summaryrefslogtreecommitdiff
path: root/src/qcam/format_converter.cpp
blob: 973966f6afc1d78b2bfe1bf60f5324e581a39bf2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * format_convert.cpp - qcam - Convert buffer to RGB
 */

#include "format_converter.h"

#include <errno.h>

#include <QImage>

#include <libcamera/formats.h>

#define RGBSHIFT		8
#ifndef MAX
#define MAX(a,b)		((a)>(b)?(a):(b))
#endif
#ifndef MIN
#define MIN(a,b)		((a)<(b)?(a):(b))
#endif
#ifndef CLAMP
#define CLAMP(a,low,high)	MAX((low),MIN((high),(a)))
#endif
#ifndef CLIP
#define CLIP(x)			CLAMP(x,0,255)
#endif

int FormatConverter::configure(const libcamera::PixelFormat &format,
			       const QSize &size)
{
	switch (format) {
	case libcamera::formats::NV12:
		formatFamily_ = NV;
		horzSubSample_ = 2;
		vertSubSample_ = 2;
		nvSwap_ = false;
		break;
	case libcamera::formats::NV21:
		formatFamily_ = NV;
		horzSubSample_ = 2;
		vertSubSample_ = 2;
		nvSwap_ = true;
		break;
	case libcamera::formats::NV16:
		formatFamily_ = NV;
		horzSubSample_ = 2;
		vertSubSample_ = 1;
		nvSwap_ = false;
		break;
	case libcamera::formats::NV61:
		formatFamily_ = NV;
		horzSubSample_ = 2;
		vertSubSample_ = 1;
		nvSwap_ = true;
		break;
	case libcamera::formats::NV24:
		formatFamily_ = NV;
		horzSubSample_ = 1;
		vertSubSample_ = 1;
		nvSwap_ = false;
		break;
	case libcamera::formats::NV42:
		formatFamily_ = NV;
		horzSubSample_ = 1;
		vertSubSample_ = 1;
		nvSwap_ = true;
		break;

	case libcamera::formats::R8:
		formatFamily_ = RGB;
		r_pos_ = 0;
		g_pos_ = 0;
		b_pos_ = 0;
		bpp_ = 1;
		break;
	case libcamera::formats::RGB888:
		formatFamily_ = RGB;
		r_pos_ = 2;
		g_pos_ = 1;
		b_pos_ = 0;
		bpp_ = 3;
		break;
	case libcamera::formats::BGR888:
		formatFamily_ = RGB;
		r_pos_ = 0;
		g_pos_ = 1;
		b_pos_ = 2;
		bpp_ = 3;
		break;
	case libcamera::formats::ARGB8888:
		formatFamily_ = RGB;
		r_pos_ = 2;
		g_pos_ = 1;
		b_pos_ = 0;
		bpp_ = 4;
		break;
	case libcamera::formats::RGBA8888:
		formatFamily_ = RGB;
		r_pos_ = 3;
		g_pos_ = 2;
		b_pos_ = 1;
		bpp_ = 4;
		break;
	case libcamera::formats::ABGR8888:
		formatFamily_ = RGB;
		r_pos_ = 0;
		g_pos_ = 1;
		b_pos_ = 2;
		bpp_ = 4;
		break;
	case libcamera::formats::BGRA8888:
		formatFamily_ = RGB;
		r_pos_ = 1;
		g_pos_ = 2;
		b_pos_ = 3;
		bpp_ = 4;
		break;

	case libcamera::formats::VYUY:
		formatFamily_ = YUV;
		y_pos_ = 1;
		cb_pos_ = 2;
		break;
	case libcamera::formats::YVYU:
		formatFamily_ = YUV;
		y_pos_ = 0;
		cb_pos_ = 3;
		break;
	case libcamera::formats::UYVY:
		formatFamily_ = YUV;
		y_pos_ = 1;
		cb_pos_ = 0;
		break;
	case libcamera::formats::YUYV:
		formatFamily_ = YUV;
		y_pos_ = 0;
		cb_pos_ = 1;
		break;

	case libcamera::formats::MJPEG:
		formatFamily_ = MJPEG;
		break;

	default:
		return -EINVAL;
	};

	format_ = format;
	width_ = size.width();
	height_ = size.height();

	return 0;
}

void FormatConverter::convert(const unsigned char *src, size_t size,
			      QImage *dst)
{
	switch (formatFamily_) {
	case MJPEG:
		dst->loadFromData(src, size, "JPEG");
		break;
	case YUV:
		convertYUV(src, dst->bits());
		break;
	case RGB:
		convertRGB(src, dst->bits());
		break;
	case NV:
		convertNV(src, dst->bits());
		break;
	};
}

static void yuv_to_rgb(int y, int u, int v, int *r, int *g, int *b)
{
	int c = y - 16;
	int d = u - 128;
	int e = v - 128;
	*r = CLIP(( 298 * c           + 409 * e + 128) >> RGBSHIFT);
	*g = CLIP(( 298 * c - 100 * d - 208 * e + 128) >> RGBSHIFT);
	*b = CLIP(( 298 * c + 516 * d           + 128) >> RGBSHIFT);
}

void FormatConverter::convertNV(const unsigned char *src, unsigned char *dst)
{
	unsigned int c_stride = width_ * (2 / horzSubSample_);
	unsigned int c_inc = horzSubSample_ == 1 ? 2 : 0;
	unsigned int cb_pos = nvSwap_ ? 1 : 0;
	unsigned int cr_pos = nvSwap_ ? 0 : 1;
	const unsigned char *src_c = src + width_ * height_;
	int r, g, b;

	for (unsigned int y = 0; y < height_; y++) {
		const unsigned char *src_y = src + y * width_;
		const unsigned char *src_cb = src_c + (y / vertSubSample_) *
					      c_stride + cb_pos;
		const unsigned char *src_cr = src_c + (y / vertSubSample_) *
					      c_stride + cr_pos;

		for (unsigned int x = 0; x < width_; x += 2) {
			yuv_to_rgb(*src_y, *src_cb, *src_cr, &r, &g, &b);
			dst[0] = b;
			dst[1] = g;
			dst[2] = r;
			dst[3] = 0xff;
			src_y++;
			src_cb += c_inc;
			src_cr += c_inc;
			dst += 4;

			yuv_to_rgb(*src_y, *src_cb, *src_cr, &r, &g, &b);
			dst[0] = b;
			dst[1] = g;
			dst[2] = r;
			dst[3] = 0xff;
			src_y++;
			src_cb += 2;
			src_cr += 2;
			dst += 4;
		}
	}
}

void FormatConverter::convertRGB(const unsigned char *src, unsigned char *dst)
{
	unsigned int x, y;
	int r, g, b;

	for (y = 0; y < height_; y++) {
		for (x = 0; x < width_; x++) {
			r = src[bpp_ * x + r_pos_];
			g = src[bpp_ * x + g_pos_];
			b = src[bpp_ * x + b_pos_];

			dst[4 * x + 0] = b;
			dst[4 * x + 1] = g;
			dst[4 * x + 2] = r;
			dst[4 * x + 3] = 0xff;
		}

		src += width_ * bpp_;
		dst += width_ * 4;
	}
}

void FormatConverter::convertYUV(const unsigned char *src, unsigned char *dst)
{
	unsigned int src_x, src_y, dst_x, dst_y;
	unsigned int src_stride;
	unsigned int dst_stride;
	unsigned int cr_pos;
	int r, g, b, y, cr, cb;

	cr_pos = (cb_pos_ + 2) % 4;
	src_stride = width_ * 2;
	dst_stride = width_ * 4;

	for (src_y = 0, dst_y = 0; dst_y < height_; src_y++, dst_y++) {
		for (src_x = 0, dst_x = 0; dst_x < width_; ) {
			cb = src[src_y * src_stride + src_x * 4 + cb_pos_];
			cr = src[src_y * src_stride + src_x * 4 + cr_pos];

			y = src[src_y * src_stride + src_x * 4 + y_pos_];
			yuv_to_rgb(y, cb, cr, &r, &g, &b);
			dst[dst_y * dst_stride + 4 * dst_x + 0] = b;
			dst[dst_y * dst_stride + 4 * dst_x + 1] = g;
			dst[dst_y * dst_stride + 4 * dst_x + 2] = r;
			dst[dst_y * dst_stride + 4 * dst_x + 3] = 0xff;
			dst_x++;

			y = src[src_y * src_stride + src_x * 4 + y_pos_ + 2];
			yuv_to_rgb(y, cb, cr, &r, &g, &b);
			dst[dst_y * dst_stride + 4 * dst_x + 0] = b;
			dst[dst_y * dst_stride + 4 * dst_x + 1] = g;
			dst[dst_y * dst_stride + 4 * dst_x + 2] = r;
			dst[dst_y * dst_stride + 4 * dst_x + 3] = 0xff;
			dst_x++;

			src_x++;
		}
	}
}
nt8_t *in = static_cast<const uint8_t *>(input); uint8_t *out = static_cast<uint8_t *>(output); /* \todo Can this be made more efficient? */ for (unsigned int i = 0; i < width; i += 2) { *out++ = in[0]; *out++ = (in[2] & 0x0f) << 4 | in[1] >> 4; *out++ = (in[1] & 0x0f) << 4 | in[2] >> 4; in += 3; } } void thumbScanlineSBGGRxxP(const FormatInfo &info, void *output, const void *input, unsigned int width, unsigned int stride) { const uint8_t *in = static_cast<const uint8_t *>(input); uint8_t *out = static_cast<uint8_t *>(output); /* Number of bytes corresponding to 16 pixels. */ unsigned int skip = info.bitsPerSample * 16 / 8; for (unsigned int x = 0; x < width; x++) { uint8_t value = (in[0] + in[1] + in[stride] + in[stride + 1]) >> 2; *out++ = value; *out++ = value; *out++ = value; in += skip; } } void packScanlineIPU3(void *output, const void *input, unsigned int width) { const uint8_t *in = static_cast<const uint8_t *>(input); uint16_t *out = static_cast<uint16_t *>(output); /* * Upscale the 10-bit format to 16-bit as it's not trivial to pack it * as 10-bit without gaps. * * \todo Improve packing to keep the 10-bit sample size. */ unsigned int x = 0; while (true) { for (unsigned int i = 0; i < 6; i++) { *out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6; if (++x >= width) return; *out++ = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4; if (++x >= width) return; *out++ = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2; if (++x >= width) return; *out++ = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0; if (++x >= width) return; in += 5; } *out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6; if (++x >= width) return; in += 2; } } void thumbScanlineIPU3([[maybe_unused]] const FormatInfo &info, void *output, const void *input, unsigned int width, unsigned int stride) { uint8_t *out = static_cast<uint8_t *>(output); for (unsigned int x = 0; x < width; x++) { unsigned int pixel = x * 16; unsigned int block = pixel / 25; unsigned int pixelInBlock = pixel - block * 25; /* * If the pixel is the last in the block cheat a little and * move one pixel backward to avoid reading between two blocks * and having to deal with the padding bits. */ if (pixelInBlock == 24) pixelInBlock--; const uint8_t *in = static_cast<const uint8_t *>(input) + block * 32 + (pixelInBlock / 4) * 5; uint16_t val1, val2, val3, val4; switch (pixelInBlock % 4) { case 0: val1 = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6; val2 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4; val3 = (in[stride + 1] & 0x03) << 14 | (in[stride + 0] & 0xff) << 6; val4 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4; break; case 1: val1 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4; val2 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2; val3 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4; val4 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2; break; case 2: val1 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2; val2 = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0; val3 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2; val4 = (in[stride + 4] & 0xff) << 8 | (in[stride + 3] & 0xc0) << 0; break; case 3: val1 = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0; val2 = (in[6] & 0x03) << 14 | (in[5] & 0xff) << 6; val3 = (in[stride + 4] & 0xff) << 8 | (in[stride + 3] & 0xc0) << 0; val4 = (in[stride + 6] & 0x03) << 14 | (in[stride + 5] & 0xff) << 6; break; } uint8_t value = (val1 + val2 + val3 + val4) >> 10; *out++ = value; *out++ = value; *out++ = value; } } static const std::map<PixelFormat, FormatInfo> formatInfo = { { formats::SBGGR10_CSI2P, { .bitsPerSample = 10, .pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed }, .packScanline = packScanlineSBGGR10P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SGBRG10_CSI2P, { .bitsPerSample = 10, .pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen }, .packScanline = packScanlineSBGGR10P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SGRBG10_CSI2P, { .bitsPerSample = 10, .pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen }, .packScanline = packScanlineSBGGR10P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SRGGB10_CSI2P, { .bitsPerSample = 10, .pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue }, .packScanline = packScanlineSBGGR10P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SBGGR12_CSI2P, { .bitsPerSample = 12, .pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed }, .packScanline = packScanlineSBGGR12P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SGBRG12_CSI2P, { .bitsPerSample = 12, .pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen }, .packScanline = packScanlineSBGGR12P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SGRBG12_CSI2P, { .bitsPerSample = 12, .pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen }, .packScanline = packScanlineSBGGR12P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SRGGB12_CSI2P, { .bitsPerSample = 12, .pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue }, .packScanline = packScanlineSBGGR12P, .thumbScanline = thumbScanlineSBGGRxxP, } }, { formats::SBGGR10_IPU3, { .bitsPerSample = 16, .pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed }, .packScanline = packScanlineIPU3, .thumbScanline = thumbScanlineIPU3, } }, { formats::SGBRG10_IPU3, { .bitsPerSample = 16, .pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen }, .packScanline = packScanlineIPU3, .thumbScanline = thumbScanlineIPU3, } }, { formats::SGRBG10_IPU3, { .bitsPerSample = 16, .pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen }, .packScanline = packScanlineIPU3, .thumbScanline = thumbScanlineIPU3, } }, { formats::SRGGB10_IPU3, { .bitsPerSample = 16, .pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue }, .packScanline = packScanlineIPU3, .thumbScanline = thumbScanlineIPU3, } }, }; int DNGWriter::write(const char *filename, const Camera *camera, const StreamConfiguration &config, const ControlList &metadata, [[maybe_unused]] const FrameBuffer *buffer, const void *data) { const ControlList &cameraProperties = camera->properties(); const auto it = formatInfo.find(config.pixelFormat); if (it == formatInfo.cend()) { std::cerr << "Unsupported pixel format" << std::endl; return -EINVAL; } const FormatInfo *info = &it->second; TIFF *tif = TIFFOpen(filename, "w"); if (!tif) { std::cerr << "Failed to open tiff file" << std::endl; return -EINVAL; } /* * Scanline buffer, has to be large enough to store both a RAW scanline * or a thumbnail scanline. The latter will always be much smaller than * the former as we downscale by 16 in both directions. */ uint8_t scanline[(config.size.width * info->bitsPerSample + 7) / 8]; toff_t rawIFDOffset = 0; toff_t exifIFDOffset = 0; /* * Start with a thumbnail in IFD 0 for compatibility with TIFF baseline * readers, as required by the TIFF/EP specification. Tags that apply to * the whole file are stored here. */ const uint8_t version[] = { 1, 2, 0, 0 }; TIFFSetField(tif, TIFFTAG_DNGVERSION, version); TIFFSetField(tif, TIFFTAG_DNGBACKWARDVERSION, version); TIFFSetField(tif, TIFFTAG_FILLORDER, FILLORDER_MSB2LSB); TIFFSetField(tif, TIFFTAG_MAKE, "libcamera"); if (cameraProperties.contains(properties::Model)) { std::string model = cameraProperties.get(properties::Model); TIFFSetField(tif, TIFFTAG_MODEL, model.c_str()); /* \todo set TIFFTAG_UNIQUECAMERAMODEL. */ } TIFFSetField(tif, TIFFTAG_SOFTWARE, "qcam"); TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT); /* * Thumbnail-specific tags. The thumbnail is stored as an RGB image * with 1/16 of the raw image resolution. Greyscale would save space, * but doesn't seem well supported by RawTherapee. */ TIFFSetField(tif, TIFFTAG_SUBFILETYPE, FILETYPE_REDUCEDIMAGE); TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width / 16); TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height / 16); TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8); TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE); TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB); TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 3); TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); /* * Fill in some reasonable colour information in the DNG. We supply * the "neutral" colour values which determine the white balance, and the * "ColorMatrix1" which converts XYZ to (un-white-balanced) camera RGB. * Note that this is not a "proper" colour calibration for the DNG, * nonetheless, many tools should be able to render the colours better. */ float neutral[3] = { 1, 1, 1 }; Matrix3d wbGain = Matrix3d::identity(); /* From http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html */ const Matrix3d rgb2xyz(0.4124564, 0.3575761, 0.1804375, 0.2126729, 0.7151522, 0.0721750, 0.0193339, 0.1191920, 0.9503041); Matrix3d ccm = Matrix3d::identity(); /* * Pick a reasonable number eps to protect against singularities. It * should be comfortably larger than the point at which we run into * numerical trouble, yet smaller than any plausible gain that we might * apply to a colour, either explicitly or as part of the colour matrix. */ const double eps = 1e-2; if (metadata.contains(controls::ColourGains)) { Span<const float> const &colourGains = metadata.get(controls::ColourGains); if (colourGains[0] > eps && colourGains[1] > eps) { wbGain = Matrix3d::diag(colourGains[0], 1, colourGains[1]); neutral[0] = 1.0 / colourGains[0]; /* red */ neutral[2] = 1.0 / colourGains[1]; /* blue */ } } if (metadata.contains(controls::ColourCorrectionMatrix)) { Span<const float> const &coeffs = metadata.get(controls::ColourCorrectionMatrix); Matrix3d ccmSupplied(coeffs); if (ccmSupplied.determinant() > eps) ccm = ccmSupplied; } /* * rgb2xyz is known to be invertible, and we've ensured above that both * the ccm and wbGain matrices are non-singular, so the product of all * three is guaranteed to be invertible too. */ Matrix3d colorMatrix1 = (rgb2xyz * ccm * wbGain).inverse(); TIFFSetField(tif, TIFFTAG_COLORMATRIX1, 9, colorMatrix1.m); TIFFSetField(tif, TIFFTAG_ASSHOTNEUTRAL, 3, neutral); /* * Reserve space for the SubIFD and ExifIFD tags, pointing to the IFD * for the raw image and EXIF data respectively. The real offsets will * be set later. */ TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset); TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset); /* Write the thumbnail. */ const uint8_t *row = static_cast<const uint8_t *>(data); for (unsigned int y = 0; y < config.size.height / 16; y++) { info->thumbScanline(*info, &scanline, row, config.size.width / 16, config.stride); if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) { std::cerr << "Failed to write thumbnail scanline" << std::endl; TIFFClose(tif); return -EINVAL; } row += config.stride * 16; } TIFFWriteDirectory(tif); /* Create a new IFD for the RAW image. */ const uint16_t cfaRepeatPatternDim[] = { 2, 2 }; const uint8_t cfaPlaneColor[] = { CFAPatternRed, CFAPatternGreen, CFAPatternBlue }; TIFFSetField(tif, TIFFTAG_SUBFILETYPE, 0); TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width); TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height); TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, info->bitsPerSample); TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE); TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_CFA); TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1); TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); TIFFSetField(tif, TIFFTAG_CFAREPEATPATTERNDIM, cfaRepeatPatternDim); TIFFSetField(tif, TIFFTAG_CFAPATTERN, info->pattern); TIFFSetField(tif, TIFFTAG_CFAPLANECOLOR, 3, cfaPlaneColor); TIFFSetField(tif, TIFFTAG_CFALAYOUT, 1); const uint16_t blackLevelRepeatDim[] = { 2, 2 }; float blackLevel[] = { 0.0f, 0.0f, 0.0f, 0.0f }; uint32_t whiteLevel = (1 << info->bitsPerSample) - 1; if (metadata.contains(controls::SensorBlackLevels)) { Span<const int32_t> levels = metadata.get(controls::SensorBlackLevels); /* * The black levels control is specified in R, Gr, Gb, B order. * Map it to the TIFF tag that is specified in CFA pattern * order. */ unsigned int green = (info->pattern[0] == CFAPatternRed || info->pattern[1] == CFAPatternRed) ? 0 : 1; for (unsigned int i = 0; i < 4; ++i) { unsigned int level; switch (info->pattern[i]) { case CFAPatternRed: level = levels[0]; break; case CFAPatternGreen: level = levels[green + 1]; green = (green + 1) % 2; break; case CFAPatternBlue: default: level = levels[3]; break; } /* Map the 16-bit value to the bits per sample range. */ blackLevel[i] = level >> (16 - info->bitsPerSample); } } TIFFSetField(tif, TIFFTAG_BLACKLEVELREPEATDIM, &blackLevelRepeatDim); TIFFSetField(tif, TIFFTAG_BLACKLEVEL, 4, &blackLevel); TIFFSetField(tif, TIFFTAG_WHITELEVEL, 1, &whiteLevel); /* Write RAW content. */ row = static_cast<const uint8_t *>(data); for (unsigned int y = 0; y < config.size.height; y++) { info->packScanline(&scanline, row, config.size.width); if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) { std::cerr << "Failed to write RAW scanline" << std::endl; TIFFClose(tif); return -EINVAL; } row += config.stride; } /* Checkpoint the IFD to retrieve its offset, and write it out. */ TIFFCheckpointDirectory(tif); rawIFDOffset = TIFFCurrentDirOffset(tif); TIFFWriteDirectory(tif); /* Create a new IFD for the EXIF data and fill it. */ TIFFCreateEXIFDirectory(tif); /* Store creation time. */ time_t rawtime; struct tm *timeinfo; char strTime[20]; time(&rawtime); timeinfo = localtime(&rawtime); strftime(strTime, 20, "%Y:%m:%d %H:%M:%S", timeinfo); /* * \todo Handle timezone information by setting OffsetTimeOriginal and * OffsetTimeDigitized once libtiff catches up to the specification and * has EXIFTAG_ defines to handle them. */ TIFFSetField(tif, EXIFTAG_DATETIMEORIGINAL, strTime); TIFFSetField(tif, EXIFTAG_DATETIMEDIGITIZED, strTime); if (metadata.contains(controls::AnalogueGain)) { float gain = metadata.get(controls::AnalogueGain); uint16_t iso = std::min(std::max(gain * 100, 0.0f), 65535.0f); TIFFSetField(tif, EXIFTAG_ISOSPEEDRATINGS, 1, &iso); } if (metadata.contains(controls::ExposureTime)) { float exposureTime = metadata.get(controls::ExposureTime) / 1e6; TIFFSetField(tif, EXIFTAG_EXPOSURETIME, exposureTime); } TIFFWriteCustomDirectory(tif, &exifIFDOffset); /* Update the IFD offsets and close the file. */ TIFFSetDirectory(tif, 0); TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset); TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset); TIFFWriteDirectory(tif); TIFFClose(tif); return 0; }