diff options
Diffstat (limited to 'utils/raspberrypi/ctt/ctt_cac.py')
-rw-r--r-- | utils/raspberrypi/ctt/ctt_cac.py | 228 |
1 files changed, 228 insertions, 0 deletions
diff --git a/utils/raspberrypi/ctt/ctt_cac.py b/utils/raspberrypi/ctt/ctt_cac.py new file mode 100644 index 00000000..5a4c5101 --- /dev/null +++ b/utils/raspberrypi/ctt/ctt_cac.py @@ -0,0 +1,228 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2023, Raspberry Pi Ltd +# +# ctt_cac.py - CAC (Chromatic Aberration Correction) tuning tool + +from PIL import Image +import numpy as np +import matplotlib.pyplot as plt +from matplotlib import cm + +from ctt_dots_locator import find_dots_locations + + +# This is the wrapper file that creates a JSON entry for you to append +# to your camera tuning file. +# It calculates the chromatic aberration at different points throughout +# the image and uses that to produce a martix that can then be used +# in the camera tuning files to correct this aberration. + + +def pprint_array(array): + # Function to print the array in a tidier format + array = array + output = "" + for i in range(len(array)): + for j in range(len(array[0])): + output += str(round(array[i, j], 2)) + ", " + # Add the necessary indentation to the array + output += "\n " + # Cut off the end of the array (nicely formats it) + return output[:-22] + + +def plot_shifts(red_shifts, blue_shifts): + # If users want, they can pass a command line option to show the shifts on a graph + # Can be useful to check that the functions are all working, and that the sample + # images are doing the right thing + Xs = np.array(red_shifts)[:, 0] + Ys = np.array(red_shifts)[:, 1] + Zs = np.array(red_shifts)[:, 2] + Zs2 = np.array(red_shifts)[:, 3] + Zs3 = np.array(blue_shifts)[:, 2] + Zs4 = np.array(blue_shifts)[:, 3] + + fig, axs = plt.subplots(2, 2) + ax = fig.add_subplot(2, 2, 1, projection='3d') + ax.scatter(Xs, Ys, Zs, cmap=cm.jet, linewidth=0) + ax.set_title('Red X Shift') + ax = fig.add_subplot(2, 2, 2, projection='3d') + ax.scatter(Xs, Ys, Zs2, cmap=cm.jet, linewidth=0) + ax.set_title('Red Y Shift') + ax = fig.add_subplot(2, 2, 3, projection='3d') + ax.scatter(Xs, Ys, Zs3, cmap=cm.jet, linewidth=0) + ax.set_title('Blue X Shift') + ax = fig.add_subplot(2, 2, 4, projection='3d') + ax.scatter(Xs, Ys, Zs4, cmap=cm.jet, linewidth=0) + ax.set_title('Blue Y Shift') + fig.tight_layout() + plt.show() + + +def shifts_to_yaml(red_shift, blue_shift, image_dimensions, output_grid_size=9): + # Convert the shifts to a numpy array for easier handling and initialise other variables + red_shifts = np.array(red_shift) + blue_shifts = np.array(blue_shift) + # create a grid that's smaller than the output grid, which we then interpolate from to get the output values + xrgrid = np.zeros((output_grid_size - 1, output_grid_size - 1)) + xbgrid = np.zeros((output_grid_size - 1, output_grid_size - 1)) + yrgrid = np.zeros((output_grid_size - 1, output_grid_size - 1)) + ybgrid = np.zeros((output_grid_size - 1, output_grid_size - 1)) + + xrsgrid = [] + xbsgrid = [] + yrsgrid = [] + ybsgrid = [] + xg = np.zeros((output_grid_size - 1, output_grid_size - 1)) + yg = np.zeros((output_grid_size - 1, output_grid_size - 1)) + + # Format the grids - numpy doesn't work for this, it wants a + # nice uniformly spaced grid, which we don't know if we have yet, hence the rather mundane setup + for x in range(output_grid_size - 1): + xrsgrid.append([]) + yrsgrid.append([]) + xbsgrid.append([]) + ybsgrid.append([]) + for y in range(output_grid_size - 1): + xrsgrid[x].append([]) + yrsgrid[x].append([]) + xbsgrid[x].append([]) + ybsgrid[x].append([]) + + image_size = (image_dimensions[0], image_dimensions[1]) + gridxsize = image_size[0] / (output_grid_size - 1) + gridysize = image_size[1] / (output_grid_size - 1) + + # Iterate through each dot, and it's shift values and put these into the correct grid location + for red_shift in red_shifts: + xgridloc = int(red_shift[0] / gridxsize) + ygridloc = int(red_shift[1] / gridysize) + xrsgrid[xgridloc][ygridloc].append(red_shift[2]) + yrsgrid[xgridloc][ygridloc].append(red_shift[3]) + + for blue_shift in blue_shifts: + xgridloc = int(blue_shift[0] / gridxsize) + ygridloc = int(blue_shift[1] / gridysize) + xbsgrid[xgridloc][ygridloc].append(blue_shift[2]) + ybsgrid[xgridloc][ygridloc].append(blue_shift[3]) + + # Now calculate the average pixel shift for each square in the grid + for x in range(output_grid_size - 1): + for y in range(output_grid_size - 1): + xrgrid[x, y] = np.mean(xrsgrid[x][y]) + yrgrid[x, y] = np.mean(yrsgrid[x][y]) + xbgrid[x, y] = np.mean(xbsgrid[x][y]) + ybgrid[x, y] = np.mean(ybsgrid[x][y]) + + # Next, we start to interpolate the central points of the grid that gets passed to the tuning file + input_grids = np.array([xrgrid, yrgrid, xbgrid, ybgrid]) + output_grids = np.zeros((4, output_grid_size, output_grid_size)) + + # Interpolate the centre of the grid + output_grids[:, 1:-1, 1:-1] = (input_grids[:, 1:, :-1] + input_grids[:, 1:, 1:] + input_grids[:, :-1, 1:] + input_grids[:, :-1, :-1]) / 4 + + # Edge cases: + output_grids[:, 1:-1, 0] = ((input_grids[:, :-1, 0] + input_grids[:, 1:, 0]) / 2 - output_grids[:, 1:-1, 1]) * 2 + output_grids[:, 1:-1, 1] + output_grids[:, 1:-1, -1] = ((input_grids[:, :-1, 7] + input_grids[:, 1:, 7]) / 2 - output_grids[:, 1:-1, -2]) * 2 + output_grids[:, 1:-1, -2] + output_grids[:, 0, 1:-1] = ((input_grids[:, 0, :-1] + input_grids[:, 0, 1:]) / 2 - output_grids[:, 1, 1:-1]) * 2 + output_grids[:, 1, 1:-1] + output_grids[:, -1, 1:-1] = ((input_grids[:, 7, :-1] + input_grids[:, 7, 1:]) / 2 - output_grids[:, -2, 1:-1]) * 2 + output_grids[:, -2, 1:-1] + + # Corner Cases: + output_grids[:, 0, 0] = (output_grids[:, 0, 1] - output_grids[:, 1, 1]) + (output_grids[:, 1, 0] - output_grids[:, 1, 1]) + output_grids[:, 1, 1] + output_grids[:, 0, -1] = (output_grids[:, 0, -2] - output_grids[:, 1, -2]) + (output_grids[:, 1, -1] - output_grids[:, 1, -2]) + output_grids[:, 1, -2] + output_grids[:, -1, 0] = (output_grids[:, -1, 1] - output_grids[:, -2, 1]) + (output_grids[:, -2, 0] - output_grids[:, -2, 1]) + output_grids[:, -2, 1] + output_grids[:, -1, -1] = (output_grids[:, -2, -1] - output_grids[:, -2, -2]) + (output_grids[:, -1, -2] - output_grids[:, -2, -2]) + output_grids[:, -2, -2] + + # Below, we swap the x and the y coordinates, and also multiply by a factor of -1 + # This is due to the PiSP (standard) dimensions being flipped in comparison to + # PIL image coordinate directions, hence why xr -> yr. Also, the shifts calculated are colour shifts, + # and the PiSP block asks for the values it should shift by (hence the * -1, to convert from colour shift to a pixel shift) + + output_grid_yr, output_grid_xr, output_grid_yb, output_grid_xb = output_grids * -1 + return output_grid_xr, output_grid_yr, output_grid_xb, output_grid_yb + + +def analyse_dot(dot, dot_location=[0, 0]): + # Scan through the dot, calculate the centroid of each colour channel by doing: + # pixel channel brightness * distance from top left corner + # Sum these, and divide by the sum of each channel's brightnesses to get a centroid for each channel + red_channel = np.array(dot)[:, :, 0] + y_num_pixels = len(red_channel[0]) + x_num_pixels = len(red_channel) + yred_weight = np.sum(np.dot(red_channel, np.arange(y_num_pixels))) + xred_weight = np.sum(np.dot(np.arange(x_num_pixels), red_channel)) + red_sum = np.sum(red_channel) + + green_channel = np.array(dot)[:, :, 1] + ygreen_weight = np.sum(np.dot(green_channel, np.arange(y_num_pixels))) + xgreen_weight = np.sum(np.dot(np.arange(x_num_pixels), green_channel)) + green_sum = np.sum(green_channel) + + blue_channel = np.array(dot)[:, :, 2] + yblue_weight = np.sum(np.dot(blue_channel, np.arange(y_num_pixels))) + xblue_weight = np.sum(np.dot(np.arange(x_num_pixels), blue_channel)) + blue_sum = np.sum(blue_channel) + + # We return this structure. It contains 2 arrays that contain: + # the locations of the dot center, along with the channel shifts in the x and y direction: + # [ [red_center_x, red_center_y, red_x_shift, red_y_shift], [blue_center_x, blue_center_y, blue_x_shift, blue_y_shift] ] + + return [[int(dot_location[0]) + int(len(dot) / 2), int(dot_location[1]) + int(len(dot[0]) / 2), xred_weight / red_sum - xgreen_weight / green_sum, yred_weight / red_sum - ygreen_weight / green_sum], [dot_location[0] + int(len(dot) / 2), dot_location[1] + int(len(dot[0]) / 2), xblue_weight / blue_sum - xgreen_weight / green_sum, yblue_weight / blue_sum - ygreen_weight / green_sum]] + + +def cac(Cam): + filelist = Cam.imgs_cac + + Cam.log += '\nCAC analysing files: {}'.format(str(filelist)) + np.set_printoptions(precision=3) + np.set_printoptions(suppress=True) + + # Create arrays to hold all the dots data and their colour offsets + red_shift = [] # Format is: [[Dot Center X, Dot Center Y, x shift, y shift]] + blue_shift = [] + # Iterate through the files + # Multiple files is reccomended to average out the lens aberration through rotations + for file in filelist: + Cam.log += '\nCAC processing file' + print("\n Processing file") + # Read the raw RGB values + rgb = file.rgb + image_size = [file.h, file.w] # Image size, X, Y + # Create a colour copy of the RGB values to use later in the calibration + imout = Image.new(mode="RGB", size=image_size) + rgb_image = np.array(imout) + # The rgb values need reshaping from a 1d array to a 3d array to be worked with easily + rgb.reshape((image_size[0], image_size[1], 3)) + rgb_image = rgb + + # Pass the RGB image through to the dots locating program + # Returns an array of the dots (colour rectangles around the dots), and an array of their locations + print("Finding dots") + Cam.log += '\nFinding dots' + dots, dots_locations = find_dots_locations(rgb_image) + + # Now, analyse each dot. Work out the centroid of each colour channel, and use that to work out + # by how far the chromatic aberration has shifted each channel + Cam.log += '\nDots found: {}'.format(str(len(dots))) + print('Dots found: ' + str(len(dots))) + + for dot, dot_location in zip(dots, dots_locations): + if len(dot) > 0: + if (dot_location[0] > 0) and (dot_location[1] > 0): + ret = analyse_dot(dot, dot_location) + red_shift.append(ret[0]) + blue_shift.append(ret[1]) + + # Take our arrays of red shifts and locations, push them through to be interpolated into a 9x9 matrix + # for the CAC block to handle and then store these as a .json file to be added to the camera + # tuning file + print("\nCreating output grid") + Cam.log += '\nCreating output grid' + rx, ry, bx, by = shifts_to_yaml(red_shift, blue_shift, image_size) + + print("CAC correction complete!") + Cam.log += '\nCAC correction complete!' + + # Give the JSON dict back to the main ctt program + return {"strength": 1.0, "lut_rx": list(rx.round(2).reshape(81)), "lut_ry": list(ry.round(2).reshape(81)), "lut_bx": list(bx.round(2).reshape(81)), "lut_by": list(by.round(2).reshape(81))} |