diff options
author | Stefan Klug <stefan.klug@ideasonboard.com> | 2025-04-03 17:49:10 +0200 |
---|---|---|
committer | Stefan Klug <stefan.klug@ideasonboard.com> | 2025-05-20 09:46:12 +0200 |
commit | 6287ceff5aba1e8207aafdae9f967c70d9aad19f (patch) | |
tree | aabe46b7af6fd57ade931ba151ec7824b3678047 /src | |
parent | bcba580546807c4b6e138300a410f1dc63fb02b9 (diff) |
libcamera: matrix: Add inverse() function
For calculations in upcoming algorithm patches, the inverse of a matrix
is required. Add an implementation of the inverse() function for square
matrices.
Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Reviewed-by: Paul Elder <paul.elder@ideasonboard.com>
Diffstat (limited to 'src')
-rw-r--r-- | src/libcamera/matrix.cpp | 166 |
1 files changed, 166 insertions, 0 deletions
diff --git a/src/libcamera/matrix.cpp b/src/libcamera/matrix.cpp index 49e2aa3b..68fc1b7b 100644 --- a/src/libcamera/matrix.cpp +++ b/src/libcamera/matrix.cpp @@ -7,6 +7,12 @@ #include "libcamera/internal/matrix.h" +#include <algorithm> +#include <assert.h> +#include <cmath> +#include <numeric> +#include <vector> + #include <libcamera/base/log.h> /** @@ -88,6 +94,20 @@ LOG_DEFINE_CATEGORY(Matrix) */ /** + * \fn Matrix::inverse(bool *ok) const + * \param[out] ok Indicate if the matrix was successfully inverted + * \brief Compute the inverse of the matrix + * + * This function computes the inverse of the matrix. It is only implemented for + * matrices of float and double types. If \a ok is provided it will be set to a + * boolean value to indicate of the inversion was successful. This can be used + * to check if the matrix is singular, in which case the function will return + * an identity matrix. + * + * \return The inverse of the matrix + */ + +/** * \fn Matrix::operator[](size_t i) * \copydoc Matrix::operator[](size_t i) const */ @@ -142,6 +162,152 @@ LOG_DEFINE_CATEGORY(Matrix) */ #ifndef __DOXYGEN__ +template<typename T> +bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim, + Span<T> scratchBuffer, Span<unsigned int> swapBuffer) +{ + /* + * Convenience class to access matrix data, providing a row-major (i,j) + * element accessor through the call operator, and the ability to swap + * rows without modifying the backing storage. + */ + class MatrixAccessor + { + public: + MatrixAccessor(Span<T> data, Span<unsigned int> swapBuffer, unsigned int rows, unsigned int cols) + : data_(data), swap_(swapBuffer), rows_(rows), cols_(cols) + { + ASSERT(swap_.size() == rows); + std::iota(swap_.begin(), swap_.end(), T{ 0 }); + } + + T &operator()(unsigned int row, unsigned int col) + { + assert(row < rows_ && col < cols_); + return data_[index(row, col)]; + } + + void swap(unsigned int a, unsigned int b) + { + assert(a < rows_ && a < cols_); + std::swap(swap_[a], swap_[b]); + } + + private: + unsigned int index(unsigned int row, unsigned int col) const + { + return swap_[row] * cols_ + col; + } + + Span<T> data_; + Span<unsigned int> swap_; + unsigned int rows_; + unsigned int cols_; + }; + + /* + * Matrix inversion using Gaussian elimination. + * + * Start by augmenting the original matrix with an identiy matrix of + * the same size. + */ + ASSERT(scratchBuffer.size() == dim * dim * 2); + MatrixAccessor matrix(scratchBuffer, swapBuffer, dim, dim * 2); + + for (unsigned int i = 0; i < dim; ++i) { + for (unsigned int j = 0; j < dim; ++j) { + matrix(i, j) = dataIn[i * dim + j]; + matrix(i, j + dim) = T{ 0 }; + } + matrix(i, i + dim) = T{ 1 }; + } + + /* Start by triangularizing the input . */ + for (unsigned int pivot = 0; pivot < dim; ++pivot) { + /* + * Locate the next pivot. To improve numerical stability, use + * the row with the largest value in the pivot's column. + */ + unsigned int row; + T maxValue{ 0 }; + + for (unsigned int i = pivot; i < dim; ++i) { + T value = std::abs(matrix(i, pivot)); + if (maxValue < value) { + maxValue = value; + row = i; + } + } + + /* + * If no pivot is found in the column, the matrix is not + * invertible. Return an identity matrix. + */ + if (maxValue == 0) { + std::fill(dataOut.begin(), dataOut.end(), T{ 0 }); + for (unsigned int i = 0; i < dim; ++i) + dataOut[i * dim + i] = T{ 1 }; + return false; + } + + /* Swap rows to bring the pivot in the right location. */ + matrix.swap(pivot, row); + + /* Process all rows below the pivot to zero the pivot column. */ + const T pivotValue = matrix(pivot, pivot); + + for (unsigned int i = pivot + 1; i < dim; ++i) { + const T factor = matrix(i, pivot) / pivotValue; + + /* + * We know the element in the pivot column will be 0, + * hardcode it instead of computing it. + */ + matrix(i, pivot) = T{ 0 }; + + for (unsigned int j = pivot + 1; j < dim * 2; ++j) + matrix(i, j) -= matrix(pivot, j) * factor; + } + } + + /* + * Then diagonalize the input, walking the diagonal backwards. There's + * no need to update the input matrix, as all the values we would write + * in the top-right triangle aren't used in further calculations (and + * would all by definition be zero). + */ + for (unsigned int pivot = dim - 1; pivot > 0; --pivot) { + const T pivotValue = matrix(pivot, pivot); + + for (unsigned int i = 0; i < pivot; ++i) { + const T factor = matrix(i, pivot) / pivotValue; + + for (unsigned int j = dim; j < dim * 2; ++j) + matrix(i, j) -= matrix(pivot, j) * factor; + } + } + + /* + * Finally, normalize the diagonal and store the result in the output + * data. + */ + for (unsigned int i = 0; i < dim; ++i) { + const T factor = matrix(i, i); + + for (unsigned int j = 0; j < dim; ++j) + dataOut[i * dim + j] = matrix(i, j + dim) / factor; + } + + return true; +} + +template bool matrixInvert<float>(Span<const float> dataIn, Span<float> dataOut, + unsigned int dim, Span<float> scratchBuffer, + Span<unsigned int> swapBuffer); +template bool matrixInvert<double>(Span<const double> data, Span<double> dataOut, + unsigned int dim, Span<double> scratchBuffer, + Span<unsigned int> swapBuffer); + /* * The YAML data shall be a list of numerical values. Its size shall be equal * to the product of the number of rows and columns of the matrix (Rows x |