1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi Ltd
# Copyright (C) 2024, Paul Elder <paul.elder@ideasonboard.com>
#
# rkisp1.py - AGC module for tuning rkisp1
from .agc import AGC
import libtuning as lt
class AGCRkISP1(AGC):
hr_name = 'AGC (RkISP1)'
out_name = 'Agc'
def __init__(self, **kwargs):
super().__init__(**kwargs)
# We don't actually need anything from the config file
def validate_config(self, config: dict) -> bool:
return True
def _generate_metering_modes(self) -> dict:
centre_weighted = [
0, 0, 0, 0, 0,
0, 6, 8, 6, 0,
0, 8, 16, 8, 0,
0, 6, 8, 6, 0,
0, 0, 0, 0, 0
]
spot = [
0, 0, 0, 0, 0,
0, 2, 4, 2, 0,
0, 4, 16, 4, 0,
0, 2, 4, 2, 0,
0, 0, 0, 0, 0
]
matrix = [1 for i in range(0, 25)]
return {
'MeteringCentreWeighted': centre_weighted,
'MeteringSpot': spot,
'MeteringMatrix': matrix
}
def _generate_exposure_modes(self) -> dict:
normal = {'exposure-time': [100, 10000, 30000, 60000, 120000],
'gain': [2.0, 4.0, 6.0, 6.0, 6.0]}
short = {'exposure-time': [100, 5000, 10000, 20000, 120000],
'gain': [2.0, 4.0, 6.0, 6.0, 6.0]}
return {'ExposureNormal': normal, 'ExposureShort': short}
def _generate_constraint_modes(self) -> dict:
normal = {'lower': {'qLo': 0.98, 'qHi': 1.0, 'yTarget': 0.5}}
highlight = {
'lower': {'qLo': 0.98, 'qHi': 1.0, 'yTarget': 0.5},
'upper': {'qLo': 0.98, 'qHi': 1.0, 'yTarget': 0.8}
}
return {'ConstraintNormal': normal, 'ConstraintHighlight': highlight}
def _generate_y_target(self) -> list:
return 0.5
def process(self, config: dict, images: list, outputs: dict) -> dict:
output = {}
output['AeMeteringMode'] = self._generate_metering_modes()
output['AeExposureMode'] = self._generate_exposure_modes()
output['AeConstraintMode'] = self._generate_constraint_modes()
output['relativeLuminanceTarget'] = self._generate_y_target()
# \todo Debug functionality
return output
|