summaryrefslogtreecommitdiff
path: root/src/qcam/assets/feathericons/phone-incoming.svg
blob: b2d523a8788cce805d715b128825d581f2c584df (plain)
1
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather feather-phone-incoming"><polyline points="16 2 16 8 22 8"></polyline><line x1="23" y1="1" x2="16" y2="8"></line><path d="M22 16.92v3a2 2 0 0 1-2.18 2 19.79 19.79 0 0 1-8.63-3.07 19.5 19.5 0 0 1-6-6 19.79 19.79 0 0 1-3.07-8.67A2 2 0 0 1 4.11 2h3a2 2 0 0 1 2 1.72 12.84 12.84 0 0 0 .7 2.81 2 2 0 0 1-.45 2.11L8.09 9.91a16 16 0 0 0 6 6l1.27-1.27a2 2 0 0 1 2.11-.45 12.84 12.84 0 0 0 2.81.7A2 2 0 0 1 22 16.92z"></path></svg>
n12'>12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2020, Laurent Pinchart
 * Copyright (C) 2019, Martijn Braam
 *
 * simple.cpp - Pipeline handler for simple pipelines
 */

#include <algorithm>
#include <iterator>
#include <list>
#include <map>
#include <memory>
#include <queue>
#include <set>
#include <string>
#include <string.h>
#include <unordered_map>
#include <utility>
#include <vector>

#include <linux/media-bus-format.h>

#include <libcamera/base/log.h>

#include <libcamera/camera.h>
#include <libcamera/control_ids.h>
#include <libcamera/request.h>
#include <libcamera/stream.h>

#include "libcamera/internal/camera.h"
#include "libcamera/internal/camera_sensor.h"
#include "libcamera/internal/device_enumerator.h"
#include "libcamera/internal/media_device.h"
#include "libcamera/internal/pipeline_handler.h"
#include "libcamera/internal/v4l2_subdevice.h"
#include "libcamera/internal/v4l2_videodevice.h"

#include "converter.h"

namespace libcamera {

LOG_DEFINE_CATEGORY(SimplePipeline)

/* -----------------------------------------------------------------------------
 *
 * Overview
 * --------
 *
 * The SimplePipelineHandler relies on generic kernel APIs to control a camera
 * device, without any device-specific code and with limited device-specific
 * static data.
 *
 * To qualify for support by the simple pipeline handler, a device shall
 *
 * - be supported by V4L2 drivers, exposing the Media Controller API, the V4L2
 *   subdev APIs and the media bus format-based enumeration extension for the
 *   VIDIOC_ENUM_FMT ioctl ;
 * - not expose any device-specific API from drivers to userspace ;
 * - include one or more camera sensor media entities and one or more video
 *   capture devices ;
 * - have a capture pipeline with linear paths from the camera sensors to the
 *   video capture devices ; and
 * - have an optional memory-to-memory device to perform format conversion
 *   and/or scaling, exposed as a V4L2 M2M device.
 *
 * As devices that require a specific pipeline handler may still match the
 * above characteristics, the simple pipeline handler doesn't attempt to
 * automatically determine which devices it can support. It instead relies on
 * an explicit list of supported devices, provided in the supportedDevices
 * array.
 *
 * When matching a device, the pipeline handler enumerates all camera sensors
 * and attempts, for each of them, to find a path to a video capture video node.
 * It does so by using a breadth-first search to find the shortest path from the
 * sensor device to a valid capture device. This is guaranteed to produce a
 * valid path on devices with one only option and is a good heuristic on more
 * complex devices to skip paths that aren't suitable for the simple pipeline
 * handler. For instance, on the IPU-based i.MX6, the shortest path will skip
 * encoders and image converters, and it will end in a CSI capture device.
 * A more complex graph search algorithm could be implemented if a device that
 * would otherwise be compatible with the pipeline handler isn't correctly
 * handled by this heuristic.
 *
 * Once the camera data instances have been created, the match() function
 * creates a V4L2VideoDevice or V4L2Subdevice instance for each entity used by
 * any of the cameras and stores them in SimplePipelineHandler::entities_,
 * accessible by the SimpleCameraData class through the
 * SimplePipelineHandler::subdev() and SimplePipelineHandler::video() functions.
 * This avoids duplication of subdev instances between different cameras when
 * the same entity is used in multiple paths.
 *
 * Finally, all camera data instances are initialized to gather information
 * about the possible pipeline configurations for the corresponding camera. If
 * valid pipeline configurations are found, a Camera is registered for the
 * SimpleCameraData instance.
 *
 * Pipeline Configuration
 * ----------------------
 *
 * The simple pipeline handler configures the pipeline by propagating V4L2
 * subdev formats from the camera sensor to the video node. The format is first
 * set on the camera sensor's output, using the native camera sensor
 * resolution. Then, on every link in the pipeline, the format is retrieved on
 * the link source and set unmodified on the link sink.
 *
 * When initializating the camera data, this above procedure is repeated for
 * every media bus format supported by the camera sensor. Upon reaching the
 * video node, the pixel formats compatible with the media bus format are
 * enumerated. Each of those pixel formats corresponds to one possible pipeline
 * configuration, stored as an instance of SimpleCameraData::Configuration in
 * the SimpleCameraData::formats_ map.
 *
 * Format Conversion and Scaling
 * -----------------------------
 *
 * The capture pipeline isn't expected to include a scaler, and if a scaler is
 * available, it is ignored when configuring the pipeline. However, the simple
 * pipeline handler supports optional memory-to-memory converters to scale the
 * image and convert it to a different pixel format. If such a converter is
 * present, the pipeline handler enumerates, for each pipeline configuration,
 * the pixel formats and sizes that the converter can produce for the output of
 * the capture video node, and stores the information in the outputFormats and
 * outputSizes of the SimpleCameraData::Configuration structure.
 */

class SimplePipelineHandler;

struct SimplePipelineInfo {
	const char *driver;
	/*
	 * Each converter in the list contains the name
	 * and the number of streams it supports.
	 */
	std::vector<std::pair<const char *, unsigned int>> converters;
};

namespace {

static const SimplePipelineInfo supportedDevices[] = {
	{ "imx7-csi", { { "pxp", 1 } } },
	{ "qcom-camss", {} },
	{ "sun6i-csi", {} },
};

} /* namespace */

class SimpleCameraData : public Camera::Private
{
public:
	SimpleCameraData(SimplePipelineHandler *pipe,
			 unsigned int numStreams,
			 MediaEntity *sensor);

	bool isValid() const { return sensor_ != nullptr; }
	SimplePipelineHandler *pipe();

	int init();
	int setupLinks();
	int setupFormats(V4L2SubdeviceFormat *format,
			 V4L2Subdevice::Whence whence);

	unsigned int streamIndex(const Stream *stream) const
	{
		return stream - &streams_.front();
	}

	struct Entity {
		/* The media entity, always valid. */
		MediaEntity *entity;
		/*
		 * The local sink pad connected to the upstream entity, null for
		 * the camera sensor at the beginning of the pipeline.
		 */
		const MediaPad *sink;
		/*
		 * The local source pad connected to the downstream entity, null
		 * for the video node at the end of the pipeline.
		 */
		const MediaPad *source;
		/*
		 * The link to the downstream entity, null for the video node at
		 * the end of the pipeline.
		 */
		MediaLink *link;
	};

	struct Configuration {
		uint32_t code;
		PixelFormat captureFormat;
		Size captureSize;
		std::vector<PixelFormat> outputFormats;
		SizeRange outputSizes;
	};

	std::vector<Stream> streams_;

	/*
	 * All entities in the pipeline, from the camera sensor to the video
	 * node.
	 */
	std::list<Entity> entities_;
	std::unique_ptr<CameraSensor> sensor_;
	V4L2VideoDevice *video_;

	std::vector<Configuration> configs_;
	std::map<PixelFormat, const Configuration *> formats_;

	std::vector<std::unique_ptr<FrameBuffer>> converterBuffers_;
	bool useConverter_;
	std::queue<std::map<unsigned int, FrameBuffer *>> converterQueue_;
};

class SimpleCameraConfiguration : public CameraConfiguration
{
public:
	SimpleCameraConfiguration(Camera *camera, SimpleCameraData *data);

	Status validate() override;

	const SimpleCameraData::Configuration *pipeConfig() const
	{
		return pipeConfig_;
	}

	bool needConversion() const { return needConversion_; }

private:
	/*
	 * The SimpleCameraData instance is guaranteed to be valid as long as
	 * the corresponding Camera instance is valid. In order to borrow a
	 * reference to the camera data, store a new reference to the camera.
	 */
	std::shared_ptr<Camera> camera_;
	SimpleCameraData *data_;

	const SimpleCameraData::Configuration *pipeConfig_;
	bool needConversion_;
};

class SimplePipelineHandler : public PipelineHandler
{
public:
	SimplePipelineHandler(CameraManager *manager);

	CameraConfiguration *generateConfiguration(Camera *camera,
						   const StreamRoles &roles) override;
	int configure(Camera *camera, CameraConfiguration *config) override;

	int exportFrameBuffers(Camera *camera, Stream *stream,
			       std::vector<std::unique_ptr<FrameBuffer>> *buffers) override;

	int start(Camera *camera, const ControlList *controls) override;
	void stop(Camera *camera) override;

	bool match(DeviceEnumerator *enumerator) override;

	V4L2VideoDevice *video(const MediaEntity *entity);
	V4L2Subdevice *subdev(const MediaEntity *entity);
	SimpleConverter *converter() { return converter_.get(); }

protected:
	int queueRequestDevice(Camera *camera, Request *request) override;

private:
	static constexpr unsigned int kNumInternalBuffers = 3;

	struct EntityData {
		std::unique_ptr<V4L2VideoDevice> video;
		std::unique_ptr<V4L2Subdevice> subdev;
	};

	SimpleCameraData *cameraData(Camera *camera)
	{
		return static_cast<SimpleCameraData *>(camera->_d());
	}

	std::vector<MediaEntity *> locateSensors();

	void bufferReady(FrameBuffer *buffer);
	void converterInputDone(FrameBuffer *buffer);
	void converterOutputDone(FrameBuffer *buffer);

	MediaDevice *media_;
	std::map<const MediaEntity *, EntityData> entities_;

	std::unique_ptr<SimpleConverter> converter_;

	Camera *activeCamera_;
};

/* -----------------------------------------------------------------------------
 * Camera Data
 */

SimpleCameraData::SimpleCameraData(SimplePipelineHandler *pipe,
				   unsigned int numStreams,
				   MediaEntity *sensor)
	: Camera::Private(pipe), streams_(numStreams)
{
	int ret;

	/*
	 * Find the shortest path from the camera sensor to a video capture
	 * device using the breadth-first search algorithm. This heuristic will
	 * be most likely to skip paths that aren't suitable for the simple
	 * pipeline handler on more complex devices, and is guaranteed to
	 * produce a valid path on all devices that have a single option.
	 *
	 * For instance, on the IPU-based i.MX6Q, the shortest path will skip
	 * encoders and image converters, and will end in a CSI capture device.
	 */
	std::unordered_set<MediaEntity *> visited;
	std::queue<std::tuple<MediaEntity *, MediaPad *>> queue;

	/* Remember at each entity where we came from. */
	std::unordered_map<MediaEntity *, Entity> parents;
	MediaEntity *entity = nullptr;
	MediaEntity *video = nullptr;
	MediaPad *sinkPad;

	queue.push({ sensor, nullptr });

	while (!queue.empty()) {
		std::tie(entity, sinkPad) = queue.front();
		queue.pop();

		/* Found the capture device. */
		if (entity->function() == MEDIA_ENT_F_IO_V4L) {
			LOG(SimplePipeline, Debug)
				<< "Found capture device " << entity->name();
			video = entity;
			break;
		}

		/* The actual breadth-first search algorithm. */
		visited.insert(entity);
		for (MediaPad *pad : entity->pads()) {
			if (!(pad->flags() & MEDIA_PAD_FL_SOURCE))
				continue;

			for (MediaLink *link : pad->links()) {
				MediaEntity *next = link->sink()->entity();
				if (visited.find(next) == visited.end()) {
					queue.push({ next, link->sink() });
					parents.insert({ next, { entity, sinkPad, pad, link } });
				}
			}
		}
	}

	if (!video)
		return;

	/*
	 * With the parents, we can follow back our way from the capture device
	 * to the sensor. Store all the entities in the pipeline, from the
	 * camera sensor to the video node, in entities_.
	 */
	entities_.push_front({ entity, sinkPad, nullptr, nullptr });

	for (auto it = parents.find(entity); it != parents.end();
	     it = parents.find(entity)) {
		const Entity &e = it->second;
		entities_.push_front(e);
		entity = e.entity;
	}

	/* Finally also remember the sensor. */
	sensor_ = std::make_unique<CameraSensor>(sensor);
	ret = sensor_->init();
	if (ret) {
		sensor_.reset();
		return;
	}

	LOG(SimplePipeline, Debug)
		<< "Found pipeline: "
		<< utils::join(entities_, " -> ",
			       [](const Entity &e) {
				       std::string s = "[";
				       if (e.sink)
					       s += std::to_string(e.sink->index()) + "|";
				       s += e.entity->name();
				       if (e.source)
					       s += "|" + std::to_string(e.source->index());
				       s += "]";
				       return s;
			       });
}

SimplePipelineHandler *SimpleCameraData::pipe()
{
	return static_cast<SimplePipelineHandler *>(Camera::Private::pipe());
}

int SimpleCameraData::init()
{
	SimplePipelineHandler *pipe = SimpleCameraData::pipe();
	SimpleConverter *converter = pipe->converter();
	int ret;

	video_ = pipe->video(entities_.back().entity);
	ASSERT(video_);

	/*
	 * Setup links first as some subdev drivers take active links into
	 * account to propagate TRY formats. Such is life :-(
	 */
	ret = setupLinks();
	if (ret < 0)
		return ret;

	/*
	 * Enumerate the possible pipeline configurations. For each media bus
	 * format supported by the sensor, propagate the formats through the
	 * pipeline, and enumerate the corresponding possible V4L2 pixel
	 * formats on the video node.
	 */
	for (unsigned int code : sensor_->mbusCodes()) {
		V4L2SubdeviceFormat format{ code, sensor_->resolution() };

		ret = setupFormats(&format, V4L2Subdevice::TryFormat);
		if (ret < 0) {
			LOG(SimplePipeline, Debug)
				<< "Media bus code " << utils::hex(code, 4)
				<< " not supported for this pipeline";
			/* Try next mbus_code supported by the sensor */
			continue;
		}

		V4L2VideoDevice::Formats videoFormats =
			video_->formats(format.mbus_code);

		LOG(SimplePipeline, Debug)
			<< "Adding configuration for " << format.size.toString()
			<< " in pixel formats [ "
			<< utils::join(videoFormats, ", ",
				       [](const auto &f) {
					       return f.first.toString();
				       })
			<< " ]";

		for (const auto &videoFormat : videoFormats) {
			PixelFormat pixelFormat = videoFormat.first.toPixelFormat();
			if (!pixelFormat)
				continue;

			Configuration config;
			config.code = code;
			config.captureFormat = pixelFormat;
			config.captureSize = format.size;

			if (!converter) {
				config.outputFormats = { pixelFormat };
				config.outputSizes = config.captureSize;
			} else {
				config.outputFormats = converter->formats(pixelFormat);
				config.outputSizes = converter->sizes(format.size);
			}

			configs_.push_back(config);
		}
	}

	if (configs_.empty()) {
		LOG(SimplePipeline, Error) << "No valid configuration found";
		return -EINVAL;
	}

	/*
	 * Map the pixel formats to configurations. Any previously stored value
	 * is overwritten, as the pipeline handler currently doesn't care about
	 * how a particular PixelFormat is achieved.
	 */
	for (const Configuration &config : configs_) {
		formats_[config.captureFormat] = &config;

		for (PixelFormat fmt : config.outputFormats)
			formats_[fmt] = &config;
	}

	properties_ = sensor_->properties();

	return 0;
}

int SimpleCameraData::setupLinks()
{
	int ret;

	/*
	 * Configure all links along the pipeline. Some entities may not allow
	 * multiple sink links to be enabled together, even on different sink
	 * pads. We must thus start by disabling all sink links (but the one we
	 * want to enable) before enabling the pipeline link.
	 */
	for (SimpleCameraData::Entity &e : entities_) {
		if (!e.link)
			break;

		MediaEntity *remote = e.link->sink()->entity();
		for (MediaPad *pad : remote->pads()) {
			for (MediaLink *link : pad->links()) {
				if (link == e.link)
					continue;

				if ((link->flags() & MEDIA_LNK_FL_ENABLED) &&
				    !(link->flags() & MEDIA_LNK_FL_IMMUTABLE)) {
					ret = link->setEnabled(false);
					if (ret < 0)
						return ret;
				}
			}
		}

		if (!(e.link->flags() & MEDIA_LNK_FL_ENABLED)) {
			ret = e.link->setEnabled(true);
			if (ret < 0)
				return ret;
		}
	}

	return 0;
}

int SimpleCameraData::setupFormats(V4L2SubdeviceFormat *format,
				   V4L2Subdevice::Whence whence)
{
	SimplePipelineHandler *pipe = SimpleCameraData::pipe();
	int ret;

	/*
	 * Configure the format on the sensor output and propagate it through
	 * the pipeline.
	 */
	ret = sensor_->setFormat(format);
	if (ret < 0)
		return ret;

	for (const Entity &e : entities_) {
		if (!e.link)
			break;

		MediaLink *link = e.link;
		MediaPad *source = link->source();
		MediaPad *sink = link->sink();

		if (source->entity() != sensor_->entity()) {
			V4L2Subdevice *subdev = pipe->subdev(source->entity());
			ret = subdev->getFormat(source->index(), format, whence);
			if (ret < 0)
				return ret;
		}

		if (sink->entity()->function() != MEDIA_ENT_F_IO_V4L) {
			V4L2SubdeviceFormat sourceFormat = *format;

			V4L2Subdevice *subdev = pipe->subdev(sink->entity());
			ret = subdev->setFormat(sink->index(), format, whence);
			if (ret < 0)
				return ret;

			if (format->mbus_code != sourceFormat.mbus_code ||
			    format->size != sourceFormat.size) {
				LOG(SimplePipeline, Debug)
					<< "Source '" << source->entity()->name()
					<< "':" << source->index()
					<< " produces " << sourceFormat.toString()
					<< ", sink '" << sink->entity()->name()
					<< "':" << sink->index()
					<< " requires " << format->toString();
				return -EINVAL;
			}
		}

		LOG(SimplePipeline, Debug)
			<< "Link '" << source->entity()->name()
			<< "':" << source->index()
			<< " -> '" << sink->entity()->name()
			<< "':" << sink->index()
			<< " configured with format " << format->toString();
	}

	return 0;
}

/* -----------------------------------------------------------------------------
 * Camera Configuration
 */

SimpleCameraConfiguration::SimpleCameraConfiguration(Camera *camera,
						     SimpleCameraData *data)
	: CameraConfiguration(), camera_(camera->shared_from_this()),
	  data_(data), pipeConfig_(nullptr)
{
}

CameraConfiguration::Status SimpleCameraConfiguration::validate()
{
	Status status = Valid;

	if (config_.empty())
		return Invalid;

	if (transform != Transform::Identity) {
		transform = Transform::Identity;
		status = Adjusted;
	}

	/* Cap the number of entries to the available streams. */
	if (config_.size() > data_->streams_.size()) {
		config_.resize(data_->streams_.size());
		status = Adjusted;
	}

	/*
	 * Pick a configuration for the pipeline based on the pixel format for
	 * the streams (ordered from highest to lowest priority). Default to
	 * the first pipeline configuration if no streams requests a supported
	 * pixel format.
	 */
	pipeConfig_ = data_->formats_.begin()->second;

	for (const StreamConfiguration &cfg : config_) {
		auto it = data_->formats_.find(cfg.pixelFormat);
		if (it != data_->formats_.end()) {
			pipeConfig_ = it->second;
			break;
		}
	}

	/* Adjust the requested streams. */
	SimpleConverter *converter = data_->pipe()->converter();

	/*
	 * Enable usage of the converter when producing multiple streams, as
	 * the video capture device can't capture to multiple buffers.
	 *
	 * It is possible to produce up to one stream without conversion
	 * (provided the format and size match), at the expense of more complex
	 * buffer handling (including allocation of internal buffers to be used
	 * when a request doesn't contain a buffer for the stream that doesn't
	 * require any conversion, similar to raw capture use cases). This is
	 * left as a future improvement.
	 */
	needConversion_ = config_.size() > 1;

	for (unsigned int i = 0; i < config_.size(); ++i) {
		StreamConfiguration &cfg = config_[i];

		/* Adjust the pixel format and size. */
		auto it = std::find(pipeConfig_->outputFormats.begin(),
				    pipeConfig_->outputFormats.end(),
				    cfg.pixelFormat);
		if (it == pipeConfig_->outputFormats.end())
			it = pipeConfig_->outputFormats.begin();

		PixelFormat pixelFormat = *it;
		if (cfg.pixelFormat != pixelFormat) {
			LOG(SimplePipeline, Debug) << "Adjusting pixel format";
			cfg.pixelFormat = pixelFormat;
			status = Adjusted;
		}

		if (!pipeConfig_->outputSizes.contains(cfg.size)) {
			LOG(SimplePipeline, Debug)
				<< "Adjusting size from " << cfg.size.toString()
				<< " to " << pipeConfig_->captureSize.toString();
			cfg.size = pipeConfig_->captureSize;
			status = Adjusted;
		}

		/* \todo Create a libcamera core class to group format and size */
		if (cfg.pixelFormat != pipeConfig_->captureFormat ||
		    cfg.size != pipeConfig_->captureSize)
			needConversion_ = true;

		/* Set the stride, frameSize and bufferCount. */
		if (needConversion_) {
			std::tie(cfg.stride, cfg.frameSize) =
				converter->strideAndFrameSize(cfg.pixelFormat, cfg.size);
			if (cfg.stride == 0)
				return Invalid;
		} else {
			V4L2DeviceFormat format;
			format.fourcc = data_->video_->toV4L2PixelFormat(cfg.pixelFormat);
			format.size = cfg.size;

			int ret = data_->video_->tryFormat(&format);
			if (ret < 0)
				return Invalid;

			cfg.stride = format.planes[0].bpl;
			cfg.frameSize = format.planes[0].size;
		}

		cfg.bufferCount = 3;
	}

	return status;
}

/* -----------------------------------------------------------------------------
 * Pipeline Handler
 */

SimplePipelineHandler::SimplePipelineHandler(CameraManager *manager)
	: PipelineHandler(manager)
{
}

CameraConfiguration *SimplePipelineHandler::generateConfiguration(Camera *camera,
								  const StreamRoles &roles)
{
	SimpleCameraData *data = cameraData(camera);
	CameraConfiguration *config =
		new SimpleCameraConfiguration(camera, data);

	if (roles.empty())
		return config;

	/* Create the formats map. */
	std::map<PixelFormat, std::vector<SizeRange>> formats;
	std::transform(data->formats_.begin(), data->formats_.end(),
		       std::inserter(formats, formats.end()),
		       [](const auto &format) -> decltype(formats)::value_type {
			       const PixelFormat &pixelFormat = format.first;
			       const Size &size = format.second->captureSize;
			       return { pixelFormat, { size } };
		       });

	/*
	 * Create the stream configurations. Take the first entry in the formats
	 * map as the default, for lack of a better option.
	 *
	 * \todo Implement a better way to pick the default format
	 */
	for ([[maybe_unused]] StreamRole role : roles) {
		StreamConfiguration cfg{ StreamFormats{ formats } };
		cfg.pixelFormat = formats.begin()->first;
		cfg.size = formats.begin()->second[0].max;

		config->addConfiguration(cfg);
	}

	config->validate();

	return config;
}

int SimplePipelineHandler::configure(Camera *camera, CameraConfiguration *c)
{
	SimpleCameraConfiguration *config =
		static_cast<SimpleCameraConfiguration *>(c);
	SimpleCameraData *data = cameraData(camera);
	V4L2VideoDevice *video = data->video_;
	int ret;

	/*
	 * Configure links on the pipeline and propagate formats from the
	 * sensor to the video node.
	 */
	ret = data->setupLinks();
	if (ret < 0)
		return ret;

	const SimpleCameraData::Configuration *pipeConfig = config->pipeConfig();
	V4L2SubdeviceFormat format{ pipeConfig->code, data->sensor_->resolution() };

	ret = data->setupFormats(&format, V4L2Subdevice::ActiveFormat);
	if (ret < 0)
		return ret;

	/* Configure the video node. */
	V4L2PixelFormat videoFormat = video->toV4L2PixelFormat(pipeConfig->captureFormat);

	V4L2DeviceFormat captureFormat;
	captureFormat.fourcc = videoFormat;
	captureFormat.size = pipeConfig->captureSize;

	ret = video->setFormat(&captureFormat);
	if (ret)
		return ret;

	if (captureFormat.planesCount != 1) {
		LOG(SimplePipeline, Error)
			<< "Planar formats using non-contiguous memory not supported";
		return -EINVAL;
	}

	if (captureFormat.fourcc != videoFormat ||
	    captureFormat.size != pipeConfig->captureSize) {
		LOG(SimplePipeline, Error)
			<< "Unable to configure capture in "
			<< pipeConfig->captureSize.toString() << "-"
			<< videoFormat.toString();
		return -EINVAL;
	}

	/* Configure the converter if needed. */
	std::vector<std::reference_wrapper<StreamConfiguration>> outputCfgs;
	data->useConverter_ = config->needConversion();

	for (unsigned int i = 0; i < config->size(); ++i) {
		StreamConfiguration &cfg = config->at(i);

		cfg.setStream(&data->streams_[i]);

		if (data->useConverter_)
			outputCfgs.push_back(cfg);
	}

	if (outputCfgs.empty())
		return 0;

	StreamConfiguration inputCfg;
	inputCfg.pixelFormat = pipeConfig->captureFormat;
	inputCfg.size = pipeConfig->captureSize;
	inputCfg.stride = captureFormat.planes[0].bpl;
	inputCfg.bufferCount = kNumInternalBuffers;

	return converter_->configure(inputCfg, outputCfgs);
}

int SimplePipelineHandler::exportFrameBuffers(Camera *camera, Stream *stream,
					      std::vector<std::unique_ptr<FrameBuffer>> *buffers)
{
	SimpleCameraData *data = cameraData(camera);
	unsigned int count = stream->configuration().bufferCount;

	/*
	 * Export buffers on the converter or capture video node, depending on
	 * whether the converter is used or not.
	 */
	if (data->useConverter_)
		return converter_->exportBuffers(data->streamIndex(stream),
						 count, buffers);
	else
		return data->video_->exportBuffers(count, buffers);
}

int SimplePipelineHandler::start(Camera *camera, [[maybe_unused]] const ControlList *controls)
{
	SimpleCameraData *data = cameraData(camera);
	V4L2VideoDevice *video = data->video_;
	int ret;

	if (data->useConverter_) {
		/*
		 * When using the converter allocate a fixed number of internal
		 * buffers.
		 */
		ret = video->allocateBuffers(kNumInternalBuffers,
					     &data->converterBuffers_);
	} else {
		/* Otherwise, prepare for using buffers from the only stream. */
		Stream *stream = &data->streams_[0];
		ret = video->importBuffers(stream->configuration().bufferCount);
	}
	if (ret < 0)
		return ret;

	ret = video->streamOn();
	if (ret < 0) {
		stop(camera);
		return ret;
	}

	if (data->useConverter_) {
		ret = converter_->start();
		if (ret < 0) {
			stop(camera);
			return ret;
		}

		/* Queue all internal buffers for capture. */
		for (std::unique_ptr<FrameBuffer> &buffer : data->converterBuffers_)
			video->queueBuffer(buffer.get());
	}

	activeCamera_ = camera;

	return 0;
}

void SimplePipelineHandler::stop(Camera *camera)
{
	SimpleCameraData *data = cameraData(camera);
	V4L2VideoDevice *video = data->video_;

	if (data->useConverter_)
		converter_->stop();

	video->streamOff();
	video->releaseBuffers();

	data->converterBuffers_.clear();
	activeCamera_ = nullptr;
}

int SimplePipelineHandler::queueRequestDevice(Camera *camera, Request *request)
{
	SimpleCameraData *data = cameraData(camera);
	int ret;

	std::map<unsigned int, FrameBuffer *> buffers;

	for (auto &[stream, buffer] : request->buffers()) {
		/*
		 * If conversion is needed, push the buffer to the converter
		 * queue, it will be handed to the converter in the capture
		 * completion handler.
		 */
		if (data->useConverter_) {
			buffers.emplace(data->streamIndex(stream), buffer);
		} else {
			ret = data->video_->queueBuffer(buffer);
			if (ret < 0)
				return ret;
		}
	}

	if (data->useConverter_)
		data->converterQueue_.push(std::move(buffers));

	return 0;
}

/* -----------------------------------------------------------------------------
 * Match and Setup
 */

std::vector<MediaEntity *> SimplePipelineHandler::locateSensors()
{
	std::vector<MediaEntity *> entities;

	/*
	 * Gather all the camera sensor entities based on the function they
	 * expose.
	 */
	for (MediaEntity *entity : media_->entities()) {
		if (entity->function() == MEDIA_ENT_F_CAM_SENSOR)
			entities.push_back(entity);
	}

	if (entities.empty())
		return {};

	/*
	 * Sensors can be made of multiple entities. For instance, a raw sensor
	 * can be connected to an ISP, and the combination of both should be
	 * treated as one sensor. To support this, as a crude heuristic, check
	 * the downstream entity from the camera sensor, and if it is an ISP,
	 * use it instead of the sensor.
	 */
	std::vector<MediaEntity *> sensors;

	for (MediaEntity *entity : entities) {
		/*
		 * Locate the downstream entity by following the first link
		 * from a source pad.
		 */
		const MediaLink *link = nullptr;

		for (const MediaPad *pad : entity->pads()) {
			if ((pad->flags() & MEDIA_PAD_FL_SOURCE) &&
			    !pad->links().empty()) {
				link = pad->links()[0];
				break;
			}
		}

		if (!link)
			continue;

		MediaEntity *remote = link->sink()->entity();
		if (remote->function() == MEDIA_ENT_F_PROC_VIDEO_ISP)
			sensors.push_back(remote);
		else
			sensors.push_back(entity);
	}

	/*
	 * Remove duplicates, in case multiple sensors are connected to the
	 * same ISP.
	 */
	std::sort(sensors.begin(), sensors.end());
	auto last = std::unique(sensors.begin(), sensors.end());
	sensors.erase(last, sensors.end());

	return sensors;
}

bool SimplePipelineHandler::match(DeviceEnumerator *enumerator)
{
	const SimplePipelineInfo *info = nullptr;
	MediaDevice *converter = nullptr;
	unsigned int numStreams = 1;

	for (const SimplePipelineInfo &inf : supportedDevices) {
		DeviceMatch dm(inf.driver);
		media_ = acquireMediaDevice(enumerator, dm);
		if (media_) {
			info = &inf;
			break;
		}
	}

	if (!media_)
		return false;

	for (const auto &[name, streams] : info->converters) {
		DeviceMatch converterMatch(name);
		converter = acquireMediaDevice(enumerator, converterMatch);
		if (converter) {
			numStreams = streams;
			break;
		}
	}

	/* Locate the sensors. */
	std::vector<MediaEntity *> sensors = locateSensors();
	if (sensors.empty()) {
		LOG(SimplePipeline, Error) << "No sensor found";
		return false;
	}

	/* Open the converter, if any. */
	if (converter) {
		converter_ = std::make_unique<SimpleConverter>(converter);
		if (!converter_->isValid()) {
			LOG(SimplePipeline, Warning)
				<< "Failed to create converter, disabling format conversion";
			converter_.reset();
		} else {
			converter_->inputBufferReady.connect(this, &SimplePipelineHandler::converterInputDone);
			converter_->outputBufferReady.connect(this, &SimplePipelineHandler::converterOutputDone);
		}
	}

	/*
	 * Create one camera data instance for each sensor and gather all
	 * entities in all pipelines.
	 */
	std::vector<std::unique_ptr<SimpleCameraData>> pipelines;
	std::set<MediaEntity *> entities;

	pipelines.reserve(sensors.size());

	for (MediaEntity *sensor : sensors) {
		std::unique_ptr<SimpleCameraData> data =
			std::make_unique<SimpleCameraData>(this, numStreams, sensor);
		if (!data->isValid()) {
			LOG(SimplePipeline, Error)
				<< "No valid pipeline for sensor '"
				<< sensor->name() << "', skipping";
			continue;
		}

		for (SimpleCameraData::Entity &entity : data->entities_)
			entities.insert(entity.entity);

		pipelines.push_back(std::move(data));
	}

	if (entities.empty())
		return false;

	/*
	 * Insert all entities in the global entities list. Create and open
	 * V4L2VideoDevice and V4L2Subdevice instances for the corresponding
	 * entities.
	 */
	for (MediaEntity *entity : entities) {
		std::unique_ptr<V4L2VideoDevice> video;
		std::unique_ptr<V4L2Subdevice> subdev;
		int ret;

		switch (entity->type()) {
		case MediaEntity::Type::V4L2VideoDevice:
			video = std::make_unique<V4L2VideoDevice>(entity);
			ret = video->open();
			if (ret < 0) {
				LOG(SimplePipeline, Error)
					<< "Failed to open " << video->deviceNode()
					<< ": " << strerror(-ret);
				return false;
			}

			video->bufferReady.connect(this, &SimplePipelineHandler::bufferReady);
			break;

		case MediaEntity::Type::V4L2Subdevice:
			subdev = std::make_unique<V4L2Subdevice>(entity);
			ret = subdev->open();
			if (ret < 0) {
				LOG(SimplePipeline, Error)
					<< "Failed to open " << subdev->deviceNode()
					<< ": " << strerror(-ret);
				return false;
			}
			break;

		default:
			break;
		}

		entities_[entity] = { std::move(video), std::move(subdev) };
	}

	/* Initialize each pipeline and register a corresponding camera. */
	bool registered = false;

	for (std::unique_ptr<SimpleCameraData> &data : pipelines) {
		int ret = data->init();
		if (ret < 0)
			continue;

		std::set<Stream *> streams;
		std::transform(data->streams_.begin(), data->streams_.end(),
			       std::inserter(streams, streams.end()),
			       [](Stream &stream) { return &stream; });

		const std::string &id = data->sensor_->id();
		std::shared_ptr<Camera> camera =
			Camera::create(std::move(data), id, streams);
		registerCamera(std::move(camera));
		registered = true;
	}

	return registered;
}

V4L2VideoDevice *SimplePipelineHandler::video(const MediaEntity *entity)
{
	auto iter = entities_.find(entity);
	if (iter == entities_.end())
		return nullptr;

	return iter->second.video.get();
}

V4L2Subdevice *SimplePipelineHandler::subdev(const MediaEntity *entity)
{
	auto iter = entities_.find(entity);
	if (iter == entities_.end())
		return nullptr;

	return iter->second.subdev.get();
}

/* -----------------------------------------------------------------------------
 * Buffer Handling
 */

void SimplePipelineHandler::bufferReady(FrameBuffer *buffer)
{
	ASSERT(activeCamera_);
	SimpleCameraData *data = cameraData(activeCamera_);

	/*
	 * If an error occurred during capture, or if the buffer was cancelled,
	 * complete the request, even if the converter is in use as there's no
	 * point converting an erroneous buffer.
	 */
	if (buffer->metadata().status != FrameMetadata::FrameSuccess) {
		if (!data->useConverter_) {
			/* No conversion, just complete the request. */
			Request *request = buffer->request();
			completeBuffer(request, buffer);
			completeRequest(request);
			return;
		}

		/*
		 * The converter is in use. Requeue the internal buffer for
		 * capture (unless the stream is being stopped), and complete
		 * the request with all the user-facing buffers.
		 */
		if (buffer->metadata().status != FrameMetadata::FrameCancelled)
			data->video_->queueBuffer(buffer);

		if (data->converterQueue_.empty())
			return;

		Request *request = nullptr;
		for (auto &item : data->converterQueue_.front()) {
			FrameBuffer *outputBuffer = item.second;
			request = outputBuffer->request();
			completeBuffer(request, outputBuffer);
		}
		data->converterQueue_.pop();

		if (request)
			completeRequest(request);
		return;
	}

	/*
	 * Record the sensor's timestamp in the request metadata. The request
	 * needs to be obtained from the user-facing buffer, as internal
	 * buffers are free-wheeling and have no request associated with them.
	 *
	 * \todo The sensor timestamp should be better estimated by connecting
	 * to the V4L2Device::frameStart signal if the platform provides it.
	 */
	Request *request = buffer->request();

	if (data->useConverter_ && !data->converterQueue_.empty()) {
		const std::map<unsigned int, FrameBuffer *> &outputs =
			data->converterQueue_.front();
		if (!outputs.empty()) {
			FrameBuffer *outputBuffer = outputs.begin()->second;
			if (outputBuffer)
				request = outputBuffer->request();
		}
	}

	if (request)
		request->metadata().set(controls::SensorTimestamp,
					buffer->metadata().timestamp);

	/*
	 * Queue the captured and the request buffer to the converter if format
	 * conversion is needed. If there's no queued request, just requeue the
	 * captured buffer for capture.
	 */
	if (data->useConverter_) {
		if (data->converterQueue_.empty()) {
			data->video_->queueBuffer(buffer);
			return;
		}

		converter_->queueBuffers(buffer, data->converterQueue_.front());
		data->converterQueue_.pop();
		return;
	}

	/* Otherwise simply complete the request. */
	completeBuffer(request, buffer);
	completeRequest(request);
}

void SimplePipelineHandler::converterInputDone(FrameBuffer *buffer)
{
	ASSERT(activeCamera_);
	SimpleCameraData *data = cameraData(activeCamera_);

	/* Queue the input buffer back for capture. */
	data->video_->queueBuffer(buffer);
}

void SimplePipelineHandler::converterOutputDone(FrameBuffer *buffer)
{
	ASSERT(activeCamera_);

	/* Complete the buffer and the request. */
	Request *request = buffer->request();
	if (completeBuffer(request, buffer))
		completeRequest(request);
}

REGISTER_PIPELINE_HANDLER(SimplePipelineHandler)

} /* namespace libcamera */