diff options
Diffstat (limited to 'utils/raspberrypi/ctt/ctt_alsc.py')
-rw-r--r-- | utils/raspberrypi/ctt/ctt_alsc.py | 297 |
1 files changed, 297 insertions, 0 deletions
diff --git a/utils/raspberrypi/ctt/ctt_alsc.py b/utils/raspberrypi/ctt/ctt_alsc.py new file mode 100644 index 00000000..fe1cff65 --- /dev/null +++ b/utils/raspberrypi/ctt/ctt_alsc.py @@ -0,0 +1,297 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi (Trading) Limited +# +# ctt_alsc.py - camera tuning tool for ALSC (auto lens shading correction) + +from ctt_image_load import * +import matplotlib.pyplot as plt +from matplotlib import cm +from mpl_toolkits.mplot3d import Axes3D + +""" +preform alsc calibration on a set of images +""" +def alsc_all(Cam,do_alsc_colour,plot): + imgs_alsc = Cam.imgs_alsc + """ + create list of colour temperatures and associated calibration tables + """ + list_col = [] + list_cr = [] + list_cb = [] + list_cg = [] + for Img in imgs_alsc: + col,cr,cb,cg,size = alsc(Cam,Img,do_alsc_colour,plot) + list_col.append(col) + list_cr.append(cr) + list_cb.append(cb) + list_cg.append(cg) + Cam.log += '\n' + Cam.log += '\nFinished processing images' + w,h,dx,dy = size + Cam.log += '\nChannel dimensions: w = {} h = {}'.format(int(w),int(h)) + Cam.log += '\n16x12 grid rectangle size: w = {} h = {}'.format(dx,dy) + + """ + convert to numpy array for data manipulation + """ + list_col = np.array(list_col) + list_cr = np.array(list_cr) + list_cb = np.array(list_cb) + list_cg = np.array(list_cg) + + cal_cr_list = [] + cal_cb_list = [] + + """ + only do colour calculations if required + """ + if do_alsc_colour: + Cam.log += '\nALSC colour tables' + for ct in sorted(set(list_col)): + Cam.log += '\nColour temperature: {} K'.format(ct) + """ + average tables for the same colour temperature + """ + indices = np.where(list_col == ct) + ct = int(ct) + t_r = np.mean(list_cr[indices],axis=0) + t_b = np.mean(list_cb[indices],axis=0) + """ + force numbers to be stored to 3dp.... :( + """ + t_r = np.where((100*t_r)%1<=0.05, t_r+0.001,t_r) + t_b = np.where((100*t_b)%1<=0.05, t_b+0.001,t_b) + t_r = np.where((100*t_r)%1>=0.95, t_r-0.001,t_r) + t_b = np.where((100*t_b)%1>=0.95, t_b-0.001,t_b) + t_r = np.round(t_r,3) + t_b = np.round(t_b,3) + r_corners = (t_r[0],t_r[15],t_r[-1],t_r[-16]) + b_corners = (t_b[0],t_b[15],t_b[-1],t_b[-16]) + r_cen = t_r[5*16+7]+t_r[5*16+8]+t_r[6*16+7]+t_r[6*16+8] + r_cen = round(r_cen/4,3) + b_cen = t_b[5*16+7]+t_b[5*16+8]+t_b[6*16+7]+t_b[6*16+8] + b_cen = round(b_cen/4,3) + Cam.log += '\nRed table corners: {}'.format(r_corners) + Cam.log += '\nRed table centre: {}'.format(r_cen) + Cam.log += '\nBlue table corners: {}'.format(b_corners) + Cam.log += '\nBlue table centre: {}'.format(b_cen) + cr_dict = { + 'ct':ct, + 'table':list(t_r) + } + cb_dict = { + 'ct':ct, + 'table':list(t_b) + } + cal_cr_list.append(cr_dict) + cal_cb_list.append(cb_dict) + Cam.log += '\n' + else: + cal_cr_list,cal_cb_list = None,None + + """ + average all values for luminance shading and return one table for all temperatures + """ + lum_lut = np.mean(list_cg,axis=0) + lum_lut = np.where((100*lum_lut)%1<=0.05,lum_lut+0.001,lum_lut) + lum_lut = np.where((100*lum_lut)%1>=0.95,lum_lut-0.001,lum_lut) + lum_lut = list(np.round(lum_lut,3)) + + """ + calculate average corner for lsc gain calculation further on + """ + corners = (lum_lut[0],lum_lut[15],lum_lut[-1],lum_lut[-16]) + Cam.log += '\nLuminance table corners: {}'.format(corners) + l_cen = lum_lut[5*16+7]+lum_lut[5*16+8]+lum_lut[6*16+7]+lum_lut[6*16+8] + l_cen = round(l_cen/4,3) + Cam.log += '\nLuminance table centre: {}'.format(l_cen) + av_corn = np.sum(corners)/4 + + return cal_cr_list,cal_cb_list,lum_lut,av_corn + + +""" +calculate g/r and g/b for 32x32 points arranged in a grid for a single image +""" +def alsc(Cam,Img,do_alsc_colour,plot=False): + Cam.log += '\nProcessing image: ' + Img.name + """ + get channel in correct order + """ + channels = [Img.channels[i] for i in Img.order] + """ + calculate size of single rectangle. + -(-(w-1)//32) is a ceiling division. w-1 is to deal robustly with the case + where w is a multiple of 32. + """ + w,h = Img.w/2,Img.h/2 + dx,dy = int(-(-(w-1)//16)),int(-(-(h-1)//12)) + """ + average the green channels into one + """ + av_ch_g = np.mean((channels[1:2]),axis = 0) + if do_alsc_colour: + """ + obtain 16x12 grid of intensities for each channel and subtract black level + """ + g = get_16x12_grid(av_ch_g,dx,dy) - Img.blacklevel_16 + r = get_16x12_grid(channels[0],dx,dy) - Img.blacklevel_16 + b = get_16x12_grid(channels[3],dx,dy) - Img.blacklevel_16 + """ + calculate ratios as 32 bit in order to be supported by medianBlur function + """ + cr = np.reshape(g/r,(12,16)).astype('float32') + cb = np.reshape(g/b,(12,16)).astype('float32') + cg = np.reshape(1/g,(12,16)).astype('float32') + """ + median blur to remove peaks and save as float 64 + """ + cr = cv2.medianBlur(cr,3).astype('float64') + cb = cv2.medianBlur(cb,3).astype('float64') + cg = cv2.medianBlur(cg,3).astype('float64') + cg = cg/np.min(cg) + + """ + debugging code showing 2D surface plot of vignetting. Quite useful for + for sanity check + """ + if plot: + hf = plt.figure(figsize=(8,8)) + ha = hf.add_subplot(311, projection='3d') + """ + note Y is plotted as -Y so plot has same axes as image + """ + X,Y = np.meshgrid(range(16),range(12)) + ha.plot_surface(X,-Y,cr,cmap=cm.coolwarm,linewidth=0) + ha.set_title('ALSC Plot\nImg: {}\n\ncr'.format(Img.str)) + hb = hf.add_subplot(312, projection='3d') + hb.plot_surface(X,-Y,cb,cmap=cm.coolwarm,linewidth=0) + hb.set_title('cb') + hc = hf.add_subplot(313, projection='3d') + hc.plot_surface(X,-Y,cg,cmap=cm.coolwarm,linewidth=0) + hc.set_title('g') + # print(Img.str) + plt.show() + + return Img.col,cr.flatten(),cb.flatten(),cg.flatten(),(w,h,dx,dy) + + else: + """ + only perform calculations for luminance shading + """ + g = get_16x12_grid(av_ch_g,dx,dy) - Img.blacklevel_16 + cg = np.reshape(1/g,(12,16)).astype('float32') + cg = cv2.medianBlur(cg,3).astype('float64') + cg = cg/np.min(cg) + + if plot: + hf = plt.figure(figssize=(8,8)) + ha = hf.add_subplot(1,1,1,projection='3d') + X,Y = np.meashgrid(range(16),range(12)) + ha.plot_surface(X,-Y,cg,cmap=cm.coolwarm,linewidth=0) + ha.set_title('ALSC Plot (Luminance only!)\nImg: {}\n\ncg').format(Img.str) + plt.show() + + return Img.col,None,None,cg.flatten(),(w,h,dx,dy) + + +""" +Compresses channel down to a 16x12 grid +""" +def get_16x12_grid(chan,dx,dy): + grid = [] + """ + since left and bottom border will not necessarily have rectangles of + dimension dx x dy, the 32nd iteration has to be handled separately. + """ + for i in range(11): + for j in range(15): + grid.append(np.mean(chan[dy*i:dy*(1+i),dx*j:dx*(1+j)])) + grid.append(np.mean(chan[dy*i:dy*(1+i),15*dx:])) + for j in range(15): + grid.append(np.mean(chan[11*dy:,dx*j:dx*(1+j)])) + grid.append(np.mean(chan[11*dy:,15*dx:])) + """ + return as np.array, ready for further manipulation + """ + return np.array(grid) + +""" +obtains sigmas for red and blue, effectively a measure of the 'error' +""" +def get_sigma(Cam,cal_cr_list,cal_cb_list): + Cam.log += '\nCalculating sigmas' + """ + provided colour alsc tables were generated for two different colour + temperatures sigma is calculated by comparing two calibration temperatures + adjacent in colour space + """ + """ + create list of colour temperatures + """ + cts = [cal['ct'] for cal in cal_cr_list] + # print(cts) + """ + calculate sigmas for each adjacent cts and return worst one + """ + sigma_rs = [] + sigma_bs = [] + for i in range(len(cts)-1): + sigma_rs.append(calc_sigma(cal_cr_list[i]['table'],cal_cr_list[i+1]['table'])) + sigma_bs.append(calc_sigma(cal_cb_list[i]['table'],cal_cb_list[i+1]['table'])) + Cam.log += '\nColour temperature interval {} - {} K'.format(cts[i],cts[i+1]) + Cam.log += '\nSigma red: {}'.format(sigma_rs[-1]) + Cam.log += '\nSigma blue: {}'.format(sigma_bs[-1]) + + """ + return maximum sigmas, not necessarily from the same colour temperature + interval + """ + sigma_r = max(sigma_rs) if sigma_rs else 0.005 + sigma_b = max(sigma_bs) if sigma_bs else 0.005 + Cam.log += '\nMaximum sigmas: Red = {} Blue = {}'.format(sigma_r, sigma_b) + + + # print(sigma_rs,sigma_bs) + # print(sigma_r,sigma_b) + return sigma_r,sigma_b + +""" +calculate sigma from two adjacent gain tables +""" +def calc_sigma(g1,g2): + """ + reshape into 16x12 matrix + """ + g1 = np.reshape(g1,(12,16)) + g2 = np.reshape(g2,(12,16)) + """ + apply gains to gain table + """ + gg = g1/g2 + if np.mean(gg) < 1: + gg = 1/gg + """ + for each internal patch, compute average difference between it and its 4 + neighbours, then append to list + """ + diffs = [] + for i in range(10): + for j in range(14): + """ + note indexing is incremented by 1 since all patches on borders are + not counted + """ + diff = np.abs(gg[i+1][j+1]-gg[i][j+1]) + diff += np.abs(gg[i+1][j+1]-gg[i+2][j+1]) + diff += np.abs(gg[i+1][j+1]-gg[i+1][j]) + diff += np.abs(gg[i+1][j+1]-gg[i+1][j+2]) + diffs.append(diff/4) + + """ + return mean difference + """ + mean_diff = np.mean(diffs) + return(np.round(mean_diff,5)) |