summaryrefslogtreecommitdiff
path: root/src/qcam/assets/feathericons/camera.svg
blob: 0e7f06037ab0ee331040c5c0ada5dadafb9f4591 (plain)
1
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather feather-camera"><path d="M23 19a2 2 0 0 1-2 2H3a2 2 0 0 1-2-2V8a2 2 0 0 1 2-2h4l2-3h6l2 3h4a2 2 0 0 1 2 2z"></path><circle cx="12" cy="13" r="4"></circle></svg>
a id='n3' href='#n3'>3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2018, Google Inc.
 *
 * pipeline_handler.cpp - Pipeline handler infrastructure
 */

#include "pipeline_handler.h"

#include <libcamera/buffer.h>
#include <libcamera/camera.h>
#include <libcamera/camera_manager.h>

#include "log.h"
#include "media_device.h"
#include "utils.h"

/**
 * \file pipeline_handler.h
 * \brief Create pipelines and cameras from a set of media devices
 *
 * Each pipeline supported by libcamera needs to be backed by a pipeline
 * handler implementation that operate on a set of media devices. The pipeline
 * handler is responsible for matching the media devices it requires with the
 * devices present in the system, and once all those devices can be acquired,
 * create corresponding Camera instances.
 *
 * Every subclass of PipelineHandler shall be registered with libcamera using
 * the REGISTER_PIPELINE_HANDLER() macro.
 */

namespace libcamera {

LOG_DEFINE_CATEGORY(Pipeline)

/**
 * \class CameraData
 * \brief Base class for platform-specific data associated with a camera
 *
 * The CameraData base abstract class represents platform specific-data
 * a pipeline handler might want to associate with a Camera to access them
 * at a later time.
 *
 * Pipeline handlers are expected to extend this base class with platform
 * specific implementation, associate instances of the derived classes
 * using the setCameraData() method, and access them at a later time
 * with cameraData().
 */

/**
 * \fn CameraData::CameraData(PipelineHandler *pipe)
 * \brief Construct a CameraData instance for the given pipeline handler
 * \param[in] pipe The pipeline handler
 *
 * The reference to the pipeline handler is stored internally, the caller shall
 * guarantee that the pointer remains valid as long as the CameraData instance
 * exists.
 */

/**
 * \var CameraData::camera_
 * \brief The camera related to this CameraData instance
 *
 * The camera_ pointer provides access to the Camera object that this instance
 * is related to. It is set when the Camera is registered with
 * PipelineHandler::registerCamera() and remains valid until the CameraData
 * instance is destroyed.
 */

/**
 * \var CameraData::pipe_
 * \brief The pipeline handler related to this CameraData instance
 *
 * The pipe_ pointer provides access to the PipelineHandler object that this
 * instance is related to. It is set when the CameraData instance is created
 * and remains valid until the instance is destroyed.
 */

/**
 * \var CameraData::queuedRequests_
 * \brief The list of queued and not yet completed request
 *
 * The list of queued request is used to track requests queued in order to
 * ensure completion of all requests when the pipeline handler is stopped.
 *
 * \sa PipelineHandler::queueRequest(), PipelineHandler::stop(),
 * PipelineHandler::completeRequest()
 */

/**
 * \class PipelineHandler
 * \brief Create and manage cameras based on a set of media devices
 *
 * The PipelineHandler matches the media devices provided by a DeviceEnumerator
 * with the pipelines it supports and creates corresponding Camera devices.
 *
 * Pipeline handler instances are reference-counted through std::shared_ptr<>.
 * They implement std::enable_shared_from_this<> in order to create new
 * std::shared_ptr<> in code paths originating from member functions of the
 * PipelineHandler class where only the 'this' pointer is available.
 */

/**
 * \brief Construct a PipelineHandler instance
 * \param[in] manager The camera manager
 *
 * In order to honour the std::enable_shared_from_this<> contract,
 * PipelineHandler instances shall never be constructed manually, but always
 * through the PipelineHandlerFactory::create() method implemented by the
 * respective factories.
 */
PipelineHandler::PipelineHandler(CameraManager *manager)
	: manager_(manager)
{
}

PipelineHandler::~PipelineHandler()
{
};

/**
 * \fn PipelineHandler::match(DeviceEnumerator *enumerator)
 * \brief Match media devices and create camera instances
 * \param[in] enumerator The enumerator providing all media devices found in the
 * system
 *
 * This function is the main entry point of the pipeline handler. It is called
 * by the camera manager with the \a enumerator passed as an argument. It shall
 * acquire from the \a enumerator all the media devices it needs for a single
 * pipeline, create one or multiple Camera instances and register them with the
 * camera manager.
 *
 * If all media devices needed by the pipeline handler are found, they must all
 * be acquired by a call to MediaDevice::acquire(). This function shall then
 * create the corresponding Camera instances, store them internally, and return
 * true. Otherwise it shall not acquire any media device (or shall release all
 * the media devices is has acquired by calling MediaDevice::release()) and
 * return false.
 *
 * If multiple instances of a pipeline are available in the system, the
 * PipelineHandler class will be instanciated once per instance, and its match()
 * function called for every instance. Each call shall acquire media devices for
 * one pipeline instance, until all compatible media devices are exhausted.
 *
 * If this function returns true, a new instance of the pipeline handler will
 * be created and its match() function called.
 *
 * \return true if media devices have been acquired and camera instances
 * created, or false otherwise
 */

/**
 * \fn PipelineHandler::streamConfiguration()
 * \brief Retrieve a group of stream configurations for a specified camera
 * \param[in] camera The camera to fetch default configuration from
 * \param[in] usages A list of stream usages
 *
 * Retrieve the species camera's default configuration for a specified group of
 * use-cases. The caller shall populate the \a usages array with the use-cases it
 * wishes to fetch the default configuration for. The map of streams and
 * configurations returned can then be examined by the caller to learn about
 * the default parameters for the specified streams.
 *
 * The intended companion to this is \a configureStreams() which can be used to
 * change the group of streams parameters.
 *
 * \return A valid CameraConfiguration if the requested usages can be satisfied,
 * or a invalid configuration otherwise
 */

/**
 * \fn PipelineHandler::configureStreams()
 * \brief Configure a group of streams for capture
 * \param[in] camera The camera to configure
 * \param[in] config The camera configurations to setup
 *
 * Configure the specified group of streams for \a camera according to the
 * configuration specified in \a config. The intended caller of this interface
 * is the Camera class which will receive configuration to apply from the
 * application.
 *
 * Each pipeline handler implementation is responsible for validating
 * that the configuration requested in \a config can be achieved
 * exactly. Any difference in pixel format, frame size or any other
 * parameter shall result in the -EINVAL error being returned, and no
 * change in configuration being applied to the pipeline. If
 * configuration of a subset of the streams can't be satisfied, the
 * whole configuration is considered invalid.
 *
 * \return 0 on success or a negative error code otherwise
 */

/**
 * \fn PipelineHandler::allocateBuffers()
 * \brief Allocate buffers for a stream
 * \param[in] camera The camera the \a stream belongs to
 * \param[in] streams The set of streams to allocate buffers for
 *
 * This method allocates buffers internally in the pipeline handler for each
 * stream in the \a streams buffer set, and associates them with the stream's
 * buffer pool.
 *
 * The intended caller of this method is the Camera class.
 *
 * \return 0 on success or a negative error code otherwise
 */

/**
 * \fn PipelineHandler::freeBuffers()
 * \brief Free all buffers associated with a stream
 * \param[in] camera The camera the \a stream belongs to
 * \param[in] streams The set of streams to free buffers from
 *
 * After a capture session has been stopped all buffers associated with each
 * stream shall be freed.
 *
 * The intended caller of this method is the Camera class.
 *
 * \return 0 on success or a negative error code otherwise
 */

/**
 * \fn PipelineHandler::start()
 * \brief Start capturing from a group of streams
 * \param[in] camera The camera to start
 *
 * Start the group of streams that have been configured for capture by
 * \a configureStreams(). The intended caller of this method is the Camera
 * class which will in turn be called from the application to indicate that it
 * has configured the streams and is ready to capture.
 *
 * \return 0 on success or a negative error code otherwise
 */

/**
 * \fn PipelineHandler::stop()
 * \brief Stop capturing from all running streams
 * \param[in] camera The camera to stop
 *
 * This method stops capturing and processing requests immediately. All pending
 * requests are cancelled and complete immediately in an error state.
 *
 * Pipeline handlers shall override this method to stop the pipeline, ensure
 * that all pending request completion signaled through completeRequest() have
 * returned, and call the base implementation of the stop() method as the last
 * step of their implementation. The base implementation cancels all requests
 * queued but not yet complete.
 */
void PipelineHandler::stop(Camera *camera)
{
	CameraData *data = cameraData(camera);

	while (!data->queuedRequests_.empty()) {
		Request *request = data->queuedRequests_.front();
		data->queuedRequests_.pop_front();

		while (!request->pending_.empty()) {
			Buffer *buffer = *request->pending_.begin();
			buffer->cancel();
			completeBuffer(camera, request, buffer);
		}

		request->complete(Request::RequestCancelled);
		camera->requestComplete(request);
	}
}

/**
 * \fn PipelineHandler::queueRequest()
 * \brief Queue a request to the camera
 * \param[in] camera The camera to queue the request to
 * \param[in] request The request to queue
 *
 * This method queues a capture request to the pipeline handler for processing.
 * The request contains a set of buffers associated with streams and a set of
 * parameters. The pipeline handler shall program the device to ensure that the
 * parameters will be applied to the frames captured in the buffers provided in
 * the request.
 *
 * Pipeline handlers shall override this method. The base implementation in the
 * PipelineHandler class keeps track of queued requests in order to ensure
 * completion of all requests when the pipeline handler is stopped with stop().
 * Requests completion shall be signaled by the pipeline handler using the
 * completeRequest() method.
 *
 * \return 0 on success or a negative error code otherwise
 */
int PipelineHandler::queueRequest(Camera *camera, Request *request)
{
	CameraData *data = cameraData(camera);
	data->queuedRequests_.push_back(request);

	return 0;
}