summaryrefslogtreecommitdiff
path: root/src/apps/qcam/assets/shader/bayer_8.frag
blob: 7e35ca88e7ff516e81b751382e4e3e463c2c36fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
/* SPDX-License-Identifier: BSD-2-Clause */
/*
From http://jgt.akpeters.com/papers/McGuire08/

Efficient, High-Quality Bayer Demosaic Filtering on GPUs

Morgan McGuire

This paper appears in issue Volume 13, Number 4.
---------------------------------------------------------
Copyright (c) 2008, Morgan McGuire. All rights reserved.

Modified by Linaro Ltd to integrate it into libcamera.
Copyright (C) 2021, Linaro
*/

//Pixel Shader
#ifdef GL_ES
precision mediump float;
#endif

/** Monochrome RGBA or GL_LUMINANCE Bayer encoded texture.*/
uniform sampler2D       tex_y;
varying vec4            center;
varying vec4            yCoord;
varying vec4            xCoord;

void main(void) {
    #define fetch(x, y) texture2D(tex_y, vec2(x, y)).r

    float C = texture2D(tex_y, center.xy).r; // ( 0, 0)
    const vec4 kC = vec4( 4.0,  6.0,  5.0,  5.0) / 8.0;

    // Determine which of four types of pixels we are on.
    vec2 alternate = mod(floor(center.zw), 2.0);

    vec4 Dvec = vec4(
        fetch(xCoord[1], yCoord[1]),  // (-1,-1)
        fetch(xCoord[1], yCoord[2]),  // (-1, 1)
        fetch(xCoord[2], yCoord[1]),  // ( 1,-1)
        fetch(xCoord[2], yCoord[2])); // ( 1, 1)

    vec4 PATTERN = (kC.xyz * C).xyzz;

    // Can also be a dot product with (1,1,1,1) on hardware where that is
    // specially optimized.
    // Equivalent to: D = Dvec[0] + Dvec[1] + Dvec[2] + Dvec[3];
    Dvec.xy += Dvec.zw;
    Dvec.x  += Dvec.y;

    vec4 value = vec4(
        fetch(center.x, yCoord[0]),   // ( 0,-2)
        fetch(center.x, yCoord[1]),   // ( 0,-1)
        fetch(xCoord[0], center.y),   // (-2, 0)
        fetch(xCoord[1], center.y));  // (-1, 0)

    vec4 temp = vec4(
        fetch(center.x, yCoord[3]),   // ( 0, 2)
        fetch(center.x, yCoord[2]),   // ( 0, 1)
        fetch(xCoord[3], center.y),   // ( 2, 0)
        fetch(xCoord[2], center.y));  // ( 1, 0)

    // Even the simplest compilers should be able to constant-fold these to
    // avoid the division.
    // Note that on scalar processors these constants force computation of some
    // identical products twice.
    const vec4 kA = vec4(-1.0, -1.5,  0.5, -1.0) / 8.0;
    const vec4 kB = vec4( 2.0,  0.0,  0.0,  4.0) / 8.0;
    const vec4 kD = vec4( 0.0,  2.0, -1.0, -1.0) / 8.0;

    // Conserve constant registers and take advantage of free swizzle on load
    #define kE (kA.xywz)
    #define kF (kB.xywz)

    value += temp;

    // There are five filter patterns (identity, cross, checker,
    // theta, phi).  Precompute the terms from all of them and then
    // use swizzles to assign to color channels.
    //
    // Channel   Matches
    //   x       cross   (e.g., EE G)
    //   y       checker (e.g., EE B)
    //   z       theta   (e.g., EO R)
    //   w       phi     (e.g., EO R)
    #define A (value[0])
    #define B (value[1])
    #define D (Dvec.x)
    #define E (value[2])
    #define F (value[3])

    // Avoid zero elements. On a scalar processor this saves two MADDs
    // and it has no effect on a vector processor.
    PATTERN.yzw += (kD.yz * D).xyy;

    PATTERN += (kA.xyz * A).xyzx + (kE.xyw * E).xyxz;
    PATTERN.xw  += kB.xw * B;
    PATTERN.xz  += kF.xz * F;

    gl_FragColor.rgb = (alternate.y == 0.0) ?
        ((alternate.x == 0.0) ?
            vec3(C, PATTERN.xy) :
            vec3(PATTERN.z, C, PATTERN.w)) :
        ((alternate.x == 0.0) ?
            vec3(PATTERN.w, C, PATTERN.z) :
            vec3(PATTERN.yx, C));
}