diff options
Diffstat (limited to 'src/ipa/libipa/awb_bayes.cpp')
-rw-r--r-- | src/ipa/libipa/awb_bayes.cpp | 499 |
1 files changed, 499 insertions, 0 deletions
diff --git a/src/ipa/libipa/awb_bayes.cpp b/src/ipa/libipa/awb_bayes.cpp new file mode 100644 index 00000000..e75bfcd6 --- /dev/null +++ b/src/ipa/libipa/awb_bayes.cpp @@ -0,0 +1,499 @@ +/* SPDX-License-Identifier: LGPL-2.1-or-later */ +/* + * Copyright (C) 2019, Raspberry Pi Ltd + * Copyright (C) 2024 Ideas on Board Oy + * + * Implementation of a bayesian AWB algorithm + */ + +#include "awb_bayes.h" + +#include <cmath> + +#include <libcamera/base/log.h> +#include <libcamera/control_ids.h> + +#include "colours.h" + +/** + * \file awb_bayes.h + * \brief Implementation of bayesian auto white balance algorithm + * + * This implementation is based on the initial implementation done by + * RaspberryPi. + * \todo: Documentation + * + * \todo Not all the features implemented by RaspberryPi were ported over to + * this algorithm because they either rely on hardware features not generally + * available or were considered not important enough at the moment. + * + * The following parts are not implemented: + * + * - min_pixels: minimum proportion of pixels counted within AWB region for it + * to be "useful" + * - min_g: minimum G value of those pixels, to be regarded a "useful" + * - min_regions: number of AWB regions that must be "useful" in order to do the + * AWB calculation + * - deltaLimit: clamp on colour error term (so as not to penalize non-grey + * excessively) + * - bias_proportion: The biasProportion parameter adds a small proportion of + * the counted pixels to a region biased to the biasCT colour temperature. + * A typical value for biasProportion would be between 0.05 to 0.1. + * - bias_ct: CT target for the search bias + * - sensitivityR: red sensitivity ratio (set to canonical sensor's R/G divided + * by this sensor's R/G) + * - sensitivityB: blue sensitivity ratio (set to canonical sensor's B/G divided + * by this sensor's B/G) + */ + +namespace libcamera { + +LOG_DECLARE_CATEGORY(Awb) + +namespace { + +template<typename T> +class LimitsRecorder +{ +public: + LimitsRecorder() + : min_(std::numeric_limits<T>::max()), + max_(std::numeric_limits<T>::min()) + { + } + + void record(const T &value) + { + min_ = std::min(min_, value); + max_ = std::max(max_, value); + } + + const T &min() const { return min_; } + const T &max() const { return max_; } + +private: + T min_; + T max_; +}; + +#ifndef __DOXYGEN__ +template<typename T> +std::ostream &operator<<(std::ostream &out, const LimitsRecorder<T> &v) +{ + out << "[ " << v.min() << ", " << v.max() << " ]"; + return out; +} +#endif + +} /* namespace */ + +namespace ipa { + +/** + * \brief Step size control for CT search + */ +constexpr double kSearchStep = 0.2; + +/** + * \copydoc libcamera::ipa::Interpolator::interpolate() + */ +template<> +void Interpolator<Pwl>::interpolate(const Pwl &a, const Pwl &b, Pwl &dest, double lambda) +{ + dest = Pwl::combine(a, b, + [=](double /*x*/, double y0, double y1) -> double { + return y0 * (1.0 - lambda) + y1 * lambda; + }); +} + +/** + * \class AwbBayes + * \brief Implementation of a bayesian auto white balance algorithm + * + * In a bayesian AWB algorithm the auto white balance estimation is improved by + * taking the likelihood of a given lightsource based on the estimated lux level + * into account. E.g. If it is very bright we can assume that we are outside and + * that colour temperatures around 6500 are preferred. + * + * The second part of this algorithm is the search for the most likely colour + * temperature. It is implemented in AwbBayes::coarseSearch() and in + * AwbBayes::fineSearch(). The search works very well without prior likelihoods + * and therefore the algorithm itself provides very good results even without + * prior likelihoods. + */ + +/** + * \var AwbBayes::transversePos_ + * \brief How far to wander off CT curve towards "more purple" + */ + +/** + * \var AwbBayes::transverseNeg_ + * \brief How far to wander off CT curve towards "more green" + */ + +/** + * \var AwbBayes::currentMode_ + * \brief The currently selected mode + */ + +int AwbBayes::init(const YamlObject &tuningData) +{ + int ret = colourGainCurve_.readYaml(tuningData["colourGains"], "ct", "gains"); + if (ret) { + LOG(Awb, Error) + << "Failed to parse 'colourGains' " + << "parameter from tuning file"; + return ret; + } + + ctR_.clear(); + ctB_.clear(); + for (const auto &[ct, g] : colourGainCurve_.data()) { + ctR_.append(ct, 1.0 / g[0]); + ctB_.append(ct, 1.0 / g[1]); + } + + /* We will want the inverse functions of these too. */ + ctRInverse_ = ctR_.inverse().first; + ctBInverse_ = ctB_.inverse().first; + + ret = readPriors(tuningData); + if (ret) { + LOG(Awb, Error) << "Failed to read priors"; + return ret; + } + + ret = parseModeConfigs(tuningData, controls::AwbAuto); + if (ret) { + LOG(Awb, Error) + << "Failed to parse mode parameter from tuning file"; + return ret; + } + currentMode_ = &modes_[controls::AwbAuto]; + + transversePos_ = tuningData["transversePos"].get<double>(0.01); + transverseNeg_ = tuningData["transverseNeg"].get<double>(0.01); + if (transversePos_ <= 0 || transverseNeg_ <= 0) { + LOG(Awb, Error) << "AwbConfig: transversePos/Neg must be > 0"; + return -EINVAL; + } + + return 0; +} + +int AwbBayes::readPriors(const YamlObject &tuningData) +{ + const auto &priorsList = tuningData["priors"]; + std::map<uint32_t, Pwl> priors; + + if (!priorsList) { + LOG(Awb, Error) << "No priors specified"; + return -EINVAL; + } + + for (const auto &p : priorsList.asList()) { + if (!p.contains("lux")) { + LOG(Awb, Error) << "Missing lux value"; + return -EINVAL; + } + + uint32_t lux = p["lux"].get<uint32_t>(0); + if (priors.count(lux)) { + LOG(Awb, Error) << "Duplicate prior for lux value " << lux; + return -EINVAL; + } + + std::vector<uint32_t> temperatures = + p["ct"].getList<uint32_t>().value_or(std::vector<uint32_t>{}); + std::vector<double> probabilities = + p["probability"].getList<double>().value_or(std::vector<double>{}); + + if (temperatures.size() != probabilities.size()) { + LOG(Awb, Error) + << "Ct and probability array sizes are unequal"; + return -EINVAL; + } + + if (temperatures.empty()) { + LOG(Awb, Error) + << "Ct and probability arrays are empty"; + return -EINVAL; + } + + std::map<int, double> ctToProbability; + for (unsigned int i = 0; i < temperatures.size(); i++) { + int t = temperatures[i]; + if (ctToProbability.count(t)) { + LOG(Awb, Error) << "Duplicate ct value"; + return -EINVAL; + } + + ctToProbability[t] = probabilities[i]; + } + + auto &pwl = priors[lux]; + for (const auto &[ct, prob] : ctToProbability) { + if (prob < 1e-6) { + LOG(Awb, Error) << "Prior probability must be larger than 1e-6"; + return -EINVAL; + } + pwl.append(ct, prob); + } + } + + if (priors.empty()) { + LOG(Awb, Error) << "No priors specified"; + return -EINVAL; + } + + priors_.setData(std::move(priors)); + + return 0; +} + +void AwbBayes::handleControls(const ControlList &controls) +{ + auto mode = controls.get(controls::AwbMode); + if (mode) { + auto it = modes_.find(static_cast<controls::AwbModeEnum>(*mode)); + if (it != modes_.end()) + currentMode_ = &it->second; + else + LOG(Awb, Error) << "Unsupported AWB mode " << *mode; + } +} + +RGB<double> AwbBayes::gainsFromColourTemperature(double colourTemperature) +{ + /* + * \todo: In the RaspberryPi code, the ct curve was interpolated in + * the white point space (1/x) not in gains space. This feels counter + * intuitive, as the gains are in linear space. But I can't prove it. + */ + const auto &gains = colourGainCurve_.getInterpolated(colourTemperature); + return { { gains[0], 1.0, gains[1] } }; +} + +AwbResult AwbBayes::calculateAwb(const AwbStats &stats, int lux) +{ + ipa::Pwl prior; + if (lux > 0) { + prior = priors_.getInterpolated(lux); + prior.map([](double x, double y) { + LOG(Awb, Debug) << "(" << x << "," << y << ")"; + }); + } else { + prior.append(0, 1.0); + } + + double t = coarseSearch(prior, stats); + double r = ctR_.eval(t); + double b = ctB_.eval(t); + LOG(Awb, Debug) + << "After coarse search: r " << r << " b " << b << " (gains r " + << 1 / r << " b " << 1 / b << ")"; + + /* + * Original comment from RaspberryPi: + * Not entirely sure how to handle the fine search yet. Mostly the + * estimated CT is already good enough, but the fine search allows us to + * wander transversely off the CT curve. Under some illuminants, where + * there may be more or less green light, this may prove beneficial, + * though I probably need more real datasets before deciding exactly how + * this should be controlled and tuned. + */ + fineSearch(t, r, b, prior, stats); + LOG(Awb, Debug) + << "After fine search: r " << r << " b " << b << " (gains r " + << 1 / r << " b " << 1 / b << ")"; + + return { { { 1.0 / r, 1.0, 1.0 / b } }, t }; +} + +double AwbBayes::coarseSearch(const ipa::Pwl &prior, const AwbStats &stats) const +{ + std::vector<Pwl::Point> points; + size_t bestPoint = 0; + double t = currentMode_->ctLo; + int spanR = -1; + int spanB = -1; + LimitsRecorder<double> errorLimits; + LimitsRecorder<double> priorLogLikelihoodLimits; + + /* Step down the CT curve evaluating log likelihood. */ + while (true) { + double r = ctR_.eval(t, &spanR); + double b = ctB_.eval(t, &spanB); + RGB<double> gains({ 1 / r, 1.0, 1 / b }); + double delta2Sum = stats.computeColourError(gains); + double priorLogLikelihood = log(prior.eval(prior.domain().clamp(t))); + double finalLogLikelihood = delta2Sum - priorLogLikelihood; + + errorLimits.record(delta2Sum); + priorLogLikelihoodLimits.record(priorLogLikelihood); + + points.push_back({ { t, finalLogLikelihood } }); + if (points.back().y() < points[bestPoint].y()) + bestPoint = points.size() - 1; + + if (t == currentMode_->ctHi) + break; + + /* + * Ensure even steps along the r/b curve by scaling them by the + * current t. + */ + t = std::min(t + t / 10 * kSearchStep, currentMode_->ctHi); + } + + t = points[bestPoint].x(); + LOG(Awb, Debug) << "Coarse search found CT " << t + << " error limits:" << errorLimits + << " prior log likelihood limits:" << priorLogLikelihoodLimits; + + /* + * We have the best point of the search, but refine it with a quadratic + * interpolation around its neighbors. + */ + if (points.size() > 2) { + bestPoint = std::clamp(bestPoint, std::size_t{ 1 }, points.size() - 2); + t = interpolateQuadratic(points[bestPoint - 1], + points[bestPoint], + points[bestPoint + 1]); + LOG(Awb, Debug) + << "After quadratic refinement, coarse search has CT " + << t; + } + + return t; +} + +void AwbBayes::fineSearch(double &t, double &r, double &b, ipa::Pwl const &prior, const AwbStats &stats) const +{ + int spanR = -1; + int spanB = -1; + double step = t / 10 * kSearchStep * 0.1; + int nsteps = 5; + ctR_.eval(t, &spanR); + ctB_.eval(t, &spanB); + double rDiff = ctR_.eval(t + nsteps * step, &spanR) - + ctR_.eval(t - nsteps * step, &spanR); + double bDiff = ctB_.eval(t + nsteps * step, &spanB) - + ctB_.eval(t - nsteps * step, &spanB); + Pwl::Point transverse({ bDiff, -rDiff }); + if (transverse.length2() < 1e-6) + return; + /* + * transverse is a unit vector orthogonal to the b vs. r function + * (pointing outwards with r and b increasing) + */ + transverse = transverse / transverse.length(); + double bestLogLikelihood = 0; + double bestT = 0; + Pwl::Point bestRB(0); + double transverseRange = transverseNeg_ + transversePos_; + const int maxNumDeltas = 12; + LimitsRecorder<double> errorLimits; + LimitsRecorder<double> priorLogLikelihoodLimits; + + + /* a transverse step approximately every 0.01 r/b units */ + int numDeltas = floor(transverseRange * 100 + 0.5) + 1; + numDeltas = std::clamp(numDeltas, 3, maxNumDeltas); + + /* + * Step down CT curve. March a bit further if the transverse range is + * large. + */ + nsteps += numDeltas; + for (int i = -nsteps; i <= nsteps; i++) { + double tTest = t + i * step; + double priorLogLikelihood = + log(prior.eval(prior.domain().clamp(tTest))); + priorLogLikelihoodLimits.record(priorLogLikelihood); + Pwl::Point rbStart{ { ctR_.eval(tTest, &spanR), + ctB_.eval(tTest, &spanB) } }; + Pwl::Point samples[maxNumDeltas]; + int bestPoint = 0; + + /* + * Sample numDeltas points transversely *off* the CT curve + * in the range [-transverseNeg, transversePos]. + * The x values of a sample contains the distance and the y + * value contains the corresponding log likelihood. + */ + double transverseStep = transverseRange / (numDeltas - 1); + for (int j = 0; j < numDeltas; j++) { + auto &p = samples[j]; + p.x() = -transverseNeg_ + transverseStep * j; + Pwl::Point rbTest = rbStart + transverse * p.x(); + RGB<double> gains({ 1 / rbTest[0], 1.0, 1 / rbTest[1] }); + double delta2Sum = stats.computeColourError(gains); + errorLimits.record(delta2Sum); + p.y() = delta2Sum - priorLogLikelihood; + + if (p.y() < samples[bestPoint].y()) + bestPoint = j; + } + + /* + * We have all samples transversely across the CT curve, + * now let's do a quadratic interpolation for the best result. + */ + bestPoint = std::clamp(bestPoint, 1, numDeltas - 2); + double bestOffset = interpolateQuadratic(samples[bestPoint - 1], + samples[bestPoint], + samples[bestPoint + 1]); + Pwl::Point rbTest = rbStart + transverse * bestOffset; + RGB<double> gains({ 1 / rbTest[0], 1.0, 1 / rbTest[1] }); + double delta2Sum = stats.computeColourError(gains); + errorLimits.record(delta2Sum); + double finalLogLikelihood = delta2Sum - priorLogLikelihood; + + if (bestT == 0 || finalLogLikelihood < bestLogLikelihood) { + bestLogLikelihood = finalLogLikelihood; + bestT = tTest; + bestRB = rbTest; + } + } + + t = bestT; + r = bestRB[0]; + b = bestRB[1]; + LOG(Awb, Debug) + << "Fine search found t " << t << " r " << r << " b " << b + << " error limits: " << errorLimits + << " prior log likelihood limits: " << priorLogLikelihoodLimits; +} + +/** + * \brief Find extremum of function + * \param[in] a First point + * \param[in] b Second point + * \param[in] c Third point + * + * Given 3 points on a curve, find the extremum of the function in that interval + * by fitting a quadratic. + * + * \return The x value of the extremum clamped to the interval [a.x(), c.x()] + */ +double AwbBayes::interpolateQuadratic(Pwl::Point const &a, Pwl::Point const &b, + Pwl::Point const &c) const +{ + const double eps = 1e-3; + Pwl::Point ca = c - a; + Pwl::Point ba = b - a; + double denominator = 2 * (ba.y() * ca.x() - ca.y() * ba.x()); + if (std::abs(denominator) > eps) { + double numerator = ba.y() * ca.x() * ca.x() - ca.y() * ba.x() * ba.x(); + double result = numerator / denominator + a.x(); + return std::max(a.x(), std::min(c.x(), result)); + } + /* has degenerated to straight line segment */ + return a.y() < c.y() - eps ? a.x() : (c.y() < a.y() - eps ? c.x() : b.x()); +} + +} /* namespace ipa */ + +} /* namespace libcamera */ |