summaryrefslogtreecommitdiff
path: root/utils/raspberrypi/ctt/ctt_cac.py
diff options
context:
space:
mode:
Diffstat (limited to 'utils/raspberrypi/ctt/ctt_cac.py')
-rw-r--r--utils/raspberrypi/ctt/ctt_cac.py228
1 files changed, 228 insertions, 0 deletions
diff --git a/utils/raspberrypi/ctt/ctt_cac.py b/utils/raspberrypi/ctt/ctt_cac.py
new file mode 100644
index 00000000..5a4c5101
--- /dev/null
+++ b/utils/raspberrypi/ctt/ctt_cac.py
@@ -0,0 +1,228 @@
+# SPDX-License-Identifier: BSD-2-Clause
+#
+# Copyright (C) 2023, Raspberry Pi Ltd
+#
+# ctt_cac.py - CAC (Chromatic Aberration Correction) tuning tool
+
+from PIL import Image
+import numpy as np
+import matplotlib.pyplot as plt
+from matplotlib import cm
+
+from ctt_dots_locator import find_dots_locations
+
+
+# This is the wrapper file that creates a JSON entry for you to append
+# to your camera tuning file.
+# It calculates the chromatic aberration at different points throughout
+# the image and uses that to produce a martix that can then be used
+# in the camera tuning files to correct this aberration.
+
+
+def pprint_array(array):
+ # Function to print the array in a tidier format
+ array = array
+ output = ""
+ for i in range(len(array)):
+ for j in range(len(array[0])):
+ output += str(round(array[i, j], 2)) + ", "
+ # Add the necessary indentation to the array
+ output += "\n "
+ # Cut off the end of the array (nicely formats it)
+ return output[:-22]
+
+
+def plot_shifts(red_shifts, blue_shifts):
+ # If users want, they can pass a command line option to show the shifts on a graph
+ # Can be useful to check that the functions are all working, and that the sample
+ # images are doing the right thing
+ Xs = np.array(red_shifts)[:, 0]
+ Ys = np.array(red_shifts)[:, 1]
+ Zs = np.array(red_shifts)[:, 2]
+ Zs2 = np.array(red_shifts)[:, 3]
+ Zs3 = np.array(blue_shifts)[:, 2]
+ Zs4 = np.array(blue_shifts)[:, 3]
+
+ fig, axs = plt.subplots(2, 2)
+ ax = fig.add_subplot(2, 2, 1, projection='3d')
+ ax.scatter(Xs, Ys, Zs, cmap=cm.jet, linewidth=0)
+ ax.set_title('Red X Shift')
+ ax = fig.add_subplot(2, 2, 2, projection='3d')
+ ax.scatter(Xs, Ys, Zs2, cmap=cm.jet, linewidth=0)
+ ax.set_title('Red Y Shift')
+ ax = fig.add_subplot(2, 2, 3, projection='3d')
+ ax.scatter(Xs, Ys, Zs3, cmap=cm.jet, linewidth=0)
+ ax.set_title('Blue X Shift')
+ ax = fig.add_subplot(2, 2, 4, projection='3d')
+ ax.scatter(Xs, Ys, Zs4, cmap=cm.jet, linewidth=0)
+ ax.set_title('Blue Y Shift')
+ fig.tight_layout()
+ plt.show()
+
+
+def shifts_to_yaml(red_shift, blue_shift, image_dimensions, output_grid_size=9):
+ # Convert the shifts to a numpy array for easier handling and initialise other variables
+ red_shifts = np.array(red_shift)
+ blue_shifts = np.array(blue_shift)
+ # create a grid that's smaller than the output grid, which we then interpolate from to get the output values
+ xrgrid = np.zeros((output_grid_size - 1, output_grid_size - 1))
+ xbgrid = np.zeros((output_grid_size - 1, output_grid_size - 1))
+ yrgrid = np.zeros((output_grid_size - 1, output_grid_size - 1))
+ ybgrid = np.zeros((output_grid_size - 1, output_grid_size - 1))
+
+ xrsgrid = []
+ xbsgrid = []
+ yrsgrid = []
+ ybsgrid = []
+ xg = np.zeros((output_grid_size - 1, output_grid_size - 1))
+ yg = np.zeros((output_grid_size - 1, output_grid_size - 1))
+
+ # Format the grids - numpy doesn't work for this, it wants a
+ # nice uniformly spaced grid, which we don't know if we have yet, hence the rather mundane setup
+ for x in range(output_grid_size - 1):
+ xrsgrid.append([])
+ yrsgrid.append([])
+ xbsgrid.append([])
+ ybsgrid.append([])
+ for y in range(output_grid_size - 1):
+ xrsgrid[x].append([])
+ yrsgrid[x].append([])
+ xbsgrid[x].append([])
+ ybsgrid[x].append([])
+
+ image_size = (image_dimensions[0], image_dimensions[1])
+ gridxsize = image_size[0] / (output_grid_size - 1)
+ gridysize = image_size[1] / (output_grid_size - 1)
+
+ # Iterate through each dot, and it's shift values and put these into the correct grid location
+ for red_shift in red_shifts:
+ xgridloc = int(red_shift[0] / gridxsize)
+ ygridloc = int(red_shift[1] / gridysize)
+ xrsgrid[xgridloc][ygridloc].append(red_shift[2])
+ yrsgrid[xgridloc][ygridloc].append(red_shift[3])
+
+ for blue_shift in blue_shifts:
+ xgridloc = int(blue_shift[0] / gridxsize)
+ ygridloc = int(blue_shift[1] / gridysize)
+ xbsgrid[xgridloc][ygridloc].append(blue_shift[2])
+ ybsgrid[xgridloc][ygridloc].append(blue_shift[3])
+
+ # Now calculate the average pixel shift for each square in the grid
+ for x in range(output_grid_size - 1):
+ for y in range(output_grid_size - 1):
+ xrgrid[x, y] = np.mean(xrsgrid[x][y])
+ yrgrid[x, y] = np.mean(yrsgrid[x][y])
+ xbgrid[x, y] = np.mean(xbsgrid[x][y])
+ ybgrid[x, y] = np.mean(ybsgrid[x][y])
+
+ # Next, we start to interpolate the central points of the grid that gets passed to the tuning file
+ input_grids = np.array([xrgrid, yrgrid, xbgrid, ybgrid])
+ output_grids = np.zeros((4, output_grid_size, output_grid_size))
+
+ # Interpolate the centre of the grid
+ output_grids[:, 1:-1, 1:-1] = (input_grids[:, 1:, :-1] + input_grids[:, 1:, 1:] + input_grids[:, :-1, 1:] + input_grids[:, :-1, :-1]) / 4
+
+ # Edge cases:
+ output_grids[:, 1:-1, 0] = ((input_grids[:, :-1, 0] + input_grids[:, 1:, 0]) / 2 - output_grids[:, 1:-1, 1]) * 2 + output_grids[:, 1:-1, 1]
+ output_grids[:, 1:-1, -1] = ((input_grids[:, :-1, 7] + input_grids[:, 1:, 7]) / 2 - output_grids[:, 1:-1, -2]) * 2 + output_grids[:, 1:-1, -2]
+ output_grids[:, 0, 1:-1] = ((input_grids[:, 0, :-1] + input_grids[:, 0, 1:]) / 2 - output_grids[:, 1, 1:-1]) * 2 + output_grids[:, 1, 1:-1]
+ output_grids[:, -1, 1:-1] = ((input_grids[:, 7, :-1] + input_grids[:, 7, 1:]) / 2 - output_grids[:, -2, 1:-1]) * 2 + output_grids[:, -2, 1:-1]
+
+ # Corner Cases:
+ output_grids[:, 0, 0] = (output_grids[:, 0, 1] - output_grids[:, 1, 1]) + (output_grids[:, 1, 0] - output_grids[:, 1, 1]) + output_grids[:, 1, 1]
+ output_grids[:, 0, -1] = (output_grids[:, 0, -2] - output_grids[:, 1, -2]) + (output_grids[:, 1, -1] - output_grids[:, 1, -2]) + output_grids[:, 1, -2]
+ output_grids[:, -1, 0] = (output_grids[:, -1, 1] - output_grids[:, -2, 1]) + (output_grids[:, -2, 0] - output_grids[:, -2, 1]) + output_grids[:, -2, 1]
+ output_grids[:, -1, -1] = (output_grids[:, -2, -1] - output_grids[:, -2, -2]) + (output_grids[:, -1, -2] - output_grids[:, -2, -2]) + output_grids[:, -2, -2]
+
+ # Below, we swap the x and the y coordinates, and also multiply by a factor of -1
+ # This is due to the PiSP (standard) dimensions being flipped in comparison to
+ # PIL image coordinate directions, hence why xr -> yr. Also, the shifts calculated are colour shifts,
+ # and the PiSP block asks for the values it should shift by (hence the * -1, to convert from colour shift to a pixel shift)
+
+ output_grid_yr, output_grid_xr, output_grid_yb, output_grid_xb = output_grids * -1
+ return output_grid_xr, output_grid_yr, output_grid_xb, output_grid_yb
+
+
+def analyse_dot(dot, dot_location=[0, 0]):
+ # Scan through the dot, calculate the centroid of each colour channel by doing:
+ # pixel channel brightness * distance from top left corner
+ # Sum these, and divide by the sum of each channel's brightnesses to get a centroid for each channel
+ red_channel = np.array(dot)[:, :, 0]
+ y_num_pixels = len(red_channel[0])
+ x_num_pixels = len(red_channel)
+ yred_weight = np.sum(np.dot(red_channel, np.arange(y_num_pixels)))
+ xred_weight = np.sum(np.dot(np.arange(x_num_pixels), red_channel))
+ red_sum = np.sum(red_channel)
+
+ green_channel = np.array(dot)[:, :, 1]
+ ygreen_weight = np.sum(np.dot(green_channel, np.arange(y_num_pixels)))
+ xgreen_weight = np.sum(np.dot(np.arange(x_num_pixels), green_channel))
+ green_sum = np.sum(green_channel)
+
+ blue_channel = np.array(dot)[:, :, 2]
+ yblue_weight = np.sum(np.dot(blue_channel, np.arange(y_num_pixels)))
+ xblue_weight = np.sum(np.dot(np.arange(x_num_pixels), blue_channel))
+ blue_sum = np.sum(blue_channel)
+
+ # We return this structure. It contains 2 arrays that contain:
+ # the locations of the dot center, along with the channel shifts in the x and y direction:
+ # [ [red_center_x, red_center_y, red_x_shift, red_y_shift], [blue_center_x, blue_center_y, blue_x_shift, blue_y_shift] ]
+
+ return [[int(dot_location[0]) + int(len(dot) / 2), int(dot_location[1]) + int(len(dot[0]) / 2), xred_weight / red_sum - xgreen_weight / green_sum, yred_weight / red_sum - ygreen_weight / green_sum], [dot_location[0] + int(len(dot) / 2), dot_location[1] + int(len(dot[0]) / 2), xblue_weight / blue_sum - xgreen_weight / green_sum, yblue_weight / blue_sum - ygreen_weight / green_sum]]
+
+
+def cac(Cam):
+ filelist = Cam.imgs_cac
+
+ Cam.log += '\nCAC analysing files: {}'.format(str(filelist))
+ np.set_printoptions(precision=3)
+ np.set_printoptions(suppress=True)
+
+ # Create arrays to hold all the dots data and their colour offsets
+ red_shift = [] # Format is: [[Dot Center X, Dot Center Y, x shift, y shift]]
+ blue_shift = []
+ # Iterate through the files
+ # Multiple files is reccomended to average out the lens aberration through rotations
+ for file in filelist:
+ Cam.log += '\nCAC processing file'
+ print("\n Processing file")
+ # Read the raw RGB values
+ rgb = file.rgb
+ image_size = [file.h, file.w] # Image size, X, Y
+ # Create a colour copy of the RGB values to use later in the calibration
+ imout = Image.new(mode="RGB", size=image_size)
+ rgb_image = np.array(imout)
+ # The rgb values need reshaping from a 1d array to a 3d array to be worked with easily
+ rgb.reshape((image_size[0], image_size[1], 3))
+ rgb_image = rgb
+
+ # Pass the RGB image through to the dots locating program
+ # Returns an array of the dots (colour rectangles around the dots), and an array of their locations
+ print("Finding dots")
+ Cam.log += '\nFinding dots'
+ dots, dots_locations = find_dots_locations(rgb_image)
+
+ # Now, analyse each dot. Work out the centroid of each colour channel, and use that to work out
+ # by how far the chromatic aberration has shifted each channel
+ Cam.log += '\nDots found: {}'.format(str(len(dots)))
+ print('Dots found: ' + str(len(dots)))
+
+ for dot, dot_location in zip(dots, dots_locations):
+ if len(dot) > 0:
+ if (dot_location[0] > 0) and (dot_location[1] > 0):
+ ret = analyse_dot(dot, dot_location)
+ red_shift.append(ret[0])
+ blue_shift.append(ret[1])
+
+ # Take our arrays of red shifts and locations, push them through to be interpolated into a 9x9 matrix
+ # for the CAC block to handle and then store these as a .json file to be added to the camera
+ # tuning file
+ print("\nCreating output grid")
+ Cam.log += '\nCreating output grid'
+ rx, ry, bx, by = shifts_to_yaml(red_shift, blue_shift, image_size)
+
+ print("CAC correction complete!")
+ Cam.log += '\nCAC correction complete!'
+
+ # Give the JSON dict back to the main ctt program
+ return {"strength": 1.0, "lut_rx": list(rx.round(2).reshape(81)), "lut_ry": list(ry.round(2).reshape(81)), "lut_bx": list(bx.round(2).reshape(81)), "lut_by": list(by.round(2).reshape(81))}