diff options
Diffstat (limited to 'src/ipa/ipu3/algorithms/awb.cpp')
-rw-r--r-- | src/ipa/ipu3/algorithms/awb.cpp | 71 |
1 files changed, 23 insertions, 48 deletions
diff --git a/src/ipa/ipu3/algorithms/awb.cpp b/src/ipa/ipu3/algorithms/awb.cpp index 5abd4621..55de05d9 100644 --- a/src/ipa/ipu3/algorithms/awb.cpp +++ b/src/ipa/ipu3/algorithms/awb.cpp @@ -2,7 +2,7 @@ /* * Copyright (C) 2021, Ideas On Board * - * awb.cpp - AWB control algorithm + * AWB control algorithm */ #include "awb.h" @@ -13,6 +13,8 @@ #include <libcamera/control_ids.h> +#include "libipa/colours.h" + /** * \file awb.h */ @@ -301,51 +303,24 @@ void Awb::prepare(IPAContext &context, params->use.acc_ccm = 1; } -/** - * The function estimates the correlated color temperature using - * from RGB color space input. - * In physics and color science, the Planckian locus or black body locus is - * the path or locus that the color of an incandescent black body would take - * in a particular chromaticity space as the blackbody temperature changes. - * - * If a narrow range of color temperatures is considered (those encapsulating - * daylight being the most practical case) one can approximate the Planckian - * locus in order to calculate the CCT in terms of chromaticity coordinates. - * - * More detailed information can be found in: - * https://en.wikipedia.org/wiki/Color_temperature#Approximation - */ -uint32_t Awb::estimateCCT(double red, double green, double blue) -{ - /* Convert the RGB values to CIE tristimulus values (XYZ) */ - double X = (-0.14282) * (red) + (1.54924) * (green) + (-0.95641) * (blue); - double Y = (-0.32466) * (red) + (1.57837) * (green) + (-0.73191) * (blue); - double Z = (-0.68202) * (red) + (0.77073) * (green) + (0.56332) * (blue); - - /* Calculate the normalized chromaticity values */ - double x = X / (X + Y + Z); - double y = Y / (X + Y + Z); - - /* Calculate CCT */ - double n = (x - 0.3320) / (0.1858 - y); - return 449 * n * n * n + 3525 * n * n + 6823.3 * n + 5520.33; -} - /* Generate an RGB vector with the average values for each zone */ void Awb::generateZones() { zones_.clear(); for (unsigned int i = 0; i < kAwbStatsSizeX * kAwbStatsSizeY; i++) { - RGB zone; double counted = awbStats_[i].counted; if (counted >= cellsPerZoneThreshold_) { - zone.G = awbStats_[i].sum.green / counted; - if (zone.G >= kMinGreenLevelInZone) { - zone.R = awbStats_[i].sum.red / counted; - zone.B = awbStats_[i].sum.blue / counted; + RGB<double> zone{{ + static_cast<double>(awbStats_[i].sum.red), + static_cast<double>(awbStats_[i].sum.green), + static_cast<double>(awbStats_[i].sum.blue) + }}; + + zone /= counted; + + if (zone.g() >= kMinGreenLevelInZone) zones_.push_back(zone); - } } } } @@ -412,32 +387,32 @@ void Awb::awbGreyWorld() * consider some variations, such as normalising all the zones first, or * doing an L2 average etc. */ - std::vector<RGB> &redDerivative(zones_); - std::vector<RGB> blueDerivative(redDerivative); + std::vector<RGB<double>> &redDerivative(zones_); + std::vector<RGB<double>> blueDerivative(redDerivative); std::sort(redDerivative.begin(), redDerivative.end(), - [](RGB const &a, RGB const &b) { - return a.G * b.R < b.G * a.R; + [](RGB<double> const &a, RGB<double> const &b) { + return a.g() * b.r() < b.g() * a.r(); }); std::sort(blueDerivative.begin(), blueDerivative.end(), - [](RGB const &a, RGB const &b) { - return a.G * b.B < b.G * a.B; + [](RGB<double> const &a, RGB<double> const &b) { + return a.g() * b.b() < b.g() * a.b(); }); /* Average the middle half of the values. */ int discard = redDerivative.size() / 4; - RGB sumRed(0, 0, 0); - RGB sumBlue(0, 0, 0); + RGB<double> sumRed{ 0.0 }; + RGB<double> sumBlue{ 0.0 }; for (auto ri = redDerivative.begin() + discard, bi = blueDerivative.begin() + discard; ri != redDerivative.end() - discard; ri++, bi++) sumRed += *ri, sumBlue += *bi; - double redGain = sumRed.G / (sumRed.R + 1), - blueGain = sumBlue.G / (sumBlue.B + 1); + double redGain = sumRed.g() / (sumRed.r() + 1), + blueGain = sumBlue.g() / (sumBlue.b() + 1); /* Color temperature is not relevant in Grey world but still useful to estimate it :-) */ - asyncResults_.temperatureK = estimateCCT(sumRed.R, sumRed.G, sumBlue.B); + asyncResults_.temperatureK = estimateCCT({{ sumRed.r(), sumRed.g(), sumBlue.b() }}); /* * Gain values are unsigned integer value ranging [0, 8) with 13 bit |