1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021, Google Inc.
*
* Camera static properties manager
*/
#include "camera_capabilities.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <map>
#include <stdint.h>
#include <type_traits>
#include <hardware/camera3.h>
#include <libcamera/base/log.h>
#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/property_ids.h>
#include "libcamera/internal/formats.h"
using namespace libcamera;
LOG_DECLARE_CATEGORY(HAL)
namespace {
/*
* \var camera3Resolutions
* \brief The list of image resolutions commonly supported by Android
*
* The following are defined as mandatory to be supported by the Android
* Camera3 specification: (320x240), (640x480), (1280x720), (1920x1080).
*
* The following 4:3 resolutions are defined as optional, but commonly
* supported by Android devices: (1280x960), (1600x1200).
*/
const std::vector<Size> camera3Resolutions = {
{ 320, 240 },
{ 640, 480 },
{ 1280, 720 },
{ 1280, 960 },
{ 1600, 1200 },
{ 1920, 1080 }
};
/*
* \struct Camera3Format
* \brief Data associated with an Android format identifier
* \var libcameraFormats List of libcamera pixel formats compatible with the
* Android format
* \var name The human-readable representation of the Android format code
*/
struct Camera3Format {
std::vector<PixelFormat> libcameraFormats;
bool mandatory;
const char *name;
};
/*
* \var camera3FormatsMap
* \brief Associate Android format code with ancillary data
*/
const std::map<int, const Camera3Format> camera3FormatsMap = {
{
HAL_PIXEL_FORMAT_BLOB, {
{ formats::MJPEG },
true,
"BLOB"
}
}, {
HAL_PIXEL_FORMAT_YCbCr_420_888, {
{ formats::NV12, formats::NV21 },
true,
"YCbCr_420_888"
}
}, {
/*
* \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
* usage flag. For now, copy the YCbCr_420 configuration.
*/
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
{ formats::NV12, formats::NV21 },
true,
"IMPLEMENTATION_DEFINED"
}
}, {
HAL_PIXEL_FORMAT_RAW10, {
{
formats::SBGGR10_CSI2P,
formats::SGBRG10_CSI2P,
formats::SGRBG10_CSI2P,
formats::SRGGB10_CSI2P
},
false,
"RAW10"
}
}, {
HAL_PIXEL_FORMAT_RAW12, {
{
formats::SBGGR12_CSI2P,
formats::SGBRG12_CSI2P,
formats::SGRBG12_CSI2P,
formats::SRGGB12_CSI2P
},
false,
"RAW12"
}
}, {
HAL_PIXEL_FORMAT_RAW16, {
{
formats::SBGGR16,
formats::SGBRG16,
formats::SGRBG16,
formats::SRGGB16
},
false,
"RAW16"
}
},
};
const std::map<camera_metadata_enum_android_info_supported_hardware_level, std::string>
hwLevelStrings = {
{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED, "LIMITED" },
{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL, "FULL" },
{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LEGACY, "LEGACY" },
{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_3, "LEVEL_3" },
{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_EXTERNAL, "EXTERNAL" },
};
enum class ControlRange {
Min,
Def,
Max,
};
/**
* \brief Set Android metadata from libcamera ControlInfo or a default value
* \tparam T Type of the control in libcamera
* \tparam U Type of the metadata in Android
* \param[in] metadata Android metadata pack to add the control value to
* \param[in] tag Android metadata tag
* \param[in] controlsInfo libcamera ControlInfoMap from which to find the control info
* \param[in] control libcamera ControlId to find from \a controlsInfo
* \param[in] controlRange Whether to use the min, def, or max value from the control info
* \param[in] defaultValue The value to set in \a metadata if \a control is not found
*
* Set the Android metadata entry in \a metadata with tag \a tag based on the
* control info found for the libcamera control \a control in the libcamera
* ControlInfoMap \a controlsInfo. If no libcamera ControlInfo is found, then
* the Android metadata entry is set to \a defaultValue.
*
* This function is for scalar values.
*/
template<typename T, typename U>
U setMetadata(CameraMetadata *metadata, uint32_t tag,
const ControlInfoMap &controlsInfo, const Control<T> &control,
enum ControlRange controlRange, const U defaultValue)
{
U value = defaultValue;
const auto &info = controlsInfo.find(&control);
if (info != controlsInfo.end()) {
switch (controlRange) {
case ControlRange::Min:
value = static_cast<U>(info->second.min().template get<T>());
break;
case ControlRange::Def:
value = static_cast<U>(info->second.def().template get<T>());
break;
case ControlRange::Max:
value = static_cast<U>(info->second.max().template get<T>());
break;
}
}
metadata->addEntry(tag, value);
return value;
}
/**
* \brief Set Android metadata from libcamera ControlInfo or a default value
* \tparam T Type of the control in libcamera
* \tparam U Type of the metadata in Android
* \param[in] metadata Android metadata pack to add the control value to
* \param[in] tag Android metadata tag
* \param[in] controlsInfo libcamera ControlInfoMap from which to find the control info
* \param[in] control libcamera ControlId to find from \a controlsInfo
* \param[in] defaultVector The value to set in \a metadata if \a control is not found
*
* Set the Android metadata entry in \a metadata with tag \a tag based on the
* control info found for the libcamera control \a control in the libcamera
* ControlInfoMap \a controlsInfo. If no libcamera ControlInfo is found, then
* the Android metadata entry is set to \a defaultVector.
*
* This function is for vector values.
*/
template<typename T, typename U>
std::vector<U> setMetadata(CameraMetadata *metadata, uint32_t tag,
const ControlInfoMap &controlsInfo,
const Control<T> &control,
const std::vector<U> &defaultVector)
{
const auto &info = controlsInfo.find(&control);
if (info == controlsInfo.end()) {
metadata->addEntry(tag, defaultVector);
return defaultVector;
}
std::vector<U> values(info->second.values().size());
for (const auto &value : info->second.values())
values.push_back(static_cast<U>(value.template get<T>()));
metadata->addEntry(tag, values);
return values;
}
} /* namespace */
bool CameraCapabilities::validateManualSensorCapability()
{
const char *noMode = "Manual sensor capability unavailable: ";
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_AVAILABLE_MODES,
ANDROID_CONTROL_AE_MODE_OFF)) {
LOG(HAL, Info) << noMode << "missing AE mode off";
return false;
}
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE)) {
LOG(HAL, Info) << noMode << "missing AE lock";
return false;
}
/*
* \todo Return true here after we satisfy all the requirements:
* https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR
* Manual frame duration control
* android.sensor.frameDuration
* android.sensor.info.maxFrameDuration
* Manual exposure control
* android.sensor.exposureTime
* android.sensor.info.exposureTimeRange
* Manual sensitivity control
* android.sensor.sensitivity
* android.sensor.info.sensitivityRange
* Manual lens control (if the lens is adjustable)
* android.lens.*
* Manual flash control (if a flash unit is present)
* android.flash.*
* Manual black level locking
* android.blackLevel.lock
* Auto exposure lock
* android.control.aeLock
*/
return false;
}
bool CameraCapabilities::validateManualPostProcessingCapability()
{
const char *noMode = "Manual post processing capability unavailable: ";
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
ANDROID_CONTROL_AWB_MODE_OFF)) {
LOG(HAL, Info) << noMode << "missing AWB mode off";
return false;
}
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE)) {
LOG(HAL, Info) << noMode << "missing AWB lock";
return false;
}
/*
* \todo return true here after we satisfy all the requirements:
* https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING
* Manual tonemap control
* android.tonemap.curve
* android.tonemap.mode
* android.tonemap.maxCurvePoints
* android.tonemap.gamma
* android.tonemap.presetCurve
* Manual white balance control
* android.colorCorrection.transform
* android.colorCorrection.gains
* Manual lens shading map control
* android.shading.mode
* android.statistics.lensShadingMapMode
* android.statistics.lensShadingMap
* android.lens.info.shadingMapSize
* Manual aberration correction control (if aberration correction is supported)
* android.colorCorrection.aberrationMode
* android.colorCorrection.availableAberrationModes
* Auto white balance lock
* android.control.awbLock
*/
return false;
}
bool CameraCapabilities::validateBurstCaptureCapability()
{
camera_metadata_ro_entry_t entry;
bool found;
const char *noMode = "Burst capture capability unavailable: ";
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE)) {
LOG(HAL, Info) << noMode << "missing AE lock";
return false;
}
if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE)) {
LOG(HAL, Info) << noMode << "missing AWB lock";
return false;
}
found = staticMetadata_->getEntry(ANDROID_SYNC_MAX_LATENCY, &entry);
if (!found || *entry.data.i32 < 0 || 4 < *entry.data.i32) {
LOG(HAL, Info)
<< noMode << "max sync latency is "
<< (found ? std::to_string(*entry.data.i32) : "not present");
return false;
}
/*
* \todo return true here after we satisfy all the requirements
* https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE
*/
return false;
}
std::set<camera_metadata_enum_android_request_available_capabilities>
CameraCapabilities::computeCapabilities()
{
std::set<camera_metadata_enum_android_request_available_capabilities>
capabilities;
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE);
if (validateManualSensorCapability()) {
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR);
/* The requirements for READ_SENSOR_SETTINGS are a subset of MANUAL_SENSOR */
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_READ_SENSOR_SETTINGS);
}
if (validateManualPostProcessingCapability())
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING);
if (validateBurstCaptureCapability())
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE);
if (rawStreamAvailable_)
capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
return capabilities;
}
void CameraCapabilities::computeHwLevel(
const std::set<camera_metadata_enum_android_request_available_capabilities> &caps)
{
const char *noFull = "Hardware level FULL unavailable: ";
camera_metadata_ro_entry_t entry;
bool found;
camera_metadata_enum_android_info_supported_hardware_level
hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL;
if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR)) {
LOG(HAL, Info) << noFull << "missing manual sensor";
hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
}
if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING)) {
LOG(HAL, Info) << noFull << "missing manual post processing";
hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
}
if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE)) {
LOG(HAL, Info) << noFull << "missing burst capture";
hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
}
found = staticMetadata_->getEntry(ANDROID_SYNC_MAX_LATENCY, &entry);
if (!found || *entry.data.i32 != 0) {
LOG(HAL, Info) << noFull << "missing or invalid max sync latency";
hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
}
hwLevel_ = hwLevel;
}
int CameraCapabilities::initialize(std::shared_ptr<Camera> camera,
int orientation, int facing)
{
camera_ = camera;
orientation_ = orientation;
facing_ = facing;
rawStreamAvailable_ = false;
maxFrameDuration_ = 0;
/* Acquire the camera and initialize available stream configurations. */
int ret = camera_->acquire();
if (ret) {
LOG(HAL, Error) << "Failed to temporarily acquire the camera";
return ret;
}
ret = initializeStreamConfigurations();
if (ret) {
camera_->release();
return ret;
}
ret = initializeStaticMetadata();
camera_->release();
return ret;
}
std::vector<Size>
CameraCapabilities::initializeYUVResolutions(const PixelFormat &pixelFormat,
const std::vector<Size> &resolutions)
{
std::vector<Size> supportedResolutions;
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Viewfinder });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to get supported YUV resolutions";
return supportedResolutions;
}
StreamConfiguration &cfg = cameraConfig->at(0);
for (const Size &res : resolutions) {
cfg.pixelFormat = pixelFormat;
cfg.size = res;
CameraConfiguration::Status status = cameraConfig->validate();
if (status != CameraConfiguration::Valid) {
LOG(HAL, Debug) << cfg.toString() << " not supported";
continue;
}
LOG(HAL, Debug) << cfg.toString() << " supported";
supportedResolutions.push_back(res);
}
return supportedResolutions;
}
std::vector<Size>
CameraCapabilities::initializeRawResolutions(const PixelFormat &pixelFormat)
{
std::vector<Size> supportedResolutions;
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Raw });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to get supported Raw resolutions";
return supportedResolutions;
}
StreamConfiguration &cfg = cameraConfig->at(0);
const StreamFormats &formats = cfg.formats();
supportedResolutions = formats.sizes(pixelFormat);
return supportedResolutions;
}
/*
* Initialize the format conversion map to translate from Android format
* identifier to libcamera pixel formats and fill in the list of supported
* stream configurations to be reported to the Android camera framework through
* the camera static metadata.
*/
int CameraCapabilities::initializeStreamConfigurations()
{
/*
* Get the maximum output resolutions
* \todo Get this from the camera properties once defined
*/
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::StillCapture });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to get maximum resolution";
return -EINVAL;
}
StreamConfiguration &cfg = cameraConfig->at(0);
/*
* \todo JPEG - Adjust the maximum available resolution by taking the
* JPEG encoder requirements into account (alignment and aspect ratio).
*/
const Size maxRes = cfg.size;
LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes;
/*
* Build the list of supported image resolutions.
*
* The resolutions listed in camera3Resolution are supported, up to the
* camera maximum resolution.
*
* Augment the list by adding resolutions calculated from the camera
* maximum one.
*/
std::vector<Size> cameraResolutions;
std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
std::back_inserter(cameraResolutions),
[&](const Size &res) { return res < maxRes; });
/*
* The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
* resolution.
*/
for (unsigned int divider = 2;; divider <<= 1) {
Size derivedSize{
maxRes.width / divider,
maxRes.height / divider,
};
if (derivedSize.width < 320 ||
derivedSize.height < 240)
break;
cameraResolutions.push_back(derivedSize);
}
cameraResolutions.push_back(maxRes);
/* Remove duplicated entries from the list of supported resolutions. */
std::sort(cameraResolutions.begin(), cameraResolutions.end());
auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
cameraResolutions.erase(last, cameraResolutions.end());
/*
* Build the list of supported camera formats.
*
* To each Android format a list of compatible libcamera formats is
* associated. The first libcamera format that tests successful is added
* to the format translation map used when configuring the streams.
* It is then tested against the list of supported camera resolutions to
* build the stream configuration map reported through the camera static
* metadata.
*/
Size maxJpegSize;
for (const auto &format : camera3FormatsMap) {
int androidFormat = format.first;
const Camera3Format &camera3Format = format.second;
const std::vector<PixelFormat> &libcameraFormats =
camera3Format.libcameraFormats;
LOG(HAL, Debug) << "Trying to map Android format "
<< camera3Format.name;
/*
* JPEG is always supported, either produced directly by the
* camera, or encoded in the HAL.
*/
if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
formatsMap_[androidFormat] = formats::MJPEG;
LOG(HAL, Debug) << "Mapped Android format "
<< camera3Format.name << " to "
<< formats::MJPEG
<< " (fixed mapping)";
continue;
}
/*
* Test the libcamera formats that can produce images
* compatible with the format defined by Android.
*/
PixelFormat mappedFormat;
for (const PixelFormat &pixelFormat : libcameraFormats) {
LOG(HAL, Debug) << "Testing " << pixelFormat;
/*
* The stream configuration size can be adjusted,
* not the pixel format.
*
* \todo This could be simplified once all pipeline
* handlers will report the StreamFormats list of
* supported formats.
*/
cfg.pixelFormat = pixelFormat;
CameraConfiguration::Status status = cameraConfig->validate();
if (status != CameraConfiguration::Invalid &&
cfg.pixelFormat == pixelFormat) {
mappedFormat = pixelFormat;
break;
}
}
if (!mappedFormat.isValid()) {
/* If the format is not mandatory, skip it. */
if (!camera3Format.mandatory)
continue;
LOG(HAL, Error)
<< "Failed to map mandatory Android format "
<< camera3Format.name << " ("
<< utils::hex(androidFormat) << "): aborting";
return -EINVAL;
}
/*
* Record the mapping and then proceed to generate the
* stream configurations map, by testing the image resolutions.
*/
formatsMap_[androidFormat] = mappedFormat;
LOG(HAL, Debug) << "Mapped Android format "
<< camera3Format.name << " to "
<< mappedFormat;
std::vector<Size> resolutions;
const PixelFormatInfo &info = PixelFormatInfo::info(mappedFormat);
switch (info.colourEncoding) {
case PixelFormatInfo::ColourEncodingRAW:
if (info.bitsPerPixel != 16)
continue;
rawStreamAvailable_ = true;
resolutions = initializeRawResolutions(mappedFormat);
break;
case PixelFormatInfo::ColourEncodingYUV:
case PixelFormatInfo::ColourEncodingRGB:
/*
* We support enumerating RGB streams here to allow
* mapping IMPLEMENTATION_DEFINED format to RGB.
*/
resolutions = initializeYUVResolutions(mappedFormat,
cameraResolutions);
break;
}
for (const Size &res : resolutions) {
/*
* Configure the Camera with the collected format and
* resolution to get an updated list of controls.
*
* \todo Avoid the need to configure the camera when
* redesigning the configuration API.
*/
cfg.size = res;
int ret = camera_->configure(cameraConfig.get());
if (ret)
return ret;
const ControlInfoMap &controls = camera_->controls();
const auto frameDurations = controls.find(
&controls::FrameDurationLimits);
if (frameDurations == controls.end()) {
LOG(HAL, Error)
<< "Camera does not report frame durations";
return -EINVAL;
}
int64_t minFrameDuration = frameDurations->second.min().get<int64_t>() * 1000;
int64_t maxFrameDuration = frameDurations->second.max().get<int64_t>() * 1000;
/*
* Cap min frame duration to 30 FPS with 1% tolerance.
*
* 30 frames per second has been validated as the most
* opportune frame rate for quality tuning, and power
* vs performances budget on Intel IPU3-based
* Chromebooks.
*
* \todo This is a platform-specific decision that needs
* to be abstracted and delegated to the configuration
* file.
*
* \todo libcamera only allows to control frame duration
* through the per-request controls::FrameDuration
* control. If we cap the durations here, we should be
* capable of configuring the camera to operate at such
* duration without requiring to have the FrameDuration
* control to be specified for each Request. Defer this
* to the in-development configuration API rework.
*/
int64_t minFrameDurationCap = 1e9 / 30.0;
if (minFrameDuration < minFrameDurationCap) {
float tolerance =
(minFrameDurationCap - minFrameDuration) * 100.0 / minFrameDurationCap;
/*
* If the tolerance is less than 1%, do not cap
* the frame duration.
*/
if (tolerance > 1.0)
minFrameDuration = minFrameDurationCap;
}
/*
* Calculate FPS as CTS does and adjust the minimum
* frame duration accordingly: see
* Camera2SurfaceViewTestCase.java:getSuitableFpsRangeForDuration()
*/
minFrameDuration =
1e9 / static_cast<unsigned int>(floor(1e9 / minFrameDuration + 0.05f));
streamConfigurations_.push_back({
res, androidFormat, minFrameDuration, maxFrameDuration,
});
/*
* If the format is HAL_PIXEL_FORMAT_YCbCr_420_888
* from which JPEG is produced, add an entry for
* the JPEG stream.
*
* \todo Wire the JPEG encoder to query the supported
* sizes provided a list of formats it can encode.
*
* \todo Support JPEG streams produced by the camera
* natively.
*
* \todo HAL_PIXEL_FORMAT_BLOB is a 'stalling' format,
* its duration should take into account the time
* required for the YUV to JPEG encoding. For now
* use the same frame durations as collected for
* the YUV/RGB streams.
*/
if (androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888) {
streamConfigurations_.push_back({
res, HAL_PIXEL_FORMAT_BLOB,
minFrameDuration, maxFrameDuration,
});
maxJpegSize = std::max(maxJpegSize, res);
}
maxFrameDuration_ = std::max(maxFrameDuration_,
maxFrameDuration);
}
/*
* \todo Calculate the maximum JPEG buffer size by asking the
* encoder giving the maximum frame size required.
*/
maxJpegBufferSize_ = maxJpegSize.width * maxJpegSize.height * 1.5;
}
LOG(HAL, Debug) << "Collected stream configuration map: ";
for (const auto &entry : streamConfigurations_)
LOG(HAL, Debug) << "{ " << entry.resolution << " - "
<< utils::hex(entry.androidFormat) << " }";
return 0;
}
int CameraCapabilities::initializeStaticMetadata()
{
staticMetadata_ = std::make_unique<CameraMetadata>(64, 1024);
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to allocate static metadata";
staticMetadata_.reset();
return -EINVAL;
}
/*
* Generate and apply a new configuration for the Viewfinder role to
* collect control limits and properties from a known state.
*/
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Viewfinder });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to generate camera configuration";
staticMetadata_.reset();
return -ENODEV;
}
int ret = camera_->configure(cameraConfig.get());
if (ret) {
LOG(HAL, Error) << "Failed to initialize the camera state";
staticMetadata_.reset();
return ret;
}
const ControlInfoMap &controlsInfo = camera_->controls();
const ControlList &properties = camera_->properties();
availableCharacteristicsKeys_ = {
ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
ANDROID_CONTROL_AE_AVAILABLE_MODES,
ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
ANDROID_CONTROL_AE_COMPENSATION_RANGE,
ANDROID_CONTROL_AE_COMPENSATION_STEP,
ANDROID_CONTROL_AE_LOCK_AVAILABLE,
ANDROID_CONTROL_AF_AVAILABLE_MODES,
ANDROID_CONTROL_AVAILABLE_EFFECTS,
ANDROID_CONTROL_AVAILABLE_MODES,
ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
ANDROID_CONTROL_AWB_AVAILABLE_MODES,
ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
ANDROID_CONTROL_MAX_REGIONS,
ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
ANDROID_FLASH_INFO_AVAILABLE,
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
ANDROID_JPEG_MAX_SIZE,
ANDROID_LENS_FACING,
ANDROID_LENS_INFO_AVAILABLE_APERTURES,
ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
ANDROID_SCALER_CROPPING_TYPE,
ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
ANDROID_SENSOR_ORIENTATION,
ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
ANDROID_SYNC_MAX_LATENCY,
};
availableRequestKeys_ = {
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
ANDROID_CONTROL_AE_ANTIBANDING_MODE,
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AE_MODE,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
ANDROID_CONTROL_AF_MODE,
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_CONTROL_AWB_MODE,
ANDROID_CONTROL_CAPTURE_INTENT,
ANDROID_CONTROL_EFFECT_MODE,
ANDROID_CONTROL_MODE,
ANDROID_CONTROL_SCENE_MODE,
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
ANDROID_FLASH_MODE,
ANDROID_JPEG_ORIENTATION,
ANDROID_JPEG_QUALITY,
ANDROID_JPEG_THUMBNAIL_QUALITY,
ANDROID_JPEG_THUMBNAIL_SIZE,
ANDROID_LENS_APERTURE,
ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
ANDROID_NOISE_REDUCTION_MODE,
ANDROID_SCALER_CROP_REGION,
ANDROID_STATISTICS_FACE_DETECT_MODE
};
availableResultKeys_ = {
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
ANDROID_CONTROL_AE_ANTIBANDING_MODE,
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AE_MODE,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_STATE,
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
ANDROID_CONTROL_AF_MODE,
ANDROID_CONTROL_AF_STATE,
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_CONTROL_AWB_MODE,
ANDROID_CONTROL_AWB_STATE,
ANDROID_CONTROL_CAPTURE_INTENT,
ANDROID_CONTROL_EFFECT_MODE,
ANDROID_CONTROL_MODE,
ANDROID_CONTROL_SCENE_MODE,
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
ANDROID_FLASH_MODE,
ANDROID_FLASH_STATE,
ANDROID_JPEG_GPS_COORDINATES,
ANDROID_JPEG_GPS_PROCESSING_METHOD,
ANDROID_JPEG_GPS_TIMESTAMP,
ANDROID_JPEG_ORIENTATION,
ANDROID_JPEG_QUALITY,
ANDROID_JPEG_SIZE,
ANDROID_JPEG_THUMBNAIL_QUALITY,
ANDROID_JPEG_THUMBNAIL_SIZE,
ANDROID_LENS_APERTURE,
ANDROID_LENS_FOCAL_LENGTH,
ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
ANDROID_LENS_STATE,
ANDROID_NOISE_REDUCTION_MODE,
ANDROID_REQUEST_PIPELINE_DEPTH,
ANDROID_SCALER_CROP_REGION,
ANDROID_SENSOR_EXPOSURE_TIME,
ANDROID_SENSOR_FRAME_DURATION,
ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
ANDROID_SENSOR_TEST_PATTERN_MODE,
ANDROID_SENSOR_TIMESTAMP,
ANDROID_STATISTICS_FACE_DETECT_MODE,
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE,
ANDROID_STATISTICS_SCENE_FLICKER,
};
/* Color correction static metadata. */
{
std::vector<uint8_t> data;
data.reserve(3);
const auto &infoMap = controlsInfo.find(&controls::draft::ColorCorrectionAberrationMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
data);
}
/* Control static metadata. */
std::vector<uint8_t> aeAvailableAntiBandingModes = {
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
aeAvailableAntiBandingModes);
std::vector<uint8_t> aeAvailableModes = {
ANDROID_CONTROL_AE_MODE_ON,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
aeAvailableModes);
std::vector<int32_t> aeCompensationRange = {
0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
aeCompensationRange);
const camera_metadata_rational_t aeCompensationStep[] = {
{ 0, 1 }
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
aeCompensationStep);
std::vector<uint8_t> availableAfModes = {
ANDROID_CONTROL_AF_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
availableAfModes);
std::vector<uint8_t> availableEffects = {
ANDROID_CONTROL_EFFECT_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
availableEffects);
std::vector<uint8_t> availableSceneModes = {
ANDROID_CONTROL_SCENE_MODE_DISABLED,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
availableSceneModes);
std::vector<uint8_t> availableStabilizationModes = {
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
availableStabilizationModes);
/*
* \todo Inspect the camera capabilities to report the available
* AWB modes. Default to AUTO as CTS tests require it.
*/
std::vector<uint8_t> availableAwbModes = {
ANDROID_CONTROL_AWB_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
availableAwbModes);
std::vector<int32_t> availableMaxRegions = {
0, 0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
availableMaxRegions);
std::vector<uint8_t> sceneModesOverride = {
ANDROID_CONTROL_AE_MODE_ON,
ANDROID_CONTROL_AWB_MODE_AUTO,
ANDROID_CONTROL_AF_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
sceneModesOverride);
uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
aeLockAvailable);
uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
awbLockAvailable);
char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
availableControlModes);
/* JPEG static metadata. */
/*
* Create the list of supported thumbnail sizes by inspecting the
* available JPEG resolutions collected in streamConfigurations_ and
* generate one entry for each aspect ratio.
*
* The JPEG thumbnailer can freely scale, so pick an arbitrary
* (160, 160) size as the bounding rectangle, which is then cropped to
* the different supported aspect ratios.
*/
constexpr Size maxJpegThumbnail(160, 160);
std::vector<Size> thumbnailSizes;
thumbnailSizes.push_back({ 0, 0 });
for (const auto &entry : streamConfigurations_) {
if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
continue;
Size thumbnailSize = maxJpegThumbnail
.boundedToAspectRatio({ entry.resolution.width,
entry.resolution.height });
thumbnailSizes.push_back(thumbnailSize);
}
std::sort(thumbnailSizes.begin(), thumbnailSizes.end());
auto last = std::unique(thumbnailSizes.begin(), thumbnailSizes.end());
thumbnailSizes.erase(last, thumbnailSizes.end());
/* Transform sizes in to a list of integers that can be consumed. */
std::vector<int32_t> thumbnailEntries;
thumbnailEntries.reserve(thumbnailSizes.size() * 2);
for (const auto &size : thumbnailSizes) {
thumbnailEntries.push_back(size.width);
thumbnailEntries.push_back(size.height);
}
staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
thumbnailEntries);
staticMetadata_->addEntry(ANDROID_JPEG_MAX_SIZE, maxJpegBufferSize_);
/* Sensor static metadata. */
std::array<int32_t, 2> pixelArraySize;
{
const Size &size = properties.get(properties::PixelArraySize).value_or(Size{});
pixelArraySize[0] = size.width;
pixelArraySize[1] = size.height;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
pixelArraySize);
}
const auto &cellSize = properties.get<Size>(properties::UnitCellSize);
if (cellSize) {
std::array<float, 2> physicalSize{
cellSize->width * pixelArraySize[0] / 1e6f,
cellSize->height * pixelArraySize[1] / 1e6f
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
physicalSize);
}
{
const Span<const Rectangle> rects =
properties.get(properties::PixelArrayActiveAreas).value_or(Span<const Rectangle>{});
std::vector<int32_t> data{
static_cast<int32_t>(rects[0].x),
static_cast<int32_t>(rects[0].y),
static_cast<int32_t>(rects[0].width),
static_cast<int32_t>(rects[0].height),
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
data);
}
int32_t sensitivityRange[] = {
32, 2400,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
sensitivityRange);
/* Report the color filter arrangement if the camera reports it. */
const auto &filterArr = properties.get(properties::draft::ColorFilterArrangement);
if (filterArr)
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
*filterArr);
const auto &exposureInfo = controlsInfo.find(&controls::ExposureTime);
if (exposureInfo != controlsInfo.end()) {
int64_t exposureTimeRange[2] = {
exposureInfo->second.min().get<int32_t>() * 1000LL,
exposureInfo->second.max().get<int32_t>() * 1000LL,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
exposureTimeRange, 2);
}
staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, orientation_);
std::vector<int32_t> testPatternModes = {
ANDROID_SENSOR_TEST_PATTERN_MODE_OFF
};
const auto &testPatternsInfo =
controlsInfo.find(&controls::draft::TestPatternMode);
if (testPatternsInfo != controlsInfo.end()) {
const auto &values = testPatternsInfo->second.values();
ASSERT(!values.empty());
for (const auto &value : values) {
switch (value.get<int32_t>()) {
case controls::draft::TestPatternModeOff:
/*
* ANDROID_SENSOR_TEST_PATTERN_MODE_OFF is
* already in testPatternModes.
*/
break;
case controls::draft::TestPatternModeSolidColor:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR);
break;
case controls::draft::TestPatternModeColorBars:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS);
break;
case controls::draft::TestPatternModeColorBarsFadeToGray:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY);
break;
case controls::draft::TestPatternModePn9:
testPatternModes.push_back(
ANDROID_SENSOR_TEST_PATTERN_MODE_PN9);
break;
case controls::draft::TestPatternModeCustom1:
/* We don't support this yet. */
break;
default:
LOG(HAL, Error) << "Unknown test pattern mode: "
<< value.get<int32_t>();
continue;
}
}
}
staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
testPatternModes);
uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
timestampSource);
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
maxFrameDuration_);
/* Statistics static metadata. */
int32_t maxFaceCount = 0;
auto iter = camera_->controls().find(controls::draft::FaceDetectMode.id());
if (iter != camera_->controls().end()) {
const ControlInfo &faceDetectCtrlInfo = iter->second;
std::vector<uint8_t> faceDetectModes;
bool hasFaceDetection = false;
for (const auto &value : faceDetectCtrlInfo.values()) {
int32_t mode = value.get<int32_t>();
uint8_t androidMode = 0;
switch (mode) {
case controls::draft::FaceDetectModeOff:
androidMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
break;
case controls::draft::FaceDetectModeSimple:
androidMode = ANDROID_STATISTICS_FACE_DETECT_MODE_SIMPLE;
hasFaceDetection = true;
break;
default:
LOG(HAL, Fatal) << "Received invalid face detect mode: " << mode;
}
faceDetectModes.push_back(androidMode);
}
if (hasFaceDetection) {
/*
* \todo Create new libcamera controls to query max
* possible faces detected.
*/
maxFaceCount = 10;
staticMetadata_->addEntry(
ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
faceDetectModes.data(), faceDetectModes.size());
}
} else {
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
faceDetectMode);
}
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
maxFaceCount);
{
std::vector<uint8_t> data;
data.reserve(2);
const auto &infoMap = controlsInfo.find(&controls::draft::LensShadingMapMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
data);
}
/* Sync static metadata. */
setMetadata(staticMetadata_.get(), ANDROID_SYNC_MAX_LATENCY,
controlsInfo, controls::draft::MaxLatency,
ControlRange::Def,
ANDROID_SYNC_MAX_LATENCY_UNKNOWN);
/* Flash static metadata. */
char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
flashAvailable);
/* Lens static metadata. */
std::vector<float> lensApertures = {
2.53 / 100,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
lensApertures);
uint8_t lensFacing;
switch (facing_) {
default:
case CAMERA_FACING_FRONT:
lensFacing = ANDROID_LENS_FACING_FRONT;
break;
case CAMERA_FACING_BACK:
lensFacing = ANDROID_LENS_FACING_BACK;
break;
case CAMERA_FACING_EXTERNAL:
lensFacing = ANDROID_LENS_FACING_EXTERNAL;
break;
}
staticMetadata_->addEntry(ANDROID_LENS_FACING, lensFacing);
std::vector<float> lensFocalLengths = {
1,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
lensFocalLengths);
std::vector<uint8_t> opticalStabilizations = {
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
opticalStabilizations);
float hypeFocalDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
hypeFocalDistance);
float minFocusDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
minFocusDistance);
/* Noise reduction modes. */
{
std::vector<uint8_t> data;
data.reserve(5);
const auto &infoMap = controlsInfo.find(&controls::draft::NoiseReductionMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_NOISE_REDUCTION_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
data);
}
/* Scaler static metadata. */
/*
* \todo The digital zoom factor is a property that depends on the
* desired output configuration and the sensor frame size input to the
* ISP. This information is not available to the Android HAL, not at
* initialization time at least.
*
* As a workaround rely on pipeline handlers initializing the
* ScalerCrop control with the camera default configuration and use the
* maximum and minimum crop rectangles to calculate the digital zoom
* factor.
*/
float maxZoom = 1.0f;
const auto scalerCrop = controlsInfo.find(&controls::ScalerCrop);
if (scalerCrop != controlsInfo.end()) {
Rectangle min = scalerCrop->second.min().get<Rectangle>();
Rectangle max = scalerCrop->second.max().get<Rectangle>();
maxZoom = std::min(1.0f * max.width / min.width,
1.0f * max.height / min.height);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
maxZoom);
std::vector<uint32_t> availableStreamConfigurations;
std::vector<int64_t> minFrameDurations;
int maxYUVFps = 0;
Size maxYUVSize;
availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
minFrameDurations.reserve(streamConfigurations_.size() * 4);
for (const auto &entry : streamConfigurations_) {
/*
* Filter out YUV streams not capable of running at 30 FPS.
*
* This requirement comes from CTS RecordingTest failures most
* probably related to a requirement of the camcoder video
* recording profile. Inspecting the Intel IPU3 HAL
* implementation confirms this but no reference has been found
* in the metadata documentation.
*/
unsigned int fps =
static_cast<unsigned int>(floor(1e9 / entry.minFrameDurationNsec));
if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB && fps < 30)
continue;
/*
* Collect the FPS of the maximum YUV output size to populate
* AE_AVAILABLE_TARGET_FPS_RANGE
*/
if (entry.androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888 &&
entry.resolution > maxYUVSize) {
maxYUVSize = entry.resolution;
maxYUVFps = fps;
}
/* Stream configuration map. */
availableStreamConfigurations.push_back(entry.androidFormat);
availableStreamConfigurations.push_back(entry.resolution.width);
availableStreamConfigurations.push_back(entry.resolution.height);
availableStreamConfigurations.push_back(
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
/* Per-stream durations. */
minFrameDurations.push_back(entry.androidFormat);
minFrameDurations.push_back(entry.resolution.width);
minFrameDurations.push_back(entry.resolution.height);
minFrameDurations.push_back(entry.minFrameDurationNsec);
LOG(HAL, Debug)
<< "Output Stream: " << utils::hex(entry.androidFormat)
<< " (" << entry.resolution << ")["
<< entry.minFrameDurationNsec << "]"
<< "@" << fps;
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
availableStreamConfigurations);
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
minFrameDurations);
/*
* Register to the camera service {min, max} and {max, max} with
* 'max' being the larger YUV stream maximum frame rate and 'min' being
* the globally minimum frame rate rounded to the next largest integer
* as the camera service expects the camera maximum frame duration to be
* smaller than 10^9 / minFps.
*/
int32_t minFps = std::ceil(1e9 / maxFrameDuration_);
int32_t availableAeFpsTarget[] = {
minFps, maxYUVFps, maxYUVFps, maxYUVFps,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
availableAeFpsTarget);
std::vector<int64_t> availableStallDurations;
for (const auto &entry : streamConfigurations_) {
if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
continue;
availableStallDurations.push_back(entry.androidFormat);
availableStallDurations.push_back(entry.resolution.width);
availableStallDurations.push_back(entry.resolution.height);
availableStallDurations.push_back(entry.minFrameDurationNsec);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
availableStallDurations);
uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, croppingType);
/* Request static metadata. */
int32_t partialResultCount = 1;
staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
partialResultCount);
{
/* Default the value to 2 if not reported by the camera. */
uint8_t maxPipelineDepth = 2;
const auto &infoMap = controlsInfo.find(&controls::draft::PipelineDepth);
if (infoMap != controlsInfo.end())
maxPipelineDepth = infoMap->second.max().get<int32_t>();
staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
maxPipelineDepth);
}
/* LIMITED does not support reprocessing. */
uint32_t maxNumInputStreams = 0;
staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
maxNumInputStreams);
/* Number of { RAW, YUV, JPEG } supported output streams */
int32_t numOutStreams[] = { rawStreamAvailable_, 2, 1 };
staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
numOutStreams);
/* Check capabilities */
capabilities_ = computeCapabilities();
/* This *must* be uint8_t. */
std::vector<uint8_t> capsVec(capabilities_.begin(), capabilities_.end());
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES, capsVec);
computeHwLevel(capabilities_);
staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL, hwLevel_);
LOG(HAL, Info)
<< "Hardware level: " << hwLevelStrings.find(hwLevel_)->second;
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
std::vector<int32_t>(availableCharacteristicsKeys_.begin(),
availableCharacteristicsKeys_.end()));
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
std::vector<int32_t>(availableRequestKeys_.begin(),
availableRequestKeys_.end()));
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
std::vector<int32_t>(availableResultKeys_.begin(),
availableResultKeys_.end()));
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to construct static metadata";
staticMetadata_.reset();
return -EINVAL;
}
if (staticMetadata_->resized()) {
auto [entryCount, dataCount] = staticMetadata_->usage();
LOG(HAL, Info)
<< "Static metadata resized: " << entryCount
<< " entries and " << dataCount << " bytes used";
}
return 0;
}
/* Translate Android format code to libcamera pixel format. */
PixelFormat CameraCapabilities::toPixelFormat(int format) const
{
auto it = formatsMap_.find(format);
if (it == formatsMap_.end()) {
LOG(HAL, Error) << "Requested format " << utils::hex(format)
<< " not supported";
return PixelFormat();
}
return it->second;
}
std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateManual() const
{
if (!capabilities_.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR)) {
LOG(HAL, Error) << "Manual template not supported";
return nullptr;
}
std::unique_ptr<CameraMetadata> manualTemplate = requestTemplatePreview();
if (!manualTemplate)
return nullptr;
return manualTemplate;
}
std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplatePreview() const
{
/*
* Give initial hint of entries and number of bytes to be allocated.
* It is deliberate that the hint is slightly larger than required, to
* avoid resizing the container.
*
* CameraMetadata is capable of resizing the container on the fly, if
* adding a new entry will exceed its capacity.
*/
auto requestTemplate = std::make_unique<CameraMetadata>(22, 38);
if (!requestTemplate->isValid()) {
return nullptr;
}
/* Get the FPS range registered in the static metadata. */
camera_metadata_ro_entry_t entry;
bool found = staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
&entry);
if (!found) {
LOG(HAL, Error) << "Cannot create capture template without FPS range";
return nullptr;
}
/*
* Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
* has been assembled as {{min, max} {max, max}}.
*/
requestTemplate->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
entry.data.i32, 2);
/*
* Get thumbnail sizes from static metadata and add the first non-zero
* size to the template.
*/
found = staticMetadata_->getEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
&entry);
ASSERT(found && entry.count >= 4);
requestTemplate->addEntry(ANDROID_JPEG_THUMBNAIL_SIZE,
entry.data.i32 + 2, 2);
uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE, aeMode);
int32_t aeExposureCompensation = 0;
requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
aeExposureCompensation);
uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
aePrecaptureTrigger);
uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK, aeLock);
uint8_t aeAntibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
aeAntibandingMode);
uint8_t afMode = ANDROID_CONTROL_AF_MODE_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AF_MODE, afMode);
uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER, afTrigger);
uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE, awbMode);
uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK, awbLock);
uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
requestTemplate->addEntry(ANDROID_FLASH_MODE, flashMode);
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
faceDetectMode);
uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
noiseReduction);
uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
aberrationMode);
uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_MODE, controlMode);
float lensAperture = 2.53 / 100;
requestTemplate->addEntry(ANDROID_LENS_APERTURE, lensAperture);
uint8_t opticalStabilization = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
opticalStabilization);
uint8_t captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
captureIntent);
return requestTemplate;
}
std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateStill() const
{
std::unique_ptr<CameraMetadata> stillTemplate = requestTemplatePreview();
if (!stillTemplate)
return nullptr;
return stillTemplate;
}
std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateVideo() const
{
std::unique_ptr<CameraMetadata> previewTemplate = requestTemplatePreview();
if (!previewTemplate)
return nullptr;
/*
* The video template requires a fixed FPS range. Everything else
* stays the same as the preview template.
*/
camera_metadata_ro_entry_t entry;
staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
&entry);
/*
* Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
* has been assembled as {{min, max} {max, max}}.
*/
previewTemplate->updateEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
entry.data.i32 + 2, 2);
return previewTemplate;
}
|