
	context.activeState.af.focus = 0;
	focus_ = 0;
	context.activeState.af.stable = false;
	ignoreCounter_ = kIgnoreFrame;
	previousVariance_ = 0.0;
	coarseCompleted_ = false;
	fineCompleted_ = false;
	maxStep_ = kMaxFocusSteps;
}

/**
 * \brief AF variance comparison
 * \param[in] context The IPA context
 * \param[in] min_step The VCM movement step
 *
 * We always pick the largest variance to replace the previous one. The image
 * with a larger variance also indicates it is a clearer image than previous
 * one. If we find a negative derivative, we return immediately.
 *
 * \return True, if it finds a AF value.
 */
bool Af::afScan(IPAContext &context, int min_step)
{
	if (focus_ > maxStep_) {
		/* If reach the max step, move lens to the position. */
		context.activeState.af.focus = bestFocus_;
		return true;
	} else {
		/*
		 * Find the maximum of the variance by estimating its
		 * derivative. If the direction changes, it means we have
		 * passed a maximum one step before.
		 */
		if ((currentVariance_ - context.activeState.af.maxVariance) >=
		    -(context.activeState.af.maxVariance * 0.1)) {
			/*
			 * Positive and zero derivative:
			 * The variance is still increasing. The focus could be
			 * increased for the next comparison. Also, the max variance
			 * and previous focus value are updated.
			 */
			bestFocus_ = focus_;
			focus_ += min_step;
			context.activeState.af.focus = focus_;
			context.activeState.af.maxVariance = currentVariance_;
		} else {
			/*
			 * Negative derivative:
			 * The variance starts to decrease which means the maximum
			 * variance is found. Set focus step to previous good one
			 * then return immediately.
			 */
			context.activeState.af.focus = bestFocus_;
			return true;
		}
	}

	previousVariance_ = currentVariance_;
	LOG(IPU3Af, Debug) << " Previous step is "
			   << bestFocus_
			   << " Current step is "
			   << focus_;
	return false;
}

/**
 * \brief Determine the frame to be ignored
 * \return Return True if the frame should be ignored, false otherwise
 */
bool Af::afNeedIgnoreFrame()
{
	if (ignoreCounter_ == 0)
		return false;
	else
		ignoreCounter_--;
	return true;
}

/**
 * \brief Reset frame ignore counter
 */
void Af::afIgnoreFrameReset()
{
	ignoreCounter_ = kIgnoreFrame;
}

/**
 * \brief Estimate variance
 * \param[in] y_items The AF filter data set from the IPU3 statistics buffer
 * \param[in] isY1 Selects between filter Y1 or Y2 to calculate the variance
 *
 * Calculate the mean of the data set provided by \a y_item, and then calculate
 * the variance of that data set from the mean.
 *
 * The operation can work on one of two sets of values contained within the
 * y_item data set supplied by the IPU3. The two data sets are the results of
 * both the Y1 and Y2 filters which are used to support coarse (Y1) and fine
 * (Y2) calculations of the contrast.
 *
 * \return The variance of the values in the data set \a y_item selected by \a isY1
 */
double Af::afEstimateVariance(Span<const y_table_item_t> y_items, bool isY1)
{
	uint32_t total = 0;
	double mean;
	double var_sum = 0;

	for (auto y : y_items)
		total += isY1 ? y.y1_avg : y.y2_avg;

	mean = total / y_items.size();

	for (auto y : y_items) {
		double avg = isY1 ? y.y1_avg : y.y2_avg;
		var_sum += pow(avg - mean, 2);
	}

	return var_sum / y_items.size();
}

/**
 * \brief Determine out-of-focus situation
 * \param[in] context The IPA context
 *
 * Out-of-focus means that the variance change rate for a focused and a new
 * variance is greater than a threshold.
 *
 * \return True if the variance threshold is crossed indicating lost focus,
 * false otherwise
 */
bool Af::afIsOutOfFocus(IPAContext &context)
{
	const uint32_t diff_var = std::abs(currentVariance_ -
					   context.activeState.af.maxVariance);
	const double var_ratio = diff_var / context.activeState.af.maxVariance;

	LOG(IPU3Af, Debug) << "Variance change rate: "
			   << var_ratio
			   << " Current VCM step: "
			   << context.activeState.af.focus;

	if (var_ratio > kMaxChange)
		return true;
	else
		return false;
}

/**
 * \brief Determine the max contrast image and lens position
 * \param[in] context The IPA context
 * \param[in] frame The frame context sequence number
 * \param[in] frameContext The current frame context
 * \param[in] stats The statistics buffer of IPU3
 * \param[out] metadata Metadata for the frame, to be filled by the algorithm
 *
 * Ideally, a clear image also has a relatively higher contrast. So, every
 * image for each focus step should be tested to find an optimal focus step.
 *
 * The Hill Climbing Algorithm[1] is used to find the maximum variance of the
 * AF statistics which is the AF output of IPU3. The focus step is increased
 * then the variance of the AF statistics are estimated. If it finds the
 * negative derivative we have just passed the peak, and we infer that the best
 * focus is found.
 *
 * [1] Hill Climbing Algorithm, https://en.wikipedia.org/wiki/Hill_climbing
 */
void Af::process(IPAContext &context, [[maybe_unused]] const uint32_t frame,
		 [[maybe_unused]] IPAFrameContext &frameContext,
		 const ipu3_uapi_stats_3a *stats,
		 [[maybe_unused]] ControlList &metadata)
{
	/* Evaluate the AF buffer length */
	uint32_t afRawBufferLen = context.configuration.af.afGrid.width *
				  context.configuration.af.afGrid.height;

	ASSERT(afRawBufferLen < IPU3_UAPI_AF_Y_TABLE_MAX_SIZE);

	Span<const y_table_item_t> y_items(reinterpret_cast<const y_table_item_t *>(&stats->af_raw_buffer.y_table),
					   afRawBufferLen);

	/*
	 * Calculate the mean and the variance of AF statistics for a given grid.
	 * For coarse: y1 are used.
	 * For fine: y2 results are used.
	 */
	currentVariance_ = afEstimateVariance(y_items, !coarseCompleted_);

	if (!context.activeState.af.stable) {
		afCoarseScan(context);
		afFineScan(context);
	} else {
		if (afIsOutOfFocus(context))
			afReset(context);
		else
			afIgnoreFrameReset();
	}
}

REGISTER_IPA_ALGORITHM(Af, "Af")

} /* namespace ipa::ipu3::algorithms */

} /* namespace libcamera */