summaryrefslogtreecommitdiff
path: root/src/ipa/rpi/controller/rpi/agc.cpp
diff options
context:
space:
mode:
authorDavid Plowman <david.plowman@raspberrypi.com>2023-09-15 16:58:41 +0100
committerJacopo Mondi <jacopo.mondi@ideasonboard.com>2023-09-16 17:33:44 +0200
commitb2cb498a1ac32ed7a659645e529f29e51e566d3f (patch)
tree71e30d635f281262326156b485209bdbf7d1c456 /src/ipa/rpi/controller/rpi/agc.cpp
parentcd940f7fd3a0636c79bfcb2ebb462e17f92cb987 (diff)
ipa: rpi: agc: Reorganise code for multi-channel AGC
This commit does the basic reorganisation of the code in order to implement multi-channel AGC. The main changes are: * The previous Agc class (in agc.cpp) has become the AgcChannel class in (agc_channel.cpp). * A new Agc class is introduced which is a wrapper round a number of AgcChannels. * The basic plumbing from ipa_base.cpp to Agc is updated to include a channel number. All the existing controls are hardwired to talk directly to channel 0. There are a couple of limitations which we expect to apply to multi-channel AGC. We're not allowing different frame durations to be applied to the channels, nor are we allowing separate metering modes. To be fair, supporting these things is not impossible, but there are reasons why it may be tricky so they remain "TBD" for now. This patch only includes the basic reorganisation and plumbing. It does not yet update the important methods (switchMode, prepare and process) to implement multi-channel AGC properly. This will appear in a subsequent commit. For now, these functions are hard-coded just to use channel 0, thereby preserving the existing behaviour. Signed-off-by: David Plowman <david.plowman@raspberrypi.com> Reviewed-by: Naushir Patuck <naush@raspberrypi.com> Reviewed-by: Jacopo Mondi <jacopo.mondi@ideasonboard.com> Signed-off-by: Jacopo Mondi <jacopo.mondi@ideasonboard.com>
Diffstat (limited to 'src/ipa/rpi/controller/rpi/agc.cpp')
-rw-r--r--src/ipa/rpi/controller/rpi/agc.cpp912
1 files changed, 114 insertions, 798 deletions
diff --git a/src/ipa/rpi/controller/rpi/agc.cpp b/src/ipa/rpi/controller/rpi/agc.cpp
index 7b02972a..598fc890 100644
--- a/src/ipa/rpi/controller/rpi/agc.cpp
+++ b/src/ipa/rpi/controller/rpi/agc.cpp
@@ -5,20 +5,12 @@
* agc.cpp - AGC/AEC control algorithm
*/
-#include <algorithm>
-#include <map>
-#include <tuple>
+#include "agc.h"
#include <libcamera/base/log.h>
-#include "../awb_status.h"
-#include "../device_status.h"
-#include "../histogram.h"
-#include "../lux_status.h"
#include "../metadata.h"
-#include "agc.h"
-
using namespace RPiController;
using namespace libcamera;
using libcamera::utils::Duration;
@@ -28,881 +20,205 @@ LOG_DEFINE_CATEGORY(RPiAgc)
#define NAME "rpi.agc"
-int AgcMeteringMode::read(const libcamera::YamlObject &params)
+Agc::Agc(Controller *controller)
+ : AgcAlgorithm(controller),
+ activeChannels_({ 0 })
{
- const YamlObject &yamlWeights = params["weights"];
-
- for (const auto &p : yamlWeights.asList()) {
- auto value = p.get<double>();
- if (!value)
- return -EINVAL;
- weights.push_back(*value);
- }
-
- return 0;
}
-static std::tuple<int, std::string>
-readMeteringModes(std::map<std::string, AgcMeteringMode> &metering_modes,
- const libcamera::YamlObject &params)
+char const *Agc::name() const
{
- std::string first;
- int ret;
-
- for (const auto &[key, value] : params.asDict()) {
- AgcMeteringMode meteringMode;
- ret = meteringMode.read(value);
- if (ret)
- return { ret, {} };
-
- metering_modes[key] = std::move(meteringMode);
- if (first.empty())
- first = key;
- }
-
- return { 0, first };
+ return NAME;
}
-int AgcExposureMode::read(const libcamera::YamlObject &params)
+int Agc::read(const libcamera::YamlObject &params)
{
- auto value = params["shutter"].getList<double>();
- if (!value)
- return -EINVAL;
- std::transform(value->begin(), value->end(), std::back_inserter(shutter),
- [](double v) { return v * 1us; });
-
- value = params["gain"].getList<double>();
- if (!value)
- return -EINVAL;
- gain = std::move(*value);
-
- if (shutter.size() < 2 || gain.size() < 2) {
- LOG(RPiAgc, Error)
- << "AgcExposureMode: must have at least two entries in exposure profile";
- return -EINVAL;
- }
-
- if (shutter.size() != gain.size()) {
- LOG(RPiAgc, Error)
- << "AgcExposureMode: expect same number of exposure and gain entries in exposure profile";
- return -EINVAL;
+ /*
+ * When there is only a single channel we can read the old style syntax.
+ * Otherwise we expect a "channels" keyword followed by a list of configurations.
+ */
+ if (!params.contains("channels")) {
+ LOG(RPiAgc, Debug) << "Single channel only";
+ channelData_.emplace_back();
+ return channelData_.back().channel.read(params, getHardwareConfig());
}
- return 0;
-}
-
-static std::tuple<int, std::string>
-readExposureModes(std::map<std::string, AgcExposureMode> &exposureModes,
- const libcamera::YamlObject &params)
-{
- std::string first;
- int ret;
-
- for (const auto &[key, value] : params.asDict()) {
- AgcExposureMode exposureMode;
- ret = exposureMode.read(value);
+ const auto &channels = params["channels"].asList();
+ for (auto ch = channels.begin(); ch != channels.end(); ch++) {
+ LOG(RPiAgc, Debug) << "Read AGC channel";
+ channelData_.emplace_back();
+ int ret = channelData_.back().channel.read(*ch, getHardwareConfig());
if (ret)
- return { ret, {} };
-
- exposureModes[key] = std::move(exposureMode);
- if (first.empty())
- first = key;
+ return ret;
}
- return { 0, first };
-}
-
-int AgcConstraint::read(const libcamera::YamlObject &params)
-{
- std::string boundString = params["bound"].get<std::string>("");
- transform(boundString.begin(), boundString.end(),
- boundString.begin(), ::toupper);
- if (boundString != "UPPER" && boundString != "LOWER") {
- LOG(RPiAgc, Error) << "AGC constraint type should be UPPER or LOWER";
- return -EINVAL;
+ LOG(RPiAgc, Debug) << "Read " << channelData_.size() << " channel(s)";
+ if (channelData_.empty()) {
+ LOG(RPiAgc, Error) << "No AGC channels provided";
+ return -1;
}
- bound = boundString == "UPPER" ? Bound::UPPER : Bound::LOWER;
-
- auto value = params["q_lo"].get<double>();
- if (!value)
- return -EINVAL;
- qLo = *value;
-
- value = params["q_hi"].get<double>();
- if (!value)
- return -EINVAL;
- qHi = *value;
-
- return yTarget.read(params["y_target"]);
-}
-static std::tuple<int, AgcConstraintMode>
-readConstraintMode(const libcamera::YamlObject &params)
-{
- AgcConstraintMode mode;
- int ret;
-
- for (const auto &p : params.asList()) {
- AgcConstraint constraint;
- ret = constraint.read(p);
- if (ret)
- return { ret, {} };
-
- mode.push_back(std::move(constraint));
- }
-
- return { 0, mode };
+ return 0;
}
-static std::tuple<int, std::string>
-readConstraintModes(std::map<std::string, AgcConstraintMode> &constraintModes,
- const libcamera::YamlObject &params)
+int Agc::checkChannel(unsigned int channelIndex) const
{
- std::string first;
- int ret;
-
- for (const auto &[key, value] : params.asDict()) {
- std::tie(ret, constraintModes[key]) = readConstraintMode(value);
- if (ret)
- return { ret, {} };
-
- if (first.empty())
- first = key;
+ if (channelIndex >= channelData_.size()) {
+ LOG(RPiAgc, Warning) << "AGC channel " << channelIndex << " not available";
+ return -1;
}
- return { 0, first };
-}
-
-int AgcConfig::read(const libcamera::YamlObject &params)
-{
- LOG(RPiAgc, Debug) << "AgcConfig";
- int ret;
-
- std::tie(ret, defaultMeteringMode) =
- readMeteringModes(meteringModes, params["metering_modes"]);
- if (ret)
- return ret;
- std::tie(ret, defaultExposureMode) =
- readExposureModes(exposureModes, params["exposure_modes"]);
- if (ret)
- return ret;
- std::tie(ret, defaultConstraintMode) =
- readConstraintModes(constraintModes, params["constraint_modes"]);
- if (ret)
- return ret;
-
- ret = yTarget.read(params["y_target"]);
- if (ret)
- return ret;
-
- speed = params["speed"].get<double>(0.2);
- startupFrames = params["startup_frames"].get<uint16_t>(10);
- convergenceFrames = params["convergence_frames"].get<unsigned int>(6);
- fastReduceThreshold = params["fast_reduce_threshold"].get<double>(0.4);
- baseEv = params["base_ev"].get<double>(1.0);
-
- /* Start with quite a low value as ramping up is easier than ramping down. */
- defaultExposureTime = params["default_exposure_time"].get<double>(1000) * 1us;
- defaultAnalogueGain = params["default_analogue_gain"].get<double>(1.0);
-
return 0;
}
-Agc::ExposureValues::ExposureValues()
- : shutter(0s), analogueGain(0),
- totalExposure(0s), totalExposureNoDG(0s)
+void Agc::disableAuto(unsigned int channelIndex)
{
-}
-
-Agc::Agc(Controller *controller)
- : AgcAlgorithm(controller), meteringMode_(nullptr),
- exposureMode_(nullptr), constraintMode_(nullptr),
- frameCount_(0), lockCount_(0),
- lastTargetExposure_(0s), ev_(1.0), flickerPeriod_(0s),
- maxShutter_(0s), fixedShutter_(0s), fixedAnalogueGain_(0.0)
-{
- memset(&awb_, 0, sizeof(awb_));
- /*
- * Setting status_.totalExposureValue_ to zero initially tells us
- * it's not been calculated yet (i.e. Process hasn't yet run).
- */
- status_ = {};
- status_.ev = ev_;
-}
+ if (checkChannel(channelIndex))
+ return;
-char const *Agc::name() const
-{
- return NAME;
+ LOG(RPiAgc, Debug) << "disableAuto for channel " << channelIndex;
+ channelData_[channelIndex].channel.disableAuto();
}
-int Agc::read(const libcamera::YamlObject &params)
+void Agc::enableAuto(unsigned int channelIndex)
{
- LOG(RPiAgc, Debug) << "Agc";
-
- int ret = config_.read(params);
- if (ret)
- return ret;
-
- const Size &size = getHardwareConfig().agcZoneWeights;
- for (auto const &modes : config_.meteringModes) {
- if (modes.second.weights.size() != size.width * size.height) {
- LOG(RPiAgc, Error) << "AgcMeteringMode: Incorrect number of weights";
- return -EINVAL;
- }
- }
+ if (checkChannel(channelIndex))
+ return;
- /*
- * Set the config's defaults (which are the first ones it read) as our
- * current modes, until someone changes them. (they're all known to
- * exist at this point)
- */
- meteringModeName_ = config_.defaultMeteringMode;
- meteringMode_ = &config_.meteringModes[meteringModeName_];
- exposureModeName_ = config_.defaultExposureMode;
- exposureMode_ = &config_.exposureModes[exposureModeName_];
- constraintModeName_ = config_.defaultConstraintMode;
- constraintMode_ = &config_.constraintModes[constraintModeName_];
- /* Set up the "last shutter/gain" values, in case AGC starts "disabled". */
- status_.shutterTime = config_.defaultExposureTime;
- status_.analogueGain = config_.defaultAnalogueGain;
- return 0;
-}
-
-void Agc::disableAuto()
-{
- fixedShutter_ = status_.shutterTime;
- fixedAnalogueGain_ = status_.analogueGain;
-}
-
-void Agc::enableAuto()
-{
- fixedShutter_ = 0s;
- fixedAnalogueGain_ = 0;
+ LOG(RPiAgc, Debug) << "enableAuto for channel " << channelIndex;
+ channelData_[channelIndex].channel.enableAuto();
}
unsigned int Agc::getConvergenceFrames() const
{
- /*
- * If shutter and gain have been explicitly set, there is no
- * convergence to happen, so no need to drop any frames - return zero.
- */
- if (fixedShutter_ && fixedAnalogueGain_)
- return 0;
- else
- return config_.convergenceFrames;
+ /* If there are n channels, it presumably takes n times as long to converge. */
+ return channelData_[0].channel.getConvergenceFrames() * activeChannels_.size();
}
std::vector<double> const &Agc::getWeights() const
{
/*
- * In case someone calls setMeteringMode and then this before the
- * algorithm has run and updated the meteringMode_ pointer.
+ * In future the metering weights may be determined differently, making it
+ * difficult to associate different sets of weight with different channels.
+ * Therefore we shall impose a limitation, at least for now, that all
+ * channels will use the same weights.
*/
- auto it = config_.meteringModes.find(meteringModeName_);
- if (it == config_.meteringModes.end())
- return meteringMode_->weights;
- return it->second.weights;
+ return channelData_[0].channel.getWeights();
}
-void Agc::setEv(double ev)
+void Agc::setEv(unsigned int channelIndex, double ev)
{
- ev_ = ev;
-}
+ if (checkChannel(channelIndex))
+ return;
-void Agc::setFlickerPeriod(Duration flickerPeriod)
-{
- flickerPeriod_ = flickerPeriod;
+ LOG(RPiAgc, Debug) << "setEv " << ev << " for channel " << channelIndex;
+ channelData_[channelIndex].channel.setEv(ev);
}
-void Agc::setMaxShutter(Duration maxShutter)
+void Agc::setFlickerPeriod(unsigned int channelIndex, Duration flickerPeriod)
{
- maxShutter_ = maxShutter;
-}
+ if (checkChannel(channelIndex))
+ return;
-void Agc::setFixedShutter(Duration fixedShutter)
-{
- fixedShutter_ = fixedShutter;
- /* Set this in case someone calls disableAuto() straight after. */
- status_.shutterTime = limitShutter(fixedShutter_);
+ LOG(RPiAgc, Debug) << "setFlickerPeriod " << flickerPeriod
+ << " for channel " << channelIndex;
+ channelData_[channelIndex].channel.setFlickerPeriod(flickerPeriod);
}
-void Agc::setFixedAnalogueGain(double fixedAnalogueGain)
-{
- fixedAnalogueGain_ = fixedAnalogueGain;
- /* Set this in case someone calls disableAuto() straight after. */
- status_.analogueGain = limitGain(fixedAnalogueGain);
-}
-
-void Agc::setMeteringMode(std::string const &meteringModeName)
-{
- meteringModeName_ = meteringModeName;
-}
-
-void Agc::setExposureMode(std::string const &exposureModeName)
-{
- exposureModeName_ = exposureModeName;
-}
-
-void Agc::setConstraintMode(std::string const &constraintModeName)
-{
- constraintModeName_ = constraintModeName;
-}
-
-void Agc::switchMode(CameraMode const &cameraMode,
- Metadata *metadata)
+void Agc::setMaxShutter(Duration maxShutter)
{
- /* AGC expects the mode sensitivity always to be non-zero. */
- ASSERT(cameraMode.sensitivity);
-
- housekeepConfig();
-
- /*
- * Store the mode in the local state. We must cache the sensitivity of
- * of the previous mode for the calculations below.
- */
- double lastSensitivity = mode_.sensitivity;
- mode_ = cameraMode;
-
- Duration fixedShutter = limitShutter(fixedShutter_);
- if (fixedShutter && fixedAnalogueGain_) {
- /* We're going to reset the algorithm here with these fixed values. */
-
- fetchAwbStatus(metadata);
- double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 });
- ASSERT(minColourGain != 0.0);
-
- /* This is the equivalent of computeTargetExposure and applyDigitalGain. */
- target_.totalExposureNoDG = fixedShutter_ * fixedAnalogueGain_;
- target_.totalExposure = target_.totalExposureNoDG / minColourGain;
-
- /* Equivalent of filterExposure. This resets any "history". */
- filtered_ = target_;
-
- /* Equivalent of divideUpExposure. */
- filtered_.shutter = fixedShutter;
- filtered_.analogueGain = fixedAnalogueGain_;
- } else if (status_.totalExposureValue) {
- /*
- * On a mode switch, various things could happen:
- * - the exposure profile might change
- * - a fixed exposure or gain might be set
- * - the new mode's sensitivity might be different
- * We cope with the last of these by scaling the target values. After
- * that we just need to re-divide the exposure/gain according to the
- * current exposure profile, which takes care of everything else.
- */
-
- double ratio = lastSensitivity / cameraMode.sensitivity;
- target_.totalExposureNoDG *= ratio;
- target_.totalExposure *= ratio;
- filtered_.totalExposureNoDG *= ratio;
- filtered_.totalExposure *= ratio;
-
- divideUpExposure();
- } else {
- /*
- * We come through here on startup, when at least one of the shutter
- * or gain has not been fixed. We must still write those values out so
- * that they will be applied immediately. We supply some arbitrary defaults
- * for any that weren't set.
- */
-
- /* Equivalent of divideUpExposure. */
- filtered_.shutter = fixedShutter ? fixedShutter : config_.defaultExposureTime;
- filtered_.analogueGain = fixedAnalogueGain_ ? fixedAnalogueGain_ : config_.defaultAnalogueGain;
- }
-
- writeAndFinish(metadata, false);
+ /* Frame durations will be the same across all channels too. */
+ for (auto &data : channelData_)
+ data.channel.setMaxShutter(maxShutter);
}
-void Agc::prepare(Metadata *imageMetadata)
+void Agc::setFixedShutter(unsigned int channelIndex, Duration fixedShutter)
{
- Duration totalExposureValue = status_.totalExposureValue;
- AgcStatus delayedStatus;
- AgcPrepareStatus prepareStatus;
-
- if (!imageMetadata->get("agc.delayed_status", delayedStatus))
- totalExposureValue = delayedStatus.totalExposureValue;
-
- prepareStatus.digitalGain = 1.0;
- prepareStatus.locked = false;
-
- if (status_.totalExposureValue) {
- /* Process has run, so we have meaningful values. */
- DeviceStatus deviceStatus;
- if (imageMetadata->get("device.status", deviceStatus) == 0) {
- Duration actualExposure = deviceStatus.shutterSpeed *
- deviceStatus.analogueGain;
- if (actualExposure) {
- double digitalGain = totalExposureValue / actualExposure;
- LOG(RPiAgc, Debug) << "Want total exposure " << totalExposureValue;
- /*
- * Never ask for a gain < 1.0, and also impose
- * some upper limit. Make it customisable?
- */
- prepareStatus.digitalGain = std::max(1.0, std::min(digitalGain, 4.0));
- LOG(RPiAgc, Debug) << "Actual exposure " << actualExposure;
- LOG(RPiAgc, Debug) << "Use digitalGain " << prepareStatus.digitalGain;
- LOG(RPiAgc, Debug) << "Effective exposure "
- << actualExposure * prepareStatus.digitalGain;
- /* Decide whether AEC/AGC has converged. */
- prepareStatus.locked = updateLockStatus(deviceStatus);
- }
- } else
- LOG(RPiAgc, Warning) << name() << ": no device metadata";
- imageMetadata->set("agc.prepare_status", prepareStatus);
- }
-}
+ if (checkChannel(channelIndex))
+ return;
-void Agc::process(StatisticsPtr &stats, Metadata *imageMetadata)
-{
- frameCount_++;
- /*
- * First a little bit of housekeeping, fetching up-to-date settings and
- * configuration, that kind of thing.
- */
- housekeepConfig();
- /* Fetch the AWB status immediately, so that we can assume it's there. */
- fetchAwbStatus(imageMetadata);
- /* Get the current exposure values for the frame that's just arrived. */
- fetchCurrentExposure(imageMetadata);
- /* Compute the total gain we require relative to the current exposure. */
- double gain, targetY;
- computeGain(stats, imageMetadata, gain, targetY);
- /* Now compute the target (final) exposure which we think we want. */
- computeTargetExposure(gain);
- /* The results have to be filtered so as not to change too rapidly. */
- filterExposure();
- /*
- * Some of the exposure has to be applied as digital gain, so work out
- * what that is. This function also tells us whether it's decided to
- * "desaturate" the image more quickly.
- */
- bool desaturate = applyDigitalGain(gain, targetY);
- /*
- * The last thing is to divide up the exposure value into a shutter time
- * and analogue gain, according to the current exposure mode.
- */
- divideUpExposure();
- /* Finally advertise what we've done. */
- writeAndFinish(imageMetadata, desaturate);
+ LOG(RPiAgc, Debug) << "setFixedShutter " << fixedShutter
+ << " for channel " << channelIndex;
+ channelData_[channelIndex].channel.setFixedShutter(fixedShutter);
}
-bool Agc::updateLockStatus(DeviceStatus const &deviceStatus)
+void Agc::setFixedAnalogueGain(unsigned int channelIndex, double fixedAnalogueGain)
{
- const double errorFactor = 0.10; /* make these customisable? */
- const int maxLockCount = 5;
- /* Reset "lock count" when we exceed this multiple of errorFactor */
- const double resetMargin = 1.5;
+ if (checkChannel(channelIndex))
+ return;
- /* Add 200us to the exposure time error to allow for line quantisation. */
- Duration exposureError = lastDeviceStatus_.shutterSpeed * errorFactor + 200us;
- double gainError = lastDeviceStatus_.analogueGain * errorFactor;
- Duration targetError = lastTargetExposure_ * errorFactor;
-
- /*
- * Note that we don't know the exposure/gain limits of the sensor, so
- * the values we keep requesting may be unachievable. For this reason
- * we only insist that we're close to values in the past few frames.
- */
- if (deviceStatus.shutterSpeed > lastDeviceStatus_.shutterSpeed - exposureError &&
- deviceStatus.shutterSpeed < lastDeviceStatus_.shutterSpeed + exposureError &&
- deviceStatus.analogueGain > lastDeviceStatus_.analogueGain - gainError &&
- deviceStatus.analogueGain < lastDeviceStatus_.analogueGain + gainError &&
- status_.targetExposureValue > lastTargetExposure_ - targetError &&
- status_.targetExposureValue < lastTargetExposure_ + targetError)
- lockCount_ = std::min(lockCount_ + 1, maxLockCount);
- else if (deviceStatus.shutterSpeed < lastDeviceStatus_.shutterSpeed - resetMargin * exposureError ||
- deviceStatus.shutterSpeed > lastDeviceStatus_.shutterSpeed + resetMargin * exposureError ||
- deviceStatus.analogueGain < lastDeviceStatus_.analogueGain - resetMargin * gainError ||
- deviceStatus.analogueGain > lastDeviceStatus_.analogueGain + resetMargin * gainError ||
- status_.targetExposureValue < lastTargetExposure_ - resetMargin * targetError ||
- status_.targetExposureValue > lastTargetExposure_ + resetMargin * targetError)
- lockCount_ = 0;
-
- lastDeviceStatus_ = deviceStatus;
- lastTargetExposure_ = status_.targetExposureValue;
-
- LOG(RPiAgc, Debug) << "Lock count updated to " << lockCount_;
- return lockCount_ == maxLockCount;
+ LOG(RPiAgc, Debug) << "setFixedAnalogueGain " << fixedAnalogueGain
+ << " for channel " << channelIndex;
+ channelData_[channelIndex].channel.setFixedAnalogueGain(fixedAnalogueGain);
}
-void Agc::housekeepConfig()
+void Agc::setMeteringMode(std::string const &meteringModeName)
{
- /* First fetch all the up-to-date settings, so no one else has to do it. */
- status_.ev = ev_;
- status_.fixedShutter = limitShutter(fixedShutter_);
- status_.fixedAnalogueGain = fixedAnalogueGain_;
- status_.flickerPeriod = flickerPeriod_;
- LOG(RPiAgc, Debug) << "ev " << status_.ev << " fixedShutter "
- << status_.fixedShutter << " fixedAnalogueGain "
- << status_.fixedAnalogueGain;
- /*
- * Make sure the "mode" pointers point to the up-to-date things, if
- * they've changed.
- */
- if (meteringModeName_ != status_.meteringMode) {
- auto it = config_.meteringModes.find(meteringModeName_);
- if (it == config_.meteringModes.end()) {
- LOG(RPiAgc, Warning) << "No metering mode " << meteringModeName_;
- meteringModeName_ = status_.meteringMode;
- } else {
- meteringMode_ = &it->second;
- status_.meteringMode = meteringModeName_;
- }
- }
- if (exposureModeName_ != status_.exposureMode) {
- auto it = config_.exposureModes.find(exposureModeName_);
- if (it == config_.exposureModes.end()) {
- LOG(RPiAgc, Warning) << "No exposure profile " << exposureModeName_;
- exposureModeName_ = status_.exposureMode;
- } else {
- exposureMode_ = &it->second;
- status_.exposureMode = exposureModeName_;
- }
- }
- if (constraintModeName_ != status_.constraintMode) {
- auto it = config_.constraintModes.find(constraintModeName_);
- if (it == config_.constraintModes.end()) {
- LOG(RPiAgc, Warning) << "No constraint list " << constraintModeName_;
- constraintModeName_ = status_.constraintMode;
- } else {
- constraintMode_ = &it->second;
- status_.constraintMode = constraintModeName_;
- }
- }
- LOG(RPiAgc, Debug) << "exposureMode "
- << exposureModeName_ << " constraintMode "
- << constraintModeName_ << " meteringMode "
- << meteringModeName_;
+ /* Metering modes will be the same across all channels too. */
+ for (auto &data : channelData_)
+ data.channel.setMeteringMode(meteringModeName);
}
-void Agc::fetchCurrentExposure(Metadata *imageMetadata)
+void Agc::setExposureMode(unsigned int channelIndex, std::string const &exposureModeName)
{
- std::unique_lock<Metadata> lock(*imageMetadata);
- DeviceStatus *deviceStatus =
- imageMetadata->getLocked<DeviceStatus>("device.status");
- if (!deviceStatus)
- LOG(RPiAgc, Fatal) << "No device metadata";
- current_.shutter = deviceStatus->shutterSpeed;
- current_.analogueGain = deviceStatus->analogueGain;
- AgcStatus *agcStatus =
- imageMetadata->getLocked<AgcStatus>("agc.status");
- current_.totalExposure = agcStatus ? agcStatus->totalExposureValue : 0s;
- current_.totalExposureNoDG = current_.shutter * current_.analogueGain;
-}
+ if (checkChannel(channelIndex))
+ return;
-void Agc::fetchAwbStatus(Metadata *imageMetadata)
-{
- awb_.gainR = 1.0; /* in case not found in metadata */
- awb_.gainG = 1.0;
- awb_.gainB = 1.0;
- if (imageMetadata->get("awb.status", awb_) != 0)
- LOG(RPiAgc, Debug) << "No AWB status found";
+ LOG(RPiAgc, Debug) << "setExposureMode " << exposureModeName
+ << " for channel " << channelIndex;
+ channelData_[channelIndex].channel.setExposureMode(exposureModeName);
}
-static double computeInitialY(StatisticsPtr &stats, AwbStatus const &awb,
- std::vector<double> &weights, double gain)
+void Agc::setConstraintMode(unsigned int channelIndex, std::string const &constraintModeName)
{
- constexpr uint64_t maxVal = 1 << Statistics::NormalisationFactorPow2;
+ if (checkChannel(channelIndex))
+ return;
- ASSERT(weights.size() == stats->agcRegions.numRegions());
-
- /*
- * Note that the weights are applied by the IPA to the statistics directly,
- * before they are given to us here.
- */
- double rSum = 0, gSum = 0, bSum = 0, pixelSum = 0;
- for (unsigned int i = 0; i < stats->agcRegions.numRegions(); i++) {
- auto &region = stats->agcRegions.get(i);
- rSum += std::min<double>(region.val.rSum * gain, (maxVal - 1) * region.counted);
- gSum += std::min<double>(region.val.gSum * gain, (maxVal - 1) * region.counted);
- bSum += std::min<double>(region.val.bSum * gain, (maxVal - 1) * region.counted);
- pixelSum += region.counted;
- }
- if (pixelSum == 0.0) {
- LOG(RPiAgc, Warning) << "computeInitialY: pixelSum is zero";
- return 0;
- }
- double ySum = rSum * awb.gainR * .299 +
- gSum * awb.gainG * .587 +
- bSum * awb.gainB * .114;
- return ySum / pixelSum / maxVal;
+ channelData_[channelIndex].channel.setConstraintMode(constraintModeName);
}
-/*
- * We handle extra gain through EV by adjusting our Y targets. However, you
- * simply can't monitor histograms once they get very close to (or beyond!)
- * saturation, so we clamp the Y targets to this value. It does mean that EV
- * increases don't necessarily do quite what you might expect in certain
- * (contrived) cases.
- */
-
-static constexpr double EvGainYTargetLimit = 0.9;
-
-static double constraintComputeGain(AgcConstraint &c, const Histogram &h, double lux,
- double evGain, double &targetY)
+template<typename T>
+std::ostream &operator<<(std::ostream &os, const std::vector<T> &v)
{
- targetY = c.yTarget.eval(c.yTarget.domain().clip(lux));
- targetY = std::min(EvGainYTargetLimit, targetY * evGain);
- double iqm = h.interQuantileMean(c.qLo, c.qHi);
- return (targetY * h.bins()) / iqm;
+ os << "{";
+ for (const auto &e : v)
+ os << " " << e;
+ os << " }";
+ return os;
}
-void Agc::computeGain(StatisticsPtr &statistics, Metadata *imageMetadata,
- double &gain, double &targetY)
+void Agc::setActiveChannels(const std::vector<unsigned int> &activeChannels)
{
- struct LuxStatus lux = {};
- lux.lux = 400; /* default lux level to 400 in case no metadata found */
- if (imageMetadata->get("lux.status", lux) != 0)
- LOG(RPiAgc, Warning) << "No lux level found";
- const Histogram &h = statistics->yHist;
- double evGain = status_.ev * config_.baseEv;
- /*
- * The initial gain and target_Y come from some of the regions. After
- * that we consider the histogram constraints.
- */
- targetY = config_.yTarget.eval(config_.yTarget.domain().clip(lux.lux));
- targetY = std::min(EvGainYTargetLimit, targetY * evGain);
-
- /*
- * Do this calculation a few times as brightness increase can be
- * non-linear when there are saturated regions.
- */
- gain = 1.0;
- for (int i = 0; i < 8; i++) {
- double initialY = computeInitialY(statistics, awb_, meteringMode_->weights, gain);
- double extraGain = std::min(10.0, targetY / (initialY + .001));
- gain *= extraGain;
- LOG(RPiAgc, Debug) << "Initial Y " << initialY << " target " << targetY
- << " gives gain " << gain;
- if (extraGain < 1.01) /* close enough */
- break;
- }
-
- for (auto &c : *constraintMode_) {
- double newTargetY;
- double newGain = constraintComputeGain(c, h, lux.lux, evGain, newTargetY);
- LOG(RPiAgc, Debug) << "Constraint has target_Y "
- << newTargetY << " giving gain " << newGain;
- if (c.bound == AgcConstraint::Bound::LOWER && newGain > gain) {
- LOG(RPiAgc, Debug) << "Lower bound constraint adopted";
- gain = newGain;
- targetY = newTargetY;
- } else if (c.bound == AgcConstraint::Bound::UPPER && newGain < gain) {
- LOG(RPiAgc, Debug) << "Upper bound constraint adopted";
- gain = newGain;
- targetY = newTargetY;
- }
+ if (activeChannels.empty()) {
+ LOG(RPiAgc, Warning) << "No active AGC channels supplied";
+ return;
}
- LOG(RPiAgc, Debug) << "Final gain " << gain << " (target_Y " << targetY << " ev "
- << status_.ev << " base_ev " << config_.baseEv
- << ")";
-}
-
-void Agc::computeTargetExposure(double gain)
-{
- if (status_.fixedShutter && status_.fixedAnalogueGain) {
- /*
- * When ag and shutter are both fixed, we need to drive the
- * total exposure so that we end up with a digital gain of at least
- * 1/minColourGain. Otherwise we'd desaturate channels causing
- * white to go cyan or magenta.
- */
- double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 });
- ASSERT(minColourGain != 0.0);
- target_.totalExposure =
- status_.fixedShutter * status_.fixedAnalogueGain / minColourGain;
- } else {
- /*
- * The statistics reflect the image without digital gain, so the final
- * total exposure we're aiming for is:
- */
- target_.totalExposure = current_.totalExposureNoDG * gain;
- /* The final target exposure is also limited to what the exposure mode allows. */
- Duration maxShutter = status_.fixedShutter
- ? status_.fixedShutter
- : exposureMode_->shutter.back();
- maxShutter = limitShutter(maxShutter);
- Duration maxTotalExposure =
- maxShutter *
- (status_.fixedAnalogueGain != 0.0
- ? status_.fixedAnalogueGain
- : exposureMode_->gain.back());
- target_.totalExposure = std::min(target_.totalExposure, maxTotalExposure);
- }
- LOG(RPiAgc, Debug) << "Target totalExposure " << target_.totalExposure;
-}
-bool Agc::applyDigitalGain(double gain, double targetY)
-{
- double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 });
- ASSERT(minColourGain != 0.0);
- double dg = 1.0 / minColourGain;
- /*
- * I think this pipeline subtracts black level and rescales before we
- * get the stats, so no need to worry about it.
- */
- LOG(RPiAgc, Debug) << "after AWB, target dg " << dg << " gain " << gain
- << " target_Y " << targetY;
- /*
- * Finally, if we're trying to reduce exposure but the target_Y is
- * "close" to 1.0, then the gain computed for that constraint will be
- * only slightly less than one, because the measured Y can never be
- * larger than 1.0. When this happens, demand a large digital gain so
- * that the exposure can be reduced, de-saturating the image much more
- * quickly (and we then approach the correct value more quickly from
- * below).
- */
- bool desaturate = targetY > config_.fastReduceThreshold &&
- gain < sqrt(targetY);
- if (desaturate)
- dg /= config_.fastReduceThreshold;
- LOG(RPiAgc, Debug) << "Digital gain " << dg << " desaturate? " << desaturate;
- filtered_.totalExposureNoDG = filtered_.totalExposure / dg;
- LOG(RPiAgc, Debug) << "Target totalExposureNoDG " << filtered_.totalExposureNoDG;
- return desaturate;
-}
-
-void Agc::filterExposure()
-{
- double speed = config_.speed;
- /*
- * AGC adapts instantly if both shutter and gain are directly specified
- * or we're in the startup phase.
- */
- if ((status_.fixedShutter && status_.fixedAnalogueGain) ||
- frameCount_ <= config_.startupFrames)
- speed = 1.0;
- if (!filtered_.totalExposure) {
- filtered_.totalExposure = target_.totalExposure;
- } else {
- /*
- * If close to the result go faster, to save making so many
- * micro-adjustments on the way. (Make this customisable?)
- */
- if (filtered_.totalExposure < 1.2 * target_.totalExposure &&
- filtered_.totalExposure > 0.8 * target_.totalExposure)
- speed = sqrt(speed);
- filtered_.totalExposure = speed * target_.totalExposure +
- filtered_.totalExposure * (1.0 - speed);
- }
- LOG(RPiAgc, Debug) << "After filtering, totalExposure " << filtered_.totalExposure
- << " no dg " << filtered_.totalExposureNoDG;
-}
+ for (auto index : activeChannels)
+ if (checkChannel(index))
+ return;
-void Agc::divideUpExposure()
-{
- /*
- * Sending the fixed shutter/gain cases through the same code may seem
- * unnecessary, but it will make more sense when extend this to cover
- * variable aperture.
- */
- Duration exposureValue = filtered_.totalExposureNoDG;
- Duration shutterTime;
- double analogueGain;
- shutterTime = status_.fixedShutter ? status_.fixedShutter
- : exposureMode_->shutter[0];
- shutterTime = limitShutter(shutterTime);
- analogueGain = status_.fixedAnalogueGain != 0.0 ? status_.fixedAnalogueGain
- : exposureMode_->gain[0];
- analogueGain = limitGain(analogueGain);
- if (shutterTime * analogueGain < exposureValue) {
- for (unsigned int stage = 1;
- stage < exposureMode_->gain.size(); stage++) {
- if (!status_.fixedShutter) {
- Duration stageShutter =
- limitShutter(exposureMode_->shutter[stage]);
- if (stageShutter * analogueGain >= exposureValue) {
- shutterTime = exposureValue / analogueGain;
- break;
- }
- shutterTime = stageShutter;
- }
- if (status_.fixedAnalogueGain == 0.0) {
- if (exposureMode_->gain[stage] * shutterTime >= exposureValue) {
- analogueGain = exposureValue / shutterTime;
- break;
- }
- analogueGain = exposureMode_->gain[stage];
- analogueGain = limitGain(analogueGain);
- }
- }
- }
- LOG(RPiAgc, Debug) << "Divided up shutter and gain are " << shutterTime << " and "
- << analogueGain;
- /*
- * Finally adjust shutter time for flicker avoidance (require both
- * shutter and gain not to be fixed).
- */
- if (!status_.fixedShutter && !status_.fixedAnalogueGain &&
- status_.flickerPeriod) {
- int flickerPeriods = shutterTime / status_.flickerPeriod;
- if (flickerPeriods) {
- Duration newShutterTime = flickerPeriods * status_.flickerPeriod;
- analogueGain *= shutterTime / newShutterTime;
- /*
- * We should still not allow the ag to go over the
- * largest value in the exposure mode. Note that this
- * may force more of the total exposure into the digital
- * gain as a side-effect.
- */
- analogueGain = std::min(analogueGain, exposureMode_->gain.back());
- analogueGain = limitGain(analogueGain);
- shutterTime = newShutterTime;
- }
- LOG(RPiAgc, Debug) << "After flicker avoidance, shutter "
- << shutterTime << " gain " << analogueGain;
- }
- filtered_.shutter = shutterTime;
- filtered_.analogueGain = analogueGain;
+ LOG(RPiAgc, Debug) << "setActiveChannels " << activeChannels;
+ activeChannels_ = activeChannels;
}
-void Agc::writeAndFinish(Metadata *imageMetadata, bool desaturate)
+void Agc::switchMode(CameraMode const &cameraMode,
+ Metadata *metadata)
{
- status_.totalExposureValue = filtered_.totalExposure;
- status_.targetExposureValue = desaturate ? 0s : target_.totalExposureNoDG;
- status_.shutterTime = filtered_.shutter;
- status_.analogueGain = filtered_.analogueGain;
- /*
- * Write to metadata as well, in case anyone wants to update the camera
- * immediately.
- */
- imageMetadata->set("agc.status", status_);
- LOG(RPiAgc, Debug) << "Output written, total exposure requested is "
- << filtered_.totalExposure;
- LOG(RPiAgc, Debug) << "Camera exposure update: shutter time " << filtered_.shutter
- << " analogue gain " << filtered_.analogueGain;
+ LOG(RPiAgc, Debug) << "switchMode for channel 0";
+ channelData_[0].channel.switchMode(cameraMode, metadata);
}
-Duration Agc::limitShutter(Duration shutter)
+void Agc::prepare(Metadata *imageMetadata)
{
- /*
- * shutter == 0 is a special case for fixed shutter values, and must pass
- * through unchanged
- */
- if (!shutter)
- return shutter;
-
- shutter = std::clamp(shutter, mode_.minShutter, maxShutter_);
- return shutter;
+ LOG(RPiAgc, Debug) << "prepare for channel 0";
+ channelData_[0].channel.prepare(imageMetadata);
}
-double Agc::limitGain(double gain) const
+void Agc::process(StatisticsPtr &stats, Metadata *imageMetadata)
{
- /*
- * Only limit the lower bounds of the gain value to what the sensor limits.
- * The upper bound on analogue gain will be made up with additional digital
- * gain applied by the ISP.
- *
- * gain == 0.0 is a special case for fixed shutter values, and must pass
- * through unchanged
- */
- if (!gain)
- return gain;
-
- gain = std::max(gain, mode_.minAnalogueGain);
- return gain;
+ LOG(RPiAgc, Debug) << "process for channel 0";
+ channelData_[0].channel.process(stats, imageMetadata);
}
/* Register algorithm with the system. */