summaryrefslogtreecommitdiff
path: root/test/v4l2_videodevice/capture_async.cpp
blob: 805cb610296f59ac63be8b1f05382c9c6aa915a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * libcamera V4L2 API tests
 */

#include <iostream>

#include <libcamera/framebuffer.h>

#include <libcamera/base/event_dispatcher.h>
#include <libcamera/base/thread.h>
#include <libcamera/base/timer.h>

#include "v4l2_videodevice_test.h"

class CaptureAsyncTest : public V4L2VideoDeviceTest
{
public:
	CaptureAsyncTest()
		: V4L2VideoDeviceTest("vimc", "Raw Capture 0"), frames(0) {}

	void receiveBuffer(FrameBuffer *buffer)
	{
		std::cout << "Buffer received" << std::endl;
		frames++;

		/* Requeue the buffer for further use. */
		capture_->queueBuffer(buffer);
	}

protected:
	int run()
	{
		const unsigned int bufferCount = 8;

		EventDispatcher *dispatcher = Thread::current()->eventDispatcher();
		Timer timeout;
		int ret;

		ret = capture_->allocateBuffers(bufferCount, &buffers_);
		if (ret < 0) {
			std::cout << "Failed to allocate buffers" << std::endl;
			return TestFail;
		}

		capture_->bufferReady.connect(this, &CaptureAsyncTest::receiveBuffer);

		for (const std::unique_ptr<FrameBuffer> &buffer : buffers_) {
			if (capture_->queueBuffer(buffer.get())) {
				std::cout << "Failed to queue buffer" << std::endl;
				return TestFail;
			}
		}

		ret = capture_->streamOn();
		if (ret)
			return TestFail;

		timeout.start(10000);
		while (timeout.isRunning()) {
			dispatcher->processEvents();
			if (frames > 30)
				break;
		}

		if (frames < 1) {
			std::cout << "Failed to capture any frames within timeout." << std::endl;
			return TestFail;
		}

		if (frames < 30) {
			std::cout << "Failed to capture 30 frames within timeout." << std::endl;
			return TestFail;
		}

		std::cout << "Processed " << frames << " frames" << std::endl;

		ret = capture_->streamOff();
		if (ret)
			return TestFail;

		return TestPass;
	}

private:
	unsigned int frames;
};

TEST_REGISTER(CaptureAsyncTest)
opt">= get_config(args_dict, '-o', None, 'string') directory = get_config(args_dict, '-i', None, 'string') config = get_config(args_dict, '-c', None, 'string') log_path = get_config(args_dict, '-l', None, 'string') if directory is None: raise ArgError('\n\nERROR! No input directory given.') if json_output is None: raise ArgError('\n\nERROR! No output json given.') return json_output, directory, config, log_path """ custom arg and macbeth error class """ class ArgError(Exception): pass class MacbethError(Exception): pass """ correlation function to quantify match """ def correlate(im1, im2): f1 = im1.flatten() f2 = im2.flatten() cor = np.corrcoef(f1, f2) return cor[0][1] """ get list of files from directory """ def get_photos(directory='photos'): filename_list = [] for filename in os.listdir(directory): if 'jp' in filename or '.dng' in filename: filename_list.append(filename) return filename_list """ display image for debugging... read at your own risk... """ def represent(img, name='image'): # if type(img) == tuple or type(img) == list: # for i in range(len(img)): # name = 'image {}'.format(i) # cv2.imshow(name, img[i]) # else: # cv2.imshow(name, img) # cv2.waitKey(0) # cv2.destroyAllWindows() # return 0 """ code above displays using opencv, but this doesn't catch users pressing 'x' with their mouse to close the window.... therefore matplotlib is used.... (thanks a lot opencv) """ grid = plt.GridSpec(22, 1) plt.subplot(grid[:19, 0]) plt.imshow(img, cmap='gray') plt.axis('off') plt.subplot(grid[21, 0]) plt.title('press \'q\' to continue') plt.axis('off') plt.show() # f = plt.figure() # ax = f.add_subplot(211) # ax2 = f.add_subplot(122) # ax.imshow(img, cmap='gray') # ax.axis('off') # ax2.set_figheight(2) # ax2.title('press \'q\' to continue') # ax2.axis('off') # plt.show() """ reshape image to fixed width without distorting returns image and scale factor """ def reshape(img, width): factor = width/img.shape[0] return cv2.resize(img, None, fx=factor, fy=factor), factor