1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
|
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
#
# ctt_macbeth_locator.py - camera tuning tool Macbeth chart locator
from ctt_ransac import *
from ctt_tools import *
import warnings
"""
NOTE: some custom functions have been used here to make the code more readable.
These are defined in tools.py if they are needed for reference.
"""
"""
Some inconsistencies between packages cause runtime warnings when running
the clustering algorithm. This catches these warnings so they don't flood the
output to the console
"""
def fxn():
warnings.warn("runtime", RuntimeWarning)
"""
Define the success message
"""
success_msg = 'Macbeth chart located successfully'
def find_macbeth(Cam, img, mac_config=(0, 0)):
small_chart, show = mac_config
print('Locating macbeth chart')
Cam.log += '\nLocating macbeth chart'
"""
catch the warnings
"""
warnings.simplefilter("ignore")
fxn()
"""
Reference macbeth chart is created that will be correlated with the located
macbeth chart guess to produce a confidence value for the match.
"""
ref = cv2.imread(Cam.path +'ctt_ref.pgm', flags=cv2.IMREAD_GRAYSCALE)
ref_w = 120
ref_h = 80
rc1 = (0, 0)
rc2 = (0, ref_h)
rc3 = (ref_w, ref_h)
rc4 = (ref_w, 0)
ref_corns = np.array((rc1, rc2, rc3, rc4), np.float32)
ref_data = (ref, ref_w, ref_h, ref_corns)
"""
locate macbeth chart
"""
cor, mac, coords, msg = get_macbeth_chart(img, ref_data)
"""
following bits of code tries to fix common problems with simple
techniques.
If now or at any point the best correlation is of above 0.75, then
nothing more is tried as this is a high enough confidence to ensure
reliable macbeth square centre placement.
"""
"""
brighten image 2x
"""
if cor < 0.75:
a = 2
img_br = cv2.convertScaleAbs(img, alpha=a, beta=0)
cor_b, mac_b, coords_b, msg_b = get_macbeth_chart(img_br, ref_data)
if cor_b > cor:
cor, mac, coords, msg = cor_b, mac_b, coords_b, msg_b
"""
brighten image 4x
"""
if cor < 0.75:
a = 4
img_br = cv2.convertScaleAbs(img, alpha=a, beta=0)
cor_b, mac_b, coords_b, msg_b = get_macbeth_chart(img_br, ref_data)
if cor_b > cor:
cor, mac, coords, msg = cor_b, mac_b, coords_b, msg_b
"""
In case macbeth chart is too small, take a selection of the image and
attempt to locate macbeth chart within that. The scale increment is
root 2
"""
"""
These variables will be used to transform the found coordinates at smaller
scales back into the original. If ii is still -1 after this section that
means it was not successful
"""
ii = -1
w_best = 0
h_best = 0
d_best = 100
"""
d_best records the scale of the best match. Macbeth charts are only looked
for at one scale increment smaller than the current best match in order to avoid
unecessarily searching for macbeth charts at small scales.
If a macbeth chart ha already been found then set d_best to 0
"""
if cor != 0:
d_best = 0
"""
scale 3/2 (approx root2)
"""
if cor < 0.75:
imgs = []
"""
get size of image
"""
shape = list(img.shape[:2])
w, h = shape
"""
set dimensions of the subselection and the step along each axis between
selections
"""
w_sel = int(2*w/3)
h_sel = int(2*h/3)
w_inc = int(w/6)
h_inc = int(h/6)
"""
for each subselection, look for a macbeth chart
"""
for i in range(3):
for j in range(3):
w_s, h_s = i*w_inc, j*h_inc
img_sel = img[w_s:w_s+w_sel, h_s:h_s+h_sel]
cor_ij, mac_ij, coords_ij, msg_ij = get_macbeth_chart(img_sel, ref_data)
"""
if the correlation is better than the best then record the
scale and current subselection at which macbeth chart was
found. Also record the coordinates, macbeth chart and message.
"""
if cor_ij > cor:
cor = cor_ij
mac, coords, msg = mac_ij, coords_ij, msg_ij
ii, jj = i, j
w_best, h_best = w_inc, h_inc
d_best = 1
"""
scale 2
"""
if cor < 0.75:
imgs = []
shape = list(img.shape[:2])
w, h = shape
w_sel = int(w/2)
h_sel = int(h/2)
w_inc = int(w/8)
h_inc = int(h/8)
for i in range(5):
for j in range(5):
w_s, h_s = i*w_inc, j*h_inc
img_sel = img[w_s:w_s+w_sel, h_s:h_s+h_sel]
cor_ij, mac_ij, coords_ij, msg_ij = get_macbeth_chart(img_sel, ref_data)
if cor_ij > cor:
cor = cor_ij
mac, coords, msg = mac_ij, coords_ij, msg_ij
ii, jj = i, j
w_best, h_best = w_inc, h_inc
d_best = 2
"""
The following code checks for macbeth charts at even smaller scales. This
slows the code down significantly and has therefore been omitted by default,
however it is not unusably slow so might be useful if the macbeth chart
is too small to be picked up to by the current subselections.
Use this for macbeth charts with side lengths around 1/5 image dimensions
(and smaller...?) it is, however, recommended that macbeth charts take up as
large as possible a proportion of the image.
"""
if small_chart:
if cor < 0.75 and d_best > 1:
imgs = []
shape = list(img.shape[:2])
w, h = shape
w_sel = int(w/3)
h_sel = int(h/3)
w_inc = int(w/12)
h_inc = int(h/12)
for i in range(9):
for j in range(9):
w_s, h_s = i*w_inc, j*h_inc
img_sel = img[w_s:w_s+w_sel, h_s:h_s+h_sel]
cor_ij, mac_ij, coords_ij, msg_ij = get_macbeth_chart(img_sel, ref_data)
if cor_ij > cor:
cor = cor_ij
mac, coords, msg = mac_ij, coords_ij, msg_ij
ii, jj = i, j
w_best, h_best = w_inc, h_inc
d_best = 3
if cor < 0.75 and d_best > 2:
imgs = []
shape = list(img.shape[:2])
w, h = shape
w_sel = int(w/4)
h_sel = int(h/4)
w_inc = int(w/16)
h_inc = int(h/16)
for i in range(13):
for j in range(13):
w_s, h_s = i*w_inc, j*h_inc
img_sel = img[w_s:w_s+w_sel, h_s:h_s+h_sel]
cor_ij, mac_ij, coords_ij, msg_ij = get_macbeth_chart(img_sel, ref_data)
if cor_ij > cor:
cor = cor_ij
mac, coords, msg = mac_ij, coords_ij, msg_ij
ii, jj = i, j
w_best, h_best = w_inc, h_inc
"""
Transform coordinates from subselection to original image
"""
if ii != -1:
for a in range(len(coords)):
for b in range(len(coords[a][0])):
coords[a][0][b][1] += ii*w_best
coords[a][0][b][0] += jj*h_best
"""
initialise coords_fit variable
"""
coords_fit = None
# print('correlation: {}'.format(cor))
"""
print error or success message
"""
print(msg)
Cam.log += '\n' + msg
if msg == success_msg:
coords_fit = coords
Cam.log += '\nMacbeth chart vertices:\n'
Cam.log += '{}'.format(2*np.round(coords_fit[0][0]), 0)
"""
if correlation is lower than 0.75 there may be a risk of macbeth chart
corners not having been located properly. It might be worth running
with show set to true to check where the macbeth chart centres have
been located.
"""
print('Confidence: {:.3f}'.format(cor))
Cam.log += '\nConfidence: {:.3f}'.format(cor)
if cor < 0.75:
print('Caution: Low confidence guess!')
Cam.log += 'WARNING: Low confidence guess!'
# cv2.imshow('MacBeth', mac)
# represent(mac, 'MacBeth chart')
"""
extract data from coords_fit and plot on original image
"""
if show and coords_fit != None:
copy = img.copy()
verts = coords_fit[0][0]
cents = coords_fit[1][0]
"""
draw circles at vertices of macbeth chart
"""
for vert in verts:
p = tuple(np.round(vert).astype(np.int32))
cv2.circle(copy, p, 10, 1, -1)
"""
draw circles at centres of squares
"""
for i in range(len(cents)):
cent = cents[i]
p = tuple(np.round(cent).astype(np.int32))
"""
draw black circle on white square, white circle on black square an
grey circle everywhere else.
"""
if i == 3:
cv2.circle(copy, p, 8, 0, -1)
elif i == 23:
cv2.circle(copy, p, 8, 1, -1)
else:
cv2.circle(copy, p, 8, 0.5, -1)
copy, _ = reshape(copy, 400)
represent(copy)
return(coords_fit)
def get_macbeth_chart(img, ref_data):
"""
function returns coordinates of macbeth chart vertices and square centres,
along with an error/success message for debugging purposes. Additionally,
it scores the match with a confidence value.
Brief explanation of the macbeth chart locating algorithm:
- Find rectangles within image
- Take rectangles within percentage offset of median perimeter. The
assumption is that these will be the macbeth squares
- For each potential square, find the 24 possible macbeth centre locations
that would produce a square in that location
- Find clusters of potential macbeth chart centres to find the potential
macbeth centres with the most votes, i.e. the most likely ones
- For each potential macbeth centre, use the centres of the squares that
voted for it to find macbeth chart corners
- For each set of corners, transform the possible match into normalised
space and correlate with a reference chart to evaluate the match
- Select the highest correlation as the macbeth chart match, returning the
correlation as the confidence score
"""
"""
get reference macbeth chart data
"""
(ref, ref_w, ref_h, ref_corns) = ref_data
"""
the code will raise and catch a MacbethError in case of a problem, trying
to give some likely reasons why the problem occred, hence the try/except
"""
try:
"""
obtain image, convert to grayscale and normalise
"""
src = img
src, factor = reshape(src, 200)
original=src.copy()
a = 125/np.average(src)
src_norm = cv2.convertScaleAbs(src, alpha=a, beta=0)
"""
This code checks if there are seperate colour channels. In the past the
macbeth locator ran on jpgs and this makes it robust to different
filetypes. Note that running it on a jpg has 4x the pixels of the
average bayer channel so coordinates must be doubled.
This is best done in img_load.py in the get_patches method. The
coordinates and image width, height must be divided by two if the
macbeth locator has been run on a demosaicked image.
"""
if len(src_norm.shape) == 3:
src_bw = cv2.cvtColor(src_norm, cv2.COLOR_BGR2GRAY)
else:
src_bw = src_norm
original_bw = src_bw.copy()
"""
obtain image edges
"""
sigma=2
src_bw = cv2.GaussianBlur(src_bw, (0, 0), sigma)
t1, t2 = 50, 100
edges = cv2.Canny(src_bw, t1, t2)
"""
dilate edges to prevent self-intersections in contours
"""
k_size = 2
kernel = np.ones((k_size, k_size))
its = 1
edges = cv2.dilate(edges, kernel, iterations=its)
"""
find Contours in image
"""
conts, _ = cv2.findContours(edges,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_NONE)
if len(conts) == 0:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNo contours found in image\n'
'Possible problems:\n'
'- Macbeth chart is too dark or bright\n'
'- Macbeth chart is occluded\n'
)
"""
find quadrilateral contours
"""
epsilon = 0.07
conts_per = []
for i in range(len(conts)):
per = cv2.arcLength(conts[i], True)
poly = cv2.approxPolyDP(conts[i],
epsilon*per, True)
if len(poly) == 4 and cv2.isContourConvex(poly):
conts_per.append((poly, per))
if len(conts_per) == 0:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNo quadrilateral contours found'
'\nPossible problems:\n'
'- Macbeth chart is too dark or bright\n'
'- Macbeth chart is occluded\n'
'- Macbeth chart is out of camera plane\n'
)
"""
sort contours by perimeter and get perimeters within percent of median
"""
conts_per = sorted(conts_per, key=lambda x: x[1])
med_per = conts_per[int(len(conts_per)/2)][1]
side = med_per/4
perc = 0.1
med_low, med_high = med_per*(1-perc), med_per*(1+perc)
squares = []
for i in conts_per:
if med_low <= i[1] and med_high >= i[1]:
squares.append(i[0])
"""
obtain coordinates of nomralised macbeth and squares
"""
square_verts, mac_norm = get_square_verts(0.06)
"""
for each square guess, find 24 possible macbeth chart centres
"""
mac_mids = []
squares_raw = []
for i in range(len(squares)):
square = squares[i]
squares_raw.append(square)
"""
convert quads to rotated rectangles. This is required as the
'squares' are usually quite irregular quadrilaterls, so performing
a transform would result in exaggerated warping and inaccurate
macbeth chart centre placement
"""
rect = cv2.minAreaRect(square)
square = cv2.boxPoints(rect).astype(np.float32)
"""
reorder vertices to prevent 'hourglass shape'
"""
square = sorted(square, key=lambda x: x[0])
square_1 = sorted(square[:2], key=lambda x: x[1])
square_2 = sorted(square[2:], key=lambda x: -x[1])
square = np.array(np.concatenate((square_1, square_2)), np.float32)
square = np.reshape(square, (4, 2)).astype(np.float32)
squares[i] = square
"""
find 24 possible macbeth chart centres by trasnforming normalised
macbeth square vertices onto candidate square vertices found in image
"""
for j in range(len(square_verts)):
verts = square_verts[j]
p_mat = cv2.getPerspectiveTransform(verts, square)
mac_guess = cv2.perspectiveTransform(mac_norm, p_mat)
mac_guess = np.round(mac_guess).astype(np.int32)
"""
keep only if candidate macbeth is within image border
(deprecated)
"""
in_border = True
# for p in mac_guess[0]:
# pptest = cv2.pointPolygonTest(
# img_con,
# tuple(p),
# False
# )
# if pptest == -1:
# in_border = False
# break
if in_border:
mac_mid = np.mean(mac_guess,
axis=1)
mac_mids.append([mac_mid, (i, j)])
if len(mac_mids) == 0:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNo possible macbeth charts found within image'
'\nPossible problems:\n'
'- Part of the macbeth chart is outside the image\n'
'- Quadrilaterals in image background\n'
)
"""
reshape data
"""
for i in range(len(mac_mids)):
mac_mids[i][0] = mac_mids[i][0][0]
"""
find where midpoints cluster to identify most likely macbeth centres
"""
clustering = cluster.AgglomerativeClustering(
n_clusters=None,
compute_full_tree=True,
distance_threshold=side*2
)
mac_mids_list = [x[0] for x in mac_mids]
if len(mac_mids_list)==1:
"""
special case of only one valid centre found (probably not needed)
"""
clus_list = []
clus_list.append([mac_mids, len(mac_mids)])
else:
clustering.fit(mac_mids_list)
# try:
# clustering.fit(mac_mids_list)
# except RuntimeWarning as error:
# return(0, None, None, error)
"""
create list of all clusters
"""
clus_list = []
if clustering.n_clusters_ >1:
for i in range(clustering.labels_.max()+1):
indices = [j for j, x in enumerate(clustering.labels_) if x == i]
clus = []
for index in indices:
clus.append(mac_mids[index])
clus_list.append([clus, len(clus)])
clus_list.sort(key=lambda x: -x[1])
elif clustering.n_clusters_ == 1:
"""
special case of only one cluster found
"""
# print('only 1 cluster')
clus_list.append([mac_mids, len(mac_mids)])
else:
raise MacbethError(
'\nWARNING: No macebth chart found!'
'\nNo clusters found'
'\nPossible problems:\n'
'- NA\n'
)
"""
keep only clusters with enough votes
"""
clus_len_max = clus_list[0][1]
clus_tol= 0.7
for i in range(len(clus_list)):
if clus_list[i][1] < clus_len_max * clus_tol:
clus_list = clus_list[:i]
break
cent = np.mean(clus_list[i][0], axis=0)[0]
clus_list[i].append(cent)
"""
represent most popular cluster centroids
"""
# copy = original_bw.copy()
# copy = cv2.cvtColor(copy, cv2.COLOR_GRAY2RGB)
# copy = cv2.resize(copy, None, fx=2, fy=2)
# for clus in clus_list:
# centroid = tuple(2*np.round(clus[2]).astype(np.int32))
# cv2.circle(copy, centroid, 7, (255, 0, 0), -1)
# cv2.circle(copy, centroid, 2, (0, 0, 255), -1)
# represent(copy)
"""
get centres of each normalised square
"""
reference = get_square_centres(0.06)
"""
for each possible macbeth chart, transform image into
normalised space and find correlation with reference
"""
max_cor = 0
best_map = None
best_fit = None
best_cen_fit = None
best_ref_mat = None
for clus in clus_list:
clus = clus[0]
sq_cents = []
ref_cents = []
i_list = [p[1][0] for p in clus]
for point in clus:
i, j = point[1]
"""
remove any square that voted for two different points within
the same cluster. This causes the same point in the image to be
mapped to two different reference square centres, resulting in
a very distorted perspective transform since cv2.findHomography
simply minimises error.
This phenomenon is not particularly likely to occur due to the
enforced distance threshold in the clustering fit but it is
best to keep this in just in case.
"""
if i_list.count(i) == 1:
square = squares_raw[i]
sq_cent = np.mean(square, axis=0)
ref_cent = reference[j]
sq_cents.append(sq_cent)
ref_cents.append(ref_cent)
"""
At least three squares need to have voted for a centre in
order for a transform to be found
"""
if len(sq_cents) < 3:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNot enough squares found'
'\nPossible problems:\n'
'- Macbeth chart is occluded\n'
'- Macbeth chart is too dark of bright\n'
)
ref_cents = np.array(ref_cents)
sq_cents = np.array(sq_cents)
"""
find best fit transform from normalised centres to image
"""
h_mat, mask = cv2.findHomography(ref_cents, sq_cents)
if 'None' in str(type(h_mat)):
raise MacbethError(
'\nERROR\n'
)
"""
transform normalised corners and centres into image space
"""
mac_fit = cv2.perspectiveTransform(mac_norm, h_mat)
mac_cen_fit = cv2.perspectiveTransform(np.array([reference]), h_mat)
"""
transform located corners into reference space
"""
ref_mat = cv2.getPerspectiveTransform(
mac_fit,
np.array([ref_corns])
)
map_to_ref = cv2.warpPerspective(
original_bw, ref_mat,
(ref_w, ref_h)
)
"""
normalise brigthness
"""
a = 125/np.average(map_to_ref)
map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0)
"""
find correlation with bw reference macbeth
"""
cor = correlate(map_to_ref, ref)
"""
keep only if best correlation
"""
if cor > max_cor:
max_cor = cor
best_map = map_to_ref
best_fit = mac_fit
best_cen_fit = mac_cen_fit
best_ref_mat = ref_mat
"""
rotate macbeth by pi and recorrelate in case macbeth chart is
upside-down
"""
mac_fit_inv = np.array(
([[mac_fit[0][2], mac_fit[0][3],
mac_fit[0][0], mac_fit[0][1]]])
)
mac_cen_fit_inv = np.flip(mac_cen_fit, axis=1)
ref_mat = cv2.getPerspectiveTransform(
mac_fit_inv,
np.array([ref_corns])
)
map_to_ref = cv2.warpPerspective(
original_bw, ref_mat,
(ref_w, ref_h)
)
a = 125/np.average(map_to_ref)
map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0)
cor = correlate(map_to_ref, ref)
if cor > max_cor:
max_cor = cor
best_map = map_to_ref
best_fit = mac_fit_inv
best_cen_fit = mac_cen_fit_inv
best_ref_mat = ref_mat
"""
Check best match is above threshold
"""
cor_thresh = 0.6
if max_cor < cor_thresh:
raise MacbethError(
'\nWARNING: Correlation too low'
'\nPossible problems:\n'
'- Bad lighting conditions\n'
'- Macbeth chart is occluded\n'
'- Background is too noisy\n'
'- Macbeth chart is out of camera plane\n'
)
"""
Following code is mostly representation for debugging purposes
"""
"""
draw macbeth corners and centres on image
"""
copy = original.copy()
copy = cv2.resize(original, None, fx=2, fy=2)
# print('correlation = {}'.format(round(max_cor, 2)))
for point in best_fit[0]:
point = np.array(point, np.float32)
point = tuple(2*np.round(point).astype(np.int32))
cv2.circle(copy, point, 4, (255, 0, 0), -1)
for point in best_cen_fit[0]:
point = np.array(point, np.float32)
point = tuple(2*np.round(point).astype(np.int32))
cv2.circle(copy, point, 4, (0, 0, 255), -1)
copy = copy.copy()
cv2.circle(copy, point, 4, (0, 0, 255), -1)
"""
represent coloured macbeth in reference space
"""
best_map_col = cv2.warpPerspective(
original, best_ref_mat, (ref_w, ref_h)
)
best_map_col = cv2.resize(
best_map_col, None, fx=4, fy=4
)
a = 125/np.average(best_map_col)
best_map_col_norm = cv2.convertScaleAbs(
best_map_col, alpha=a, beta=0
)
# cv2.imshow('Macbeth', best_map_col)
# represent(copy)
"""
rescale coordinates to original image size
"""
fit_coords = (best_fit/factor, best_cen_fit/factor)
return(max_cor, best_map_col_norm, fit_coords, success_msg)
"""
catch macbeth errors and continue with code
"""
except MacbethError as error:
return(0, None, None, error)
|