summaryrefslogtreecommitdiff
path: root/test/v4l2_videodevice/capture_async.cpp
blob: 3aa4ca0b69551622ac0c4c163a96b5930f25936b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * libcamera V4L2 API tests
 */

#include <iostream>

#include <libcamera/framebuffer.h>

#include <libcamera/base/event_dispatcher.h>
#include <libcamera/base/thread.h>
#include <libcamera/base/timer.h>

#include "v4l2_videodevice_test.h"

using namespace libcamera;

class CaptureAsyncTest : public V4L2VideoDeviceTest
{
public:
	CaptureAsyncTest()
		: V4L2VideoDeviceTest("vimc", "Raw Capture 0"), frames(0) {}

	void receiveBuffer(FrameBuffer *buffer)
	{
		std::cout << "Buffer received" << std::endl;
		frames++;

		/* Requeue the buffer for further use. */
		capture_->queueBuffer(buffer);
	}

protected:
	int run()
	{
		const unsigned int bufferCount = 8;

		EventDispatcher *dispatcher = Thread::current()->eventDispatcher();
		Timer timeout;
		int ret;

		ret = capture_->allocateBuffers(bufferCount, &buffers_);
		if (ret < 0) {
			std::cout << "Failed to allocate buffers" << std::endl;
			return TestFail;
		}

		capture_->bufferReady.connect(this, &CaptureAsyncTest::receiveBuffer);

		for (const std::unique_ptr<FrameBuffer> &buffer : buffers_) {
			if (capture_->queueBuffer(buffer.get())) {
				std::cout << "Failed to queue buffer" << std::endl;
				return TestFail;
			}
		}

		ret = capture_->streamOn();
		if (ret)
			return TestFail;

		timeout.start(10000);
		while (timeout.isRunning()) {
			dispatcher->processEvents();
			if (frames > 30)
				break;
		}

		if (frames < 1) {
			std::cout << "Failed to capture any frames within timeout." << std::endl;
			return TestFail;
		}

		if (frames < 30) {
			std::cout << "Failed to capture 30 frames within timeout." << std::endl;
			return TestFail;
		}

		std::cout << "Processed " << frames << " frames" << std::endl;

		ret = capture_->streamOff();
		if (ret)
			return TestFail;

		return TestPass;
	}

private:
	unsigned int frames;
};

TEST_REGISTER(CaptureAsyncTest)
Mapped.isValid()) { LOG(YUV, Error) << "Failed to mmap camera frame buffer"; return -EINVAL; } int ret = libyuv::NV12Scale(sourceMapped.planes()[0].data(), sourceStride_[0], sourceMapped.planes()[1].data(), sourceStride_[1], sourceSize_.width, sourceSize_.height, destination->plane(0).data(), destinationStride_[0], destination->plane(1).data(), destinationStride_[1], destinationSize_.width, destinationSize_.height, libyuv::FilterMode::kFilterBilinear); if (ret) { LOG(YUV, Error) << "Failed NV12 scaling: " << ret; return -EINVAL; } return 0; } bool PostProcessorYuv::isValidBuffers(const FrameBuffer &source, const CameraBuffer &destination) const { if (source.planes().size() != 2) { LOG(YUV, Error) << "Invalid number of source planes: " << source.planes().size(); return false; } if (destination.numPlanes() != 2) { LOG(YUV, Error) << "Invalid number of destination planes: " << destination.numPlanes(); return false; } if (source.planes()[0].length < sourceLength_[0] || source.planes()[1].length < sourceLength_[1]) { LOG(YUV, Error) << "The source planes lengths are too small, actual size: {" << source.planes()[0].length << ", " << source.planes()[1].length << "}, expected size: {" << sourceLength_[0] << ", " << sourceLength_[1] << "}"; return false; } if (destination.plane(0).size() < destinationLength_[0] || destination.plane(1).size() < destinationLength_[1]) { LOG(YUV, Error) << "The destination planes lengths are too small, actual size: {" << destination.plane(0).size() << ", " << destination.plane(1).size() << "}, expected size: {" << sourceLength_[0] << ", " << sourceLength_[1] << "}"; return false; } return true; } void PostProcessorYuv::calculateLengths(const StreamConfiguration &inCfg, const StreamConfiguration &outCfg) { sourceSize_ = inCfg.size; destinationSize_ = outCfg.size; const PixelFormatInfo &nv12Info = PixelFormatInfo::info(formats::NV12); for (unsigned int i = 0; i < 2; i++) { sourceStride_[i] = inCfg.stride; destinationStride_[i] = nv12Info.stride(destinationSize_.width, i, 1); const unsigned int vertSubSample = nv12Info.planes[i].verticalSubSampling; sourceLength_[i] = sourceStride_[i] * ((sourceSize_.height + vertSubSample - 1) / vertSubSample); destinationLength_[i] = destinationStride_[i] * ((destinationSize_.height + vertSubSample - 1) / vertSubSample); } }