# SPDX-License-Identifier: CC0-1.0 project('libcamera', 'c', 'cpp', meson_version : '>= 0.55', version : '0.0.0', default_options : [ 'werror=true', 'warning_level=2', 'cpp_std=c++17', ], license : 'LGPL 2.1+') # Generate version information. The libcamera_git_version variable contains the # full version with git patch count and SHA1 (e.g. 1.2.3+211-c94a24f4), while # the libcamera_version variable contains the major.minor.patch (e.g. 1.2.3) # only. If the source tree isn't under git control, or if it matches the last # git version tag, the build metadata (e.g. +211-c94a24f4) is omitted from # libcamera_git_version. libcamera_git_version = run_command('utils/gen-version.sh', meson.build_root()).stdout().strip() if libcamera_git_version == '' libcamera_git_version = meson.project_version() endif libcamera_version = libcamera_git_version.split('+')[0] # Configure the build environment. cc = meson.get_compiler('c') cxx = meson.get_compiler('cpp') config_h = configuration_data() if cc.has_header_symbol('execinfo.h', 'backtrace') config_h.set('HAVE_BACKTRACE', 1) endif if cc.has_header_symbol('stdlib.h', 'secure_getenv', prefix : '#define _GNU_SOURCE') config_h.set('HAVE_SECURE_GETENV', 1) endif common_arguments = [ '-Wshadow', '-include', 'config.h', ] c_arguments = [] cpp_arguments = [] if cc.get_id() == 'clang' if cc.version().version_compare('<5') error('clang version is too old, libcamera requires 5.0 or newer') endif # Turn _FORTIFY_SOURCE by default on optimised builds (as it requires -O1 # or higher). This is needed on clang only as gcc enables it by default. if get_option('optimization') != '0' common_arguments += [ '-D_FORTIFY_SOURCE=2', ] endif # Use libc++ by default if available instead of libstdc++ when compiling # with clang. if cc.find_library('libc++', required: false).found() cpp_arguments += [ '-stdlib=libc++', ] endif cpp_arguments += [ '-Wextra-semi', ] endif if cc.get_id() == 'gcc' if cc.version().version_compare('<7') error('gcc version is too old, libcamera requires 7.0 or newer') endif # gcc 7.1 introduced processor-specific ABI breakages related to parameter # passing on ARM platforms. This generates a large number of messages # during compilation with gcc >=7.1. Silence them. if (host_machine.cpu_family() == 'arm' and cc.version().version_compare('>=7.1')) cpp_arguments += [ '-Wno-psabi', ] endif endif # We use C99 designated initializers for arrays as C++ has no equivalent # feature. Both gcc and clang support this extension, but recent # versions of clang generate a warning that needs to be disabled. if cc.has_argument('-Wno-c99-designator') common_arguments += [ '-Wno-c99-designator', ] endif c_arguments += common_arguments cpp_arguments += common_arguments add_project_arguments(c_arguments, language : 'c') add_project_arguments(cpp_arguments, language : 'cpp') add_project_link_arguments(cpp_arguments, language : 'cpp') libcamera_includes = include_directories('include') # Sub-directories fill py_modules with their dependencies. py_modules = [] # Libraries used by multiple components liblttng = cc.find_library('lttng-ust', required : get_option('tracing')) # Pipeline handlers # # Tests require the vimc pipeline handler, include it automatically when tests # are enabled. pipelines = get_option('pipelines') if get_option('test') and 'vimc' not in pipelines message('Enabling vimc pipeline handler to support tests') pipelines += ['vimc'] endif # Utilities are parsed first to provide support for other components. subdir('utils') subdir('include') subdir('src') # The documentation and test components are optional and can be disabled # through configuration values. They are enabled by default. subdir('Documentation') subdir('test') if not meson.is_cross_build() kernel_version_req = '>= 5.0.0' kernel_version = run_command('uname', '-r').stdout().strip() if not kernel_version.version_compare(kernel_version_req) warning('The current running kernel version @0@ is too old to run libcamera.' .format(kernel_version)) warning('If you intend to use libcamera on this machine, please upgrade to a kernel @0@.' .format(kernel_version_req)) endif endif # Create a symlink from the build root to the source root. This is used when # running libcamera from the build directory to locate resources in the source # directory (such as IPA configuration files). run_command('ln', '-fsT', meson.source_root(), meson.build_root() / 'source') configure_file(output : 'config.h', configuration : config_h) pkg_mod = import('pkgconfig') pkg_mod.generate(libraries : libcamera, version : '1.0', name : 'libcamera', filebase : 'camera', description : 'Complex Camera Support Library', subdirs : 'libcamera') # Check for python installation and modules. py_mod = import('python') py_mod.find_installation('python3', modules: py_modules) ## Summarise Configurations summary({ 'Enabled pipelines': pipelines, 'Android support': android_enabled, 'GStreamer support': gst_enabled, 'V4L2 emulation support': v4l2_enabled, 'cam application': cam_enabled, 'qcam application': qcam_enabled, 'lc-compliance application': lc_compliance_enabled, 'Unit tests': test_enabled, }, section : 'Configuration') ' href='#n70'>70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
#
# ctt_alsc.py - camera tuning tool for ALSC (auto lens shading correction)

from ctt_image_load import *
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D


"""
preform alsc calibration on a set of images
"""
def alsc_all(Cam, do_alsc_colour, plot):
    imgs_alsc = Cam.imgs_alsc
    """
    create list of colour temperatures and associated calibration tables
    """
    list_col = []
    list_cr = []
    list_cb = []
    list_cg = []
    for Img in imgs_alsc:
        col, cr, cb, cg, size = alsc(Cam, Img, do_alsc_colour, plot)
        list_col.append(col)
        list_cr.append(cr)
        list_cb.append(cb)
        list_cg.append(cg)
        Cam.log += '\n'
    Cam.log += '\nFinished processing images'
    w, h, dx, dy = size
    Cam.log += '\nChannel dimensions: w = {}  h = {}'.format(int(w), int(h))
    Cam.log += '\n16x12 grid rectangle size: w = {} h = {}'.format(dx, dy)

    """
    convert to numpy array for data manipulation
    """
    list_col = np.array(list_col)
    list_cr = np.array(list_cr)
    list_cb = np.array(list_cb)
    list_cg = np.array(list_cg)

    cal_cr_list = []
    cal_cb_list = []

    """
    only do colour calculations if required
    """
    if do_alsc_colour:
        Cam.log += '\nALSC colour tables'
        for ct in sorted(set(list_col)):
            Cam.log += '\nColour temperature: {} K'.format(ct)
            """
            average tables for the same colour temperature
            """
            indices = np.where(list_col == ct)
            ct = int(ct)
            t_r = np.mean(list_cr[indices], axis=0)
            t_b = np.mean(list_cb[indices], axis=0)
            """
            force numbers to be stored to 3dp.... :(
            """
            t_r = np.where((100*t_r) % 1 <= 0.05, t_r+0.001, t_r)
            t_b = np.where((100*t_b) % 1 <= 0.05, t_b+0.001, t_b)
            t_r = np.where((100*t_r) % 1 >= 0.95, t_r-0.001, t_r)
            t_b = np.where((100*t_b) % 1 >= 0.95, t_b-0.001, t_b)
            t_r = np.round(t_r, 3)
            t_b = np.round(t_b, 3)
            r_corners = (t_r[0], t_r[15], t_r[-1], t_r[-16])
            b_corners = (t_b[0], t_b[15], t_b[-1], t_b[-16])
            r_cen = t_r[5*16+7]+t_r[5*16+8]+t_r[6*16+7]+t_r[6*16+8]
            r_cen = round(r_cen/4, 3)
            b_cen = t_b[5*16+7]+t_b[5*16+8]+t_b[6*16+7]+t_b[6*16+8]
            b_cen = round(b_cen/4, 3)
            Cam.log += '\nRed table corners: {}'.format(r_corners)
            Cam.log += '\nRed table centre: {}'.format(r_cen)
            Cam.log += '\nBlue table corners: {}'.format(b_corners)
            Cam.log += '\nBlue table centre: {}'.format(b_cen)
            cr_dict = {
                'ct': ct,
                'table': list(t_r)
            }
            cb_dict = {
                'ct': ct,
                'table': list(t_b)
            }
            cal_cr_list.append(cr_dict)
            cal_cb_list.append(cb_dict)
            Cam.log += '\n'
    else:
        cal_cr_list, cal_cb_list = None, None

    """
    average all values for luminance shading and return one table for all temperatures
    """
    lum_lut = np.mean(list_cg, axis=0)
    lum_lut = np.where((100*lum_lut) % 1 <= 0.05, lum_lut+0.001, lum_lut)
    lum_lut = np.where((100*lum_lut) % 1 >= 0.95, lum_lut-0.001, lum_lut)
    lum_lut = list(np.round(lum_lut, 3))

    """
    calculate average corner for lsc gain calculation further on
    """
    corners = (lum_lut[0], lum_lut[15], lum_lut[-1], lum_lut[-16])
    Cam.log += '\nLuminance table corners: {}'.format(corners)
    l_cen = lum_lut[5*16+7]+lum_lut[5*16+8]+lum_lut[6*16+7]+lum_lut[6*16+8]
    l_cen = round(l_cen/4, 3)
    Cam.log += '\nLuminance table centre: {}'.format(l_cen)
    av_corn = np.sum(corners)/4

    return cal_cr_list, cal_cb_list, lum_lut, av_corn


"""
calculate g/r and g/b for 32x32 points arranged in a grid for a single image
"""
def alsc(Cam, Img, do_alsc_colour, plot=False):
    Cam.log += '\nProcessing image: ' + Img.name
    """
    get channel in correct order
    """
    channels = [Img.channels[i] for i in Img.order]
    """
    calculate size of single rectangle.
    -(-(w-1)//32) is a ceiling division. w-1 is to deal robustly with the case
    where w is a multiple of 32.
    """
    w, h = Img.w/2, Img.h/2
    dx, dy = int(-(-(w-1)//16)), int(-(-(h-1)//12))
    """
    average the green channels into one
    """
    av_ch_g = np.mean((channels[1:2]), axis=0)
    if do_alsc_colour:
        """
        obtain 16x12 grid of intensities for each channel and subtract black level
        """
        g = get_16x12_grid(av_ch_g, dx, dy) - Img.blacklevel_16
        r = get_16x12_grid(channels[0], dx, dy) - Img.blacklevel_16
        b = get_16x12_grid(channels[3], dx, dy) - Img.blacklevel_16
        """
        calculate ratios as 32 bit in order to be supported by medianBlur function
        """
        cr = np.reshape(g/r, (12, 16)).astype('float32')
        cb = np.reshape(g/b, (12, 16)).astype('float32')
        cg = np.reshape(1/g, (12, 16)).astype('float32')
        """
        median blur to remove peaks and save as float 64
        """
        cr = cv2.medianBlur(cr, 3).astype('float64')
        cb = cv2.medianBlur(cb, 3).astype('float64')
        cg = cv2.medianBlur(cg, 3).astype('float64')
        cg = cg/np.min(cg)

        """
        debugging code showing 2D surface plot of vignetting. Quite useful for
        for sanity check
        """
        if plot:
            hf = plt.figure(figsize=(8, 8))
            ha = hf.add_subplot(311, projection='3d')
            """
            note Y is plotted as -Y so plot has same axes as image
            """
            X, Y = np.meshgrid(range(16), range(12))
            ha.plot_surface(X, -Y, cr, cmap=cm.coolwarm, linewidth=0)
            ha.set_title('ALSC Plot\nImg: {}\n\ncr'.format(Img.str))
            hb = hf.add_subplot(312, projection='3d')
            hb.plot_surface(X, -Y, cb, cmap=cm.coolwarm, linewidth=0)
            hb.set_title('cb')
            hc = hf.add_subplot(313, projection='3d')
            hc.plot_surface(X, -Y, cg, cmap=cm.coolwarm, linewidth=0)
            hc.set_title('g')
            # print(Img.str)
            plt.show()

        return Img.col, cr.flatten(), cb.flatten(), cg.flatten(), (w, h, dx, dy)

    else:
        """
        only perform calculations for luminance shading
        """
        g = get_16x12_grid(av_ch_g, dx, dy) - Img.blacklevel_16
        cg = np.reshape(1/g, (12, 16)).astype('float32')
        cg = cv2.medianBlur(cg, 3).astype('float64')
        cg = cg/np.min(cg)

        if plot:
            hf = plt.figure(figssize=(8, 8))
            ha = hf.add_subplot(1, 1, 1, projection='3d')
            X, Y = np.meashgrid(range(16), range(12))
            ha.plot_surface(X, -Y, cg, cmap=cm.coolwarm, linewidth=0)
            ha.set_title('ALSC Plot (Luminance only!)\nImg: {}\n\ncg').format(Img.str)
            plt.show()

        return Img.col, None, None, cg.flatten(), (w, h, dx, dy)


"""
Compresses channel down to a 16x12 grid
"""
def get_16x12_grid(chan, dx, dy):
    grid = []
    """
    since left and bottom border will not necessarily have rectangles of
    dimension dx x dy, the 32nd iteration has to be handled separately.
    """
    for i in range(11):
        for j in range(15):
            grid.append(np.mean(chan[dy*i:dy*(1+i), dx*j:dx*(1+j)]))
        grid.append(np.mean(chan[dy*i:dy*(1+i), 15*dx:]))
    for j in range(15):
        grid.append(np.mean(chan[11*dy:, dx*j:dx*(1+j)]))
    grid.append(np.mean(chan[11*dy:, 15*dx:]))
    """
    return as np.array, ready for further manipulation
    """
    return np.array(grid)


"""
obtains sigmas for red and blue, effectively a measure of the 'error'
"""
def get_sigma(Cam, cal_cr_list, cal_cb_list):
    Cam.log += '\nCalculating sigmas'
    """
    provided colour alsc tables were generated for two different colour
    temperatures sigma is calculated by comparing two calibration temperatures
    adjacent in colour space
    """
    """
    create list of colour temperatures
    """
    cts = [cal['ct'] for cal in cal_cr_list]
    # print(cts)
    """
    calculate sigmas for each adjacent cts and return worst one
    """
    sigma_rs = []
    sigma_bs = []
    for i in range(len(cts)-1):
        sigma_rs.append(calc_sigma(cal_cr_list[i]['table'], cal_cr_list[i+1]['table']))
        sigma_bs.append(calc_sigma(cal_cb_list[i]['table'], cal_cb_list[i+1]['table']))
        Cam.log += '\nColour temperature interval {} - {} K'.format(cts[i], cts[i+1])
        Cam.log += '\nSigma red: {}'.format(sigma_rs[-1])
        Cam.log += '\nSigma blue: {}'.format(sigma_bs[-1])

    """
    return maximum sigmas, not necessarily from the same colour temperature
    interval
    """
    sigma_r = max(sigma_rs) if sigma_rs else 0.005
    sigma_b = max(sigma_bs) if sigma_bs else 0.005
    Cam.log += '\nMaximum sigmas: Red = {} Blue = {}'.format(sigma_r, sigma_b)

    # print(sigma_rs, sigma_bs)
    # print(sigma_r, sigma_b)
    return sigma_r, sigma_b


"""
calculate sigma from two adjacent gain tables
"""
def calc_sigma(g1, g2):
    """
    reshape into 16x12 matrix
    """
    g1 = np.reshape(g1, (12, 16))
    g2 = np.reshape(g2, (12, 16))
    """
    apply gains to gain table
    """
    gg = g1/g2
    if np.mean(gg) < 1:
        gg = 1/gg
    """
    for each internal patch, compute average difference between it and its 4
    neighbours, then append to list
    """
    diffs = []
    for i in range(10):
        for j in range(14):
            """
            note indexing is incremented by 1 since all patches on borders are
            not counted
            """
            diff = np.abs(gg[i+1][j+1]-gg[i][j+1])
            diff += np.abs(gg[i+1][j+1]-gg[i+2][j+1])
            diff += np.abs(gg[i+1][j+1]-gg[i+1][j])
            diff += np.abs(gg[i+1][j+1]-gg[i+1][j+2])
            diffs.append(diff/4)

    """
    return mean difference
    """
    mean_diff = np.mean(diffs)
    return(np.round(mean_diff, 5))