1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2020, Raspberry Pi (Trading) Ltd.
*
* dng_writer.cpp - DNG writer
*/
#include "dng_writer.h"
#include <algorithm>
#include <iostream>
#include <map>
#include <tiffio.h>
#include <libcamera/control_ids.h>
#include <libcamera/formats.h>
#include <libcamera/property_ids.h>
using namespace libcamera;
enum CFAPatternColour : uint8_t {
CFAPatternRed = 0,
CFAPatternGreen = 1,
CFAPatternBlue = 2,
};
struct FormatInfo {
uint8_t bitsPerSample;
CFAPatternColour pattern[4];
void (*packScanline)(void *output, const void *input,
unsigned int width);
void (*thumbScanline)(const FormatInfo &info, void *output,
const void *input, unsigned int width,
unsigned int stride);
};
struct Matrix3d {
Matrix3d()
{
}
Matrix3d(float m0, float m1, float m2,
float m3, float m4, float m5,
float m6, float m7, float m8)
{
m[0] = m0, m[1] = m1, m[2] = m2;
m[3] = m3, m[4] = m4, m[5] = m5;
m[6] = m6, m[7] = m7, m[8] = m8;
}
Matrix3d(const Span<const float> &span)
: Matrix3d(span[0], span[1], span[2],
span[3], span[4], span[5],
span[6], span[7], span[8])
{
}
static Matrix3d diag(float diag0, float diag1, float diag2)
{
return Matrix3d(diag0, 0, 0, 0, diag1, 0, 0, 0, diag2);
}
static Matrix3d identity()
{
return Matrix3d(1, 0, 0, 0, 1, 0, 0, 0, 1);
}
Matrix3d transpose() const
{
return { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] };
}
Matrix3d cofactors() const
{
return { m[4] * m[8] - m[5] * m[7],
-(m[3] * m[8] - m[5] * m[6]),
m[3] * m[7] - m[4] * m[6],
-(m[1] * m[8] - m[2] * m[7]),
m[0] * m[8] - m[2] * m[6],
-(m[0] * m[7] - m[1] * m[6]),
m[1] * m[5] - m[2] * m[4],
-(m[0] * m[5] - m[2] * m[3]),
m[0] * m[4] - m[1] * m[3] };
}
Matrix3d adjugate() const
{
return cofactors().transpose();
}
float determinant() const
{
return m[0] * (m[4] * m[8] - m[5] * m[7]) -
m[1] * (m[3] * m[8] - m[5] * m[6]) +
m[2] * (m[3] * m[7] - m[4] * m[6]);
}
Matrix3d inverse() const
{
return adjugate() * (1.0 / determinant());
}
Matrix3d operator*(const Matrix3d &other) const
{
Matrix3d result;
for (unsigned int i = 0; i < 3; i++) {
for (unsigned int j = 0; j < 3; j++) {
result.m[i * 3 + j] =
m[i * 3 + 0] * other.m[0 + j] +
m[i * 3 + 1] * other.m[3 + j] +
m[i * 3 + 2] * other.m[6 + j];
}
}
return result;
}
Matrix3d operator*(float f) const
{
Matrix3d result;
for (unsigned int i = 0; i < 9; i++)
result.m[i] = m[i] * f;
return result;
}
float m[9];
};
void packScanlineSBGGR10P(void *output, const void *input, unsigned int width)
{
const uint8_t *in = static_cast<const uint8_t *>(input);
uint8_t *out = static_cast<uint8_t *>(output);
/* \todo Can this be made more efficient? */
for (unsigned int x = 0; x < width; x += 4) {
*out++ = in[0];
*out++ = (in[4] & 0x03) << 6 | in[1] >> 2;
*out++ = (in[1] & 0x03) << 6 | (in[4] & 0x0c) << 2 | in[2] >> 4;
*out++ = (in[2] & 0x0f) << 4 | (in[4] & 0x30) >> 2 | in[3] >> 6;
*out++ = (in[3] & 0x3f) << 2 | (in[4] & 0xc0) >> 6;
in += 5;
}
}
void packScanlineSBGGR12P(void *output, const void *input, unsigned int width)
{
const uint8_t *in = static_cast<const uint8_t *>(input);
uint8_t *out = static_cast<uint8_t *>(output);
/* \todo Can this be made more efficient? */
for (unsigned int i = 0; i < width; i += 2) {
*out++ = in[0];
*out++ = (in[2] & 0x0f) << 4 | in[1] >> 4;
*out++ = (in[1] & 0x0f) << 4 | in[2] >> 4;
in += 3;
}
}
void thumbScanlineSBGGRxxP(const FormatInfo &info, void *output,
const void *input, unsigned int width,
unsigned int stride)
{
const uint8_t *in = static_cast<const uint8_t *>(input);
uint8_t *out = static_cast<uint8_t *>(output);
/* Number of bytes corresponding to 16 pixels. */
unsigned int skip = info.bitsPerSample * 16 / 8;
for (unsigned int x = 0; x < width; x++) {
uint8_t value = (in[0] + in[1] + in[stride] + in[stride + 1]) >> 2;
*out++ = value;
*out++ = value;
*out++ = value;
in += skip;
}
}
void packScanlineIPU3(void *output, const void *input, unsigned int width)
{
const uint8_t *in = static_cast<const uint8_t *>(input);
uint16_t *out = static_cast<uint16_t *>(output);
/*
* Upscale the 10-bit format to 16-bit as it's not trivial to pack it
* as 10-bit without gaps.
*
* \todo Improve packing to keep the 10-bit sample size.
*/
unsigned int x = 0;
while (true) {
for (unsigned int i = 0; i < 6; i++) {
*out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6;
if (++x >= width)
return;
*out++ = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4;
if (++x >= width)
return;
*out++ = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2;
if (++x >= width)
return;
*out++ = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0;
if (++x >= width)
return;
in += 5;
}
*out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6;
if (++x >= width)
return;
in += 2;
}
}
void thumbScanlineIPU3([[maybe_unused]] const FormatInfo &info, void *output,
const void *input, unsigned int width,
unsigned int stride)
{
uint8_t *out = static_cast<uint8_t *>(output);
for (unsigned int x = 0; x < width; x++) {
unsigned int pixel = x * 16;
unsigned int block = pixel / 25;
unsigned int pixelInBlock = pixel - block * 25;
/*
* If the pixel is the last in the block cheat a little and
* move one pixel backward to avoid reading between two blocks
* and having to deal with the padding bits.
*/
if (pixelInBlock == 24)
pixelInBlock--;
const uint8_t *in = static_cast<const uint8_t *>(input)
+ block * 32 + (pixelInBlock / 4) * 5;
uint16_t val1, val2, val3, val4;
switch (pixelInBlock % 4) {
case 0:
val1 = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6;
val2 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4;
val3 = (in[stride + 1] & 0x03) << 14 | (in[stride + 0] & 0xff) << 6;
val4 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4;
break;
case 1:
val1 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4;
val2 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2;
val3 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4;
val4 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2;
break;
case 2:
val1 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2;
val2 = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0;
val3 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2;
val4 = (in[stride + 4] & 0xff) << 8 | (in[stride + 3] & 0xc0) << 0;
break;
case 3:
val1 = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0;
val2 = (in[6] & 0x03) << 14 | (in[5] & 0xff) << 6;
val3 = (in[stride + 4] & 0xff) << 8 | (in[stride + 3] & 0xc0) << 0;
val4 = (in[stride + 6] & 0x03) << 14 | (in[stride + 5] & 0xff) << 6;
break;
}
uint8_t value = (val1 + val2 + val3 + val4) >> 10;
*out++ = value;
*out++ = value;
*out++ = value;
}
}
static const std::map<PixelFormat, FormatInfo> formatInfo = {
{ formats::SBGGR10_CSI2P, {
.bitsPerSample = 10,
.pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed },
.packScanline = packScanlineSBGGR10P,
.thumbScanline = thumbScanlineSBGGRxxP,
} },
{ formats::SGBRG10_CSI2P, {
.bitsPerSample = 10,
.pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen },
.packScanline = packScanlineSBGGR10P,
.thumbScanline = thumbScanlineSBGGRxxP,
} },
{ formats::SGRBG10_CSI2P, {
.bitsPerSample = 10,
.pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen },
.packScanline = packScanlineSBGGR10P,
.thumbScanline = thumbScanlineSBGGRxxP,
} },
{ formats::SRGGB10_CSI2P, {
.bitsPerSample = 10,
.pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue },
.packScanline = packScanlineSBGGR10P,
.thumbScanline = thumbScanlineSBGGRxxP,
} },
{ formats::SBGGR12_CSI2P, {
.bitsPerSample = 12,
.pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed },
.packScanline = packScanlineSBGGR12P,
.thumbScanline = thumbScanlineSBGGRxxP,
} },
{ formats::SGBRG12_CSI2P, {
.bitsPerSample = 12,
.pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen },
.packScanline = packScanlineSBGGR12P,
.thumbScanline = thumbScanlineSBGGRxxP,
} },
{ formats::SGRBG12_CSI2P, {
.bitsPerSample = 12,
.pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen },
.packScanline = packScanlineSBGGR12P,
.thumbScanline = thumbScanlineSBGGRxxP,
} },
{ formats::SRGGB12_CSI2P, {
.bitsPerSample = 12,
.pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue },
.packScanline = packScanlineSBGGR12P,
.thumbScanline = thumbScanlineSBGGRxxP,
} },
{ formats::SBGGR10_IPU3, {
.bitsPerSample = 16,
.pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed },
.packScanline = packScanlineIPU3,
.thumbScanline = thumbScanlineIPU3,
} },
{ formats::SGBRG10_IPU3, {
.bitsPerSample = 16,
.pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen },
.packScanline = packScanlineIPU3,
.thumbScanline = thumbScanlineIPU3,
} },
{ formats::SGRBG10_IPU3, {
.bitsPerSample = 16,
.pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen },
.packScanline = packScanlineIPU3,
.thumbScanline = thumbScanlineIPU3,
| |//////| | |
y4 o +------+ | |
+----+------+----+ /
The property reports two rectangles
PixelArrayActiveAreas = ((x2, y1, x3 - x2 + 1, y4 - y1 + 1),
(x1, y2, x4 - x1 + 1, y3 - y2 + 1))
The first rectangle describes the maximum field-of-view of all image
formats in the 4:3 resolutions, while the second one describes the
maximum field of view for all image formats in the 16:9 resolutions.
Multiple rectangles shall only be reported when the sensor can't capture
the pixels in the corner regions. If all the pixels in the (x1,y1) -
(x4,y4) area can be captured, the PixelArrayActiveAreas property shall
contains the single rectangle (x1,y1) - (x4,y4).
\todo Rename this property to ActiveAreas once we will have property
categories (i.e. Properties::PixelArray::ActiveAreas)
- ScalerCropMaximum:
type: Rectangle
description: |
The maximum valid rectangle for the controls::ScalerCrop control. This
reflects the minimum mandatory cropping applied in the camera sensor and
the rest of the pipeline. Just as the ScalerCrop control, it defines a
rectangle taken from the sensor's active pixel array.
This property is valid
TIFF *tif = TIFFOpen(filename, "w");
if (!tif) {
std::cerr << "Failed to open tiff file" << std::endl;
return -EINVAL;
}
/*
* Scanline buffer, has to be large enough to store both a RAW scanline
* or a thumbnail scanline. The latter will always be much smaller than
* the former as we downscale by 16 in both directions.
*/
uint8_t scanline[(config.size.width * info->bitsPerSample + 7) / 8];
toff_t rawIFDOffset = 0;
toff_t exifIFDOffset = 0;
/*
* Start with a thumbnail in IFD 0 for compatibility with TIFF baseline
* readers, as required by the TIFF/EP specification. Tags that apply to
* the whole file are stored here.
*/
const uint8_t version[] = { 1, 2, 0, 0 };
TIFFSetField(tif, TIFFTAG_DNGVERSION, version);
TIFFSetField(tif, TIFFTAG_DNGBACKWARDVERSION, version);
TIFFSetField(tif, TIFFTAG_FILLORDER, FILLORDER_MSB2LSB);
TIFFSetField(tif, TIFFTAG_MAKE, "libcamera");
if (cameraProperties.contains(properties::Model)) {
std::string model = cameraProperties.get(properties::Model);
TIFFSetField(tif, TIFFTAG_MODEL, model.c_str());
/* \todo set TIFFTAG_UNIQUECAMERAMODEL. */
}
TIFFSetField(tif, TIFFTAG_SOFTWARE, "qcam");
TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);
/*
* Thumbnail-specific tags. The thumbnail is stored as an RGB image
* with 1/16 of the raw image resolution. Greyscale would save space,
* but doesn't seem well supported by RawTherapee.
*/
TIFFSetField(tif, TIFFTAG_SUBFILETYPE, FILETYPE_REDUCEDIMAGE);
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width / 16);
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height / 16);
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 3);
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
/*
* Fill in some reasonable colour information in the DNG. We supply
* the "neutral" colour values which determine the white balance, and the
* "ColorMatrix1" which converts XYZ to (un-white-balanced) camera RGB.
* Note that this is not a "proper" colour calibration for the DNG,
* nonetheless, many tools should be able to render the colours better.
*/
float neutral[3] = { 1, 1, 1 };
Matrix3d wbGain = Matrix3d::identity();
/* From http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html */
const Matrix3d rgb2xyz(0.4124564, 0.3575761, 0.1804375,
0.2126729, 0.7151522, 0.0721750,
0.0193339, 0.1191920, 0.9503041);
Matrix3d ccm = Matrix3d::identity();
/*
* Pick a reasonable number eps to protect against singularities. It
* should be comfortably larger than the point at which we run into
* numerical trouble, yet smaller than any plausible gain that we might
* apply to a colour, either explicitly or as part of the colour matrix.
*/
const double eps = 1e-2;
if (metadata.contains(controls::ColourGains)) {
Span<const float> const &colourGains = metadata.get(controls::ColourGains);
if (colourGains[0] > eps && colourGains[1] > eps) {
wbGain = Matrix3d::diag(colourGains[0], 1, colourGains[1]);
neutral[0] = 1.0 / colourGains[0]; /* red */
neutral[2] = 1.0 / colourGains[1]; /* blue */
}
}
if (metadata.contains(controls::ColourCorrectionMatrix)) {
Span<const float> const &coeffs = metadata.get(controls::ColourCorrectionMatrix);
Matrix3d ccmSupplied(coeffs);
if (ccmSupplied.determinant() > eps)
ccm = ccmSupplied;
}
/*
* rgb2xyz is known to be invertible, and we've ensured above that both
* the ccm and wbGain matrices are non-singular, so the product of all
* three is guaranteed to be invertible too.
*/
Matrix3d colorMatrix1 = (rgb2xyz * ccm * wbGain).inverse();
TIFFSetField(tif, TIFFTAG_COLORMATRIX1, 9, colorMatrix1.m);
TIFFSetField(tif, TIFFTAG_ASSHOTNEUTRAL, 3, neutral);
/*
* Reserve space for the SubIFD and ExifIFD tags, pointing to the IFD
* for the raw image and EXIF data respectively. The real offsets will
* be set later.
*/
TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset);
TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset);
/* Write the thumbnail. */
const uint8_t *row = static_cast<const uint8_t *>(data);
for (unsigned int y = 0; y < config.size.height / 16; y++) {
info->thumbScanline(*info, &scanline, row,
config.size.width / 16, config.stride);
if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) {
std::cerr << "Failed to write thumbnail scanline"
<< std::endl;
TIFFClose(tif);
return -EINVAL;
}
row += config.stride * 16;
}
TIFFWriteDirectory(tif);
/* Create a new IFD for the RAW image. */
const uint16_t cfaRepeatPatternDim[] = { 2, 2 };
const uint8_t cfaPlaneColor[] = {
CFAPatternRed,
CFAPatternGreen,
CFAPatternBlue
};
TIFFSetField(tif, TIFFTAG_SUBFILETYPE, 0);
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width);
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height);
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, info->bitsPerSample);
TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_CFA);
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1);
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
TIFFSetField(tif, TIFFTAG_CFAREPEATPATTERNDIM, cfaRepeatPatternDim);
TIFFSetField(tif, TIFFTAG_CFAPATTERN, info->pattern);
TIFFSetField(tif, TIFFTAG_CFAPLANECOLOR, 3, cfaPlaneColor);
TIFFSetField(tif, TIFFTAG_CFALAYOUT, 1);
const uint16_t blackLevelRepeatDim[] = { 2, 2 };
float blackLevel[] = { 0.0f, 0.0f, 0.0f, 0.0f };
uint32_t whiteLevel = (1 << info->bitsPerSample) - 1;
if (metadata.contains(controls::SensorBlackLevels)) {
Span<const int32_t> levels = metadata.get(controls::SensorBlackLevels);
/*
* The black levels control is specified in R, Gr, Gb, B order.
* Map it to the TIFF tag that is specified in CFA pattern
* order.
*/
unsigned int green = (info->pattern[0] == CFAPatternRed ||
info->pattern[1] == CFAPatternRed)
? 0 : 1;
for (unsigned int i = 0; i < 4; ++i) {
unsigned int level;
switch (info->pattern[i]) {
case CFAPatternRed:
level = levels[0];
break;
case CFAPatternGreen:
level = levels[green + 1];
green = (green + 1) % 2;
break;
case CFAPatternBlue:
default:
level = levels[3];
break;
}
/* Map the 16-bit value to the bits per sample range. */
blackLevel[i] = level >> (16 - info->bitsPerSample);
}
}
TIFFSetField(tif, TIFFTAG_BLACKLEVELREPEATDIM, &blackLevelRepeatDim);
TIFFSetField(tif, TIFFTAG_BLACKLEVEL, 4, &blackLevel);
TIFFSetField(tif, TIFFTAG_WHITELEVEL, 1, &whiteLevel);
/* Write RAW content. */
row = static_cast<const uint8_t *>(data);
for (unsigned int y = 0; y < config.size.height; y++) {
info->packScanline(&scanline, row, config.size.width);
if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) {
std::cerr << "Failed to write RAW scanline"
<< std::endl;
TIFFClose(tif);
return -EINVAL;
}
row += config.stride;
}
/* Checkpoint the IFD to retrieve its offset, and write it out. */
TIFFCheckpointDirectory(tif);
rawIFDOffset = TIFFCurrentDirOffset(tif);
TIFFWriteDirectory(tif);
/* Create a new IFD for the EXIF data and fill it. */
TIFFCreateEXIFDirectory(tif);
/* Store creation time. */
time_t rawtime;
struct tm *timeinfo;
char strTime[20];
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(strTime, 20, "%Y:%m:%d %H:%M:%S", timeinfo);
/*
* \todo Handle timezone information by setting OffsetTimeOriginal and
* OffsetTimeDigitized once libtiff catches up to the specification and
* has EXIFTAG_ defines to handle them.
*/
TIFFSetField(tif, EXIFTAG_DATETIMEORIGINAL, strTime);
TIFFSetField(tif, EXIFTAG_DATETIMEDIGITIZED, strTime);
if (metadata.contains(controls::AnalogueGain)) {
float gain = metadata.get(controls::AnalogueGain);
uint16_t iso = std::min(std::max(gain * 100, 0.0f), 65535.0f);
TIFFSetField(tif, EXIFTAG_ISOSPEEDRATINGS, 1, &iso);
}
if (metadata.contains(controls::ExposureTime)) {
float exposureTime = metadata.get(controls::ExposureTime) / 1e6;
TIFFSetField(tif, EXIFTAG_EXPOSURETIME, exposureTime);
}
TIFFWriteCustomDirectory(tif, &exifIFDOffset);
/* Update the IFD offsets and close the file. */
TIFFSetDirectory(tif, 0);
TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset);
TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset);
TIFFWriteDirectory(tif);
TIFFClose(tif);
return 0;
}
|