summaryrefslogtreecommitdiff
path: root/src/ipa
ModeNameSize
-rwxr-xr-xipa-sign-install.sh511logplain
-rwxr-xr-xipa-sign.sh308logplain
d---------ipu375logplain
d---------libipa39logplain
-rw-r--r--meson.build1250logplain
d---------raspberrypi549logplain
d---------rkisp177logplain
d---------vimc106logplain
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2020, Raspberry Pi Ltd
 *
 * dng_writer.cpp - DNG writer
 */

#include "dng_writer.h"

#include <algorithm>
#include <iostream>
#include <map>

#include <tiffio.h>

#include <libcamera/control_ids.h>
#include <libcamera/formats.h>
#include <libcamera/property_ids.h>

using namespace libcamera;

enum CFAPatternColour : uint8_t {
	CFAPatternRed = 0,
	CFAPatternGreen = 1,
	CFAPatternBlue = 2,
};

struct FormatInfo {
	uint8_t bitsPerSample;
	CFAPatternColour pattern[4];
	void (*packScanline)(void *output, const void *input,
			     unsigned int width);
	void (*thumbScanline)(const FormatInfo &info, void *output,
			      const void *input, unsigned int width,
			      unsigned int stride);
};

struct Matrix3d {
	Matrix3d()
	{
	}

	Matrix3d(float m0, float m1, float m2,
		 float m3, float m4, float m5,
		 float m6, float m7, float m8)
	{
		m[0] = m0, m[1] = m1, m[2] = m2;
		m[3] = m3, m[4] = m4, m[5] = m5;
		m[6] = m6, m[7] = m7, m[8] = m8;
	}

	Matrix3d(const Span<const float> &span)
		: Matrix3d(span[0], span[1], span[2],
			   span[3], span[4], span[5],
			   span[6], span[7], span[8])
	{
	}

	static Matrix3d diag(float diag0, float diag1, float diag2)
	{
		return Matrix3d(diag0, 0, 0, 0, diag1, 0, 0, 0, diag2);
	}

	static Matrix3d identity()
	{
		return Matrix3d(1, 0, 0, 0, 1, 0, 0, 0, 1);
	}

	Matrix3d transpose() const
	{
		return { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] };
	}

	Matrix3d cofactors() const
	{
		return { m[4] * m[8] - m[5] * m[7],
			 -(m[3] * m[8] - m[5] * m[6]),
			 m[3] * m[7] - m[4] * m[6],
			 -(m[1] * m[8] - m[2] * m[7]),
			 m[0] * m[8] - m[2] * m[6],
			 -(m[0] * m[7] - m[1] * m[6]),
			 m[1] * m[5] - m[2] * m[4],
			 -(m[0] * m[5] - m[2] * m[3]),
			 m[0] * m[4] - m[1] * m[3] };
	}

	Matrix3d adjugate() const
	{
		return cofactors().transpose();
	}

	float determinant() const
	{
		return m[0] * (m[4] * m[8] - m[5] * m[7]) -
		       m[1] * (m[3] * m[8] - m[5] * m[6]) +
		       m[2] * (m[3] * m[7] - m[4] * m[6]);
	}

	Matrix3d inverse() const
	{
		return adjugate() * (1.0 / determinant());
	}

	Matrix3d operator*(const Matrix3d &other) const
	{
		Matrix3d result;
		for (unsigned int i = 0; i < 3; i++) {
			for (unsigned int j = 0; j < 3; j++) {
				result.m[i * 3 + j] =
					m[i * 3 + 0] * other.m[0 + j] +
					m[i * 3 + 1] * other.m[3 + j] +
					m[i * 3 + 2] * other.m[6 + j];
			}
		}
		return result;
	}

	Matrix3d operator*(float f) const
	{
		Matrix3d result;
		for (unsigned int i = 0; i < 9; i++)
			result.m[i] = m[i] * f;
		return result;
	}

	float m[9];
};

void packScanlineSBGGR10P(void *output, const void *input, unsigned int width)
{
	const uint8_t *in = static_cast<const uint8_t *>(input);
	uint8_t *out = static_cast<uint8_t *>(output);

	/* \todo Can this be made more efficient? */
	for (unsigned int x = 0; x < width; x += 4) {
		*out++ = in[0];
		*out++ = (in[4] & 0x03) << 6 | in[1] >> 2;
		*out++ = (in[1] & 0x03) << 6 | (in[4] & 0x0c) << 2 | in[2] >> 4;
		*out++ = (in[2] & 0x0f) << 4 | (in[4] & 0x30) >> 2 | in[3] >> 6;
		*out++ = (in[3] & 0x3f) << 2 | (in[4] & 0xc0) >> 6;
		in += 5;
	}
}

void packScanlineSBGGR12P(void *output, const void *input, unsigned int width)
{
	const uint8_t *in = static_cast<const uint8_t *>(input);
	uint8_t *out = static_cast<uint8_t *>(output);

	/* \todo Can this be made more efficient? */
	for (unsigned int i = 0; i < width; i += 2) {
		*out++ = in[0];
		*out++ = (in[2] & 0x0f) << 4 | in[1] >> 4;
		*out++ = (in[1] & 0x0f) << 4 | in[2] >> 4;
		in += 3;
	}
}

void thumbScanlineSBGGRxxP(const FormatInfo &info, void *output,
			   const void *input, unsigned int width,
			   unsigned int stride)
{
	const uint8_t *in = static_cast<const uint8_t *>(input);
	uint8_t *out = static_cast<uint8_t *>(output);

	/* Number of bytes corresponding to 16 pixels. */
	unsigned int skip = info.bitsPerSample * 16 / 8;

	for (unsigned int x = 0; x < width; x++) {
		uint8_t value = (in[0] + in[1] + in[stride] + in[stride + 1]) >> 2;
		*out++ = value;
		*out++ = value;
		*out++ = value;
		in += skip;
	}
}

void packScanlineIPU3(void *output, const void *input, unsigned int width)
{
	const uint8_t *in = static_cast<const uint8_t *>(input);
	uint16_t *out = static_cast<uint16_t *>(output);

	/*
	 * Upscale the 10-bit format to 16-bit as it's not trivial to pack it
	 * as 10-bit without gaps.
	 *
	 * \todo Improve packing to keep the 10-bit sample size.
	 */
	unsigned int x = 0;
	while (true) {
		for (unsigned int i = 0; i < 6; i++) {
			*out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6;
			if (++x >= width)
				return;

			*out++ = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4;
			if (++x >= width)
				return;

			*out++ = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2;
			if (++x >= width)
				return;

			*out++ = (in[4] & 0xff) <<  8 | (in[3] & 0xc0) << 0;
			if (++x >= width)
				return;

			in += 5;
		}

		*out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6;
		if (++x >= width)
			return;

		in += 2;
	}
}

void thumbScanlineIPU3([[maybe_unused]] const FormatInfo &info, void *output,
		       const void *input, unsigned int width,
		       unsigned int stride)
{
	uint8_t *out = static_cast<uint8_t *>(output);

	for (unsigned int x = 0; x < width; x++) {
		unsigned int pixel = x * 16;
		unsigned int block = pixel / 25;
		unsigned int pixelInBlock = pixel - block * 25;

		/*
		 * If the pixel is the last in the block cheat a little and
		 * move one pixel backward to avoid reading between two blocks
		 * and having to deal with the padding bits.
		 */
		if (pixelInBlock == 24)
			pixelInBlock--;

		const uint8_t *in = static_cast<const uint8_t *>(input)
				  + block * 32 + (pixelInBlock / 4) * 5;

		uint16_t val1, val2, val3, val4;
		switch (pixelInBlock % 4) {
		case 0:
			val1 = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6;
			val2 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4;
			val3 = (in[stride + 1] & 0x03) << 14 | (in[stride + 0] & 0xff) << 6;
			val4 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4;
			break;
		case 1:
			val1 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4;
			val2 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2;
			val3 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4;
			val4 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2;
			break;
		case 2:
			val1 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2;
			val2 = (in[4] & 0xff) <<  8 | (in[3] & 0xc0) << 0;
			val3 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2;
			val4 = (in[stride + 4] & 0xff) <<  8 | (in[stride + 3] & 0xc0) << 0;
			break;
		case 3:
			val1 = (in[4] & 0xff) <<  8 | (in[3] & 0xc0) << 0;
			val2 = (in[6] & 0x03) << 14 | (in[5] & 0xff) << 6;
			val3 = (in[stride + 4] & 0xff) <<  8 | (in[stride + 3] & 0xc0) << 0;
			val4 = (in[stride + 6] & 0x03) << 14 | (in[stride + 5] & 0xff) << 6;
			break;
		}

		uint8_t value = (val1 + val2 + val3 + val4) >> 10;
		*out++ = value;
		*out++ = value;
		*out++ = value;
	}
}

static const std::map<PixelFormat, FormatInfo> formatInfo = {
	{ formats::SBGGR10_CSI2P, {
		.bitsPerSample = 10,
		.pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed },
		.packScanline = packScanlineSBGGR10P,
		.thumbScanline = thumbScanlineSBGGRxxP,
	} },
	{ formats::SGBRG10_CSI2P, {
		.bitsPerSample = 10,
		.pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen },
		.packScanline = packScanlineSBGGR10P,
		.thumbScanline = thumbScanlineSBGGRxxP,
	} },
	{ formats::SGRBG10_CSI2P, {
		.bitsPerSample = 10,
		.pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen },
		.packScanline = packScanlineSBGGR10P,
		.thumbScanline = thumbScanlineSBGGRxxP,
	} },
	{ formats::SRGGB10_CSI2P, {
		.bitsPerSample = 10,
		.pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue },
		.packScanline = packScanlineSBGGR10P,
		.thumbScanline = thumbScanlineSBGGRxxP,
	} },
	{ formats::SBGGR12_CSI2P, {
		.bitsPerSample = 12,
		.pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed },
		.packScanline = packScanlineSBGGR12P,
		.thumbScanline = thumbScanlineSBGGRxxP,
	} },
	{ formats::SGBRG12_CSI2P, {
		.bitsPerSample = 12,
		.pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen },
		.packScanline = packScanlineSBGGR12P,
		.thumbScanline = thumbScanlineSBGGRxxP,
	} },
	{ formats::SGRBG12_CSI2P, {
		.bitsPerSample = 12,
		.pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen },
		.packScanline = packScanlineSBGGR12P,
		.thumbScanline = thumbScanlineSBGGRxxP,
	} },
	{ formats::SRGGB12_CSI2P, {
		.bitsPerSample = 12,
		.pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue },
		.packScanline = packScanlineSBGGR12P,
		.thumbScanline = thumbScanlineSBGGRxxP,
	} },
	{ formats::SBGGR10_IPU3, {
		.bitsPerSample = 16,
		.pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed },
		.packScanline = packScanlineIPU3,
		.thumbScanline = thumbScanlineIPU3,
	} },
	{ formats::SGBRG10_IPU3, {
		.bitsPerSample = 16,
		.pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen },
		.packScanline = packScanlineIPU3,
		.thumbScanline = thumbScanlineIPU3,
	} },
	{ formats::SGRBG10_IPU3, {
		.bitsPerSample = 16,
		.pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen },
		.packScanline = packScanlineIPU3,
		.thumbScanline = thumbScanlineIPU3,
	} },
	{ formats::SRGGB10_IPU3, {
		.bitsPerSample = 16,
		.pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue },
		.packScanline = packScanlineIPU3,
		.thumbScanline = thumbScanlineIPU3,
	} },
};

int DNGWriter::write(const char *filename, const Camera *camera,
		     const StreamConfiguration &config,
		     const ControlList &metadata,
		     [[maybe_unused]] const FrameBuffer *buffer,
		     const void *data)
{
	const ControlList &cameraProperties = camera->properties();

	const auto it = formatInfo.find(config.pixelFormat);
	if (it == formatInfo.cend()) {
		std::cerr << "Unsupported pixel format" << std::endl;
		return -EINVAL;
	}
	const FormatInfo *info = &it->second;

	TIFF *tif = TIFFOpen(filename, "w");
	if (!tif) {
		std::cerr << "Failed to open tiff file" << std::endl;
		return -EINVAL;
	}

	/*
	 * Scanline buffer, has to be large enough to store both a RAW scanline
	 * or a thumbnail scanline. The latter will always be much smaller than
	 * the former as we downscale by 16 in both directions.
	 */
	uint8_t scanline[(config.size.width * info->bitsPerSample + 7) / 8];

	toff_t rawIFDOffset = 0;
	toff_t exifIFDOffset = 0;

	/*
	 * Start with a thumbnail in IFD 0 for compatibility with TIFF baseline
	 * readers, as required by the TIFF/EP specification. Tags that apply to
	 * the whole file are stored here.
	 */
	const uint8_t version[] = { 1, 2, 0, 0 };

	TIFFSetField(tif, TIFFTAG_DNGVERSION, version);
	TIFFSetField(tif, TIFFTAG_DNGBACKWARDVERSION, version);
	TIFFSetField(tif, TIFFTAG_FILLORDER, FILLORDER_MSB2LSB);
	TIFFSetField(tif, TIFFTAG_MAKE, "libcamera");

	const auto &model = cameraProperties.get(properties::Model);
	if (model) {
		TIFFSetField(tif, TIFFTAG_MODEL, model->c_str());
		/* \todo set TIFFTAG_UNIQUECAMERAMODEL. */
	}

	TIFFSetField(tif, TIFFTAG_SOFTWARE, "qcam");
	TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);

	/*
	 * Thumbnail-specific tags. The thumbnail is stored as an RGB image
	 * with 1/16 of the raw image resolution. Greyscale would save space,
	 * but doesn't seem well supported by RawTherapee.
	 */
	TIFFSetField(tif, TIFFTAG_SUBFILETYPE, FILETYPE_REDUCEDIMAGE);
	TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width / 16);
	TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height / 16);
	TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
	TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
	TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
	TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 3);
	TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
	TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);

	/*
	 * Fill in some reasonable colour information in the DNG. We supply
	 * the "neutral" colour values which determine the white balance, and the
	 * "ColorMatrix1" which converts XYZ to (un-white-balanced) camera RGB.
	 * Note that this is not a "proper" colour calibration for the DNG,
	 * nonetheless, many tools should be able to render the colours better.
	 */
	float neutral[3] = { 1, 1, 1 };
	Matrix3d wbGain = Matrix3d::identity();
	/* From http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html */
	const Matrix3d rgb2xyz(0.4124564, 0.3575761, 0.1804375,
			       0.2126729, 0.7151522, 0.0721750,
			       0.0193339, 0.1191920, 0.9503041);
	Matrix3d ccm = Matrix3d::identity();
	/*
	 * Pick a reasonable number eps to protect against singularities. It
	 * should be comfortably larger than the point at which we run into
	 * numerical trouble, yet smaller than any plausible gain that we might
	 * apply to a colour, either explicitly or as part of the colour matrix.
	 */
	const double eps = 1e-2;

	const auto &colourGains = metadata.get(controls::ColourGains);
	if (colourGains) {
		if ((*colourGains)[0] > eps && (*colourGains)[1] > eps) {
			wbGain = Matrix3d::diag((*colourGains)[0], 1, (*colourGains)[1]);
			neutral[0] = 1.0 / (*colourGains)[0]; /* red */
			neutral[2] = 1.0 / (*colourGains)[1]; /* blue */
		}
	}

	const auto &ccmControl = metadata.get(controls::ColourCorrectionMatrix);
	if (ccmControl) {
		Matrix3d ccmSupplied(*ccmControl);
		if (ccmSupplied.determinant() > eps)
			ccm = ccmSupplied;
	}

	/*
	 * rgb2xyz is known to be invertible, and we've ensured above that both
	 * the ccm and wbGain matrices are non-singular, so the product of all
	 * three is guaranteed to be invertible too.
	 */
	Matrix3d colorMatrix1 = (rgb2xyz * ccm * wbGain).inverse();

	TIFFSetField(tif, TIFFTAG_COLORMATRIX1, 9, colorMatrix1.m);
	TIFFSetField(tif, TIFFTAG_ASSHOTNEUTRAL, 3, neutral);

	/*
	 * Reserve space for the SubIFD and ExifIFD tags, pointing to the IFD
	 * for the raw image and EXIF data respectively. The real offsets will
	 * be set later.
	 */
	TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset);
	TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset);

	/* Write the thumbnail. */
	const uint8_t *row = static_cast<const uint8_t *>(data);
	for (unsigned int y = 0; y < config.size.height / 16; y++) {
		info->thumbScanline(*info, &scanline, row,
				    config.size.width / 16, config.stride);

		if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) {
			std::cerr << "Failed to write thumbnail scanline"
				  << std::endl;
			TIFFClose(tif);
			return -EINVAL;
		}

		row += config.stride * 16;
	}

	TIFFWriteDirectory(tif);

	/* Create a new IFD for the RAW image. */
	const uint16_t cfaRepeatPatternDim[] = { 2, 2 };
	const uint8_t cfaPlaneColor[] = {
		CFAPatternRed,
		CFAPatternGreen,
		CFAPatternBlue
	};

	TIFFSetField(tif, TIFFTAG_SUBFILETYPE, 0);
	TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width);
	TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height);
	TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, info->bitsPerSample);
	TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
	TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_CFA);
	TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1);
	TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
	TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
	TIFFSetField(tif, TIFFTAG_CFAREPEATPATTERNDIM, cfaRepeatPatternDim);
	TIFFSetField(tif, TIFFTAG_CFAPATTERN, info->pattern);
	TIFFSetField(tif, TIFFTAG_CFAPLANECOLOR, 3, cfaPlaneColor);
	TIFFSetField(tif, TIFFTAG_CFALAYOUT, 1);

	const uint16_t blackLevelRepeatDim[] = { 2, 2 };
	float blackLevel[] = { 0.0f, 0.0f, 0.0f, 0.0f };
	uint32_t whiteLevel = (1 << info->bitsPerSample) - 1;

	const auto &blackLevels = metadata.get(controls::SensorBlackLevels);
	if (blackLevels) {
		Span<const int32_t> levels = *blackLevels;

		/*
		 * The black levels control is specified in R, Gr, Gb, B order.
		 * Map it to the TIFF tag that is specified in CFA pattern
		 * order.
		 */
		unsigned int green = (info->pattern[0] == CFAPatternRed ||
				      info->pattern[1] == CFAPatternRed)
				   ? 0 : 1;

		for (unsigned int i = 0; i < 4; ++i) {
			unsigned int level;

			switch (info->pattern[i]) {
			case CFAPatternRed:
				level = levels[0];
				break;
			case CFAPatternGreen:
				level = levels[green + 1];
				green = (green + 1) % 2;
				break;
			case CFAPatternBlue:
			default:
				level = levels[3];
				break;
			}

			/* Map the 16-bit value to the bits per sample range. */
			blackLevel[i] = level >> (16 - info->bitsPerSample);
		}
	}

	TIFFSetField(tif, TIFFTAG_BLACKLEVELREPEATDIM, &blackLevelRepeatDim);
	TIFFSetField(tif, TIFFTAG_BLACKLEVEL, 4, &blackLevel);
	TIFFSetField(tif, TIFFTAG_WHITELEVEL, 1, &whiteLevel);

	/* Write RAW content. */
	row = static_cast<const uint8_t *>(data);
	for (unsigned int y = 0; y < config.size.height; y++) {
		info->packScanline(&scanline, row, config.size.width);

		if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) {
			std::cerr << "Failed to write RAW scanline"
				  << std::endl;
			TIFFClose(tif);
			return -EINVAL;
		}

		row += config.stride;
	}

	/* Checkpoint the IFD to retrieve its offset, and write it out. */
	TIFFCheckpointDirectory(tif);
	rawIFDOffset = TIFFCurrentDirOffset(tif);
	TIFFWriteDirectory(tif);

	/* Create a new IFD for the EXIF data and fill it. */
	TIFFCreateEXIFDirectory(tif);

	/* Store creation time. */
	time_t rawtime;
	struct tm *timeinfo;
	char strTime[20];

	time(&rawtime);
	timeinfo = localtime(&rawtime);
	strftime(strTime, 20, "%Y:%m:%d %H:%M:%S", timeinfo);

	/*
	 * \todo Handle timezone information by setting OffsetTimeOriginal and
	 * OffsetTimeDigitized once libtiff catches up to the specification and
	 * has EXIFTAG_ defines to handle them.
	 */
	TIFFSetField(tif, EXIFTAG_DATETIMEORIGINAL, strTime);
	TIFFSetField(tif, EXIFTAG_DATETIMEDIGITIZED, strTime);

	const auto &analogGain = metadata.get(controls::AnalogueGain);
	if (analogGain) {
		uint16_t iso = std::min(std::max(*analogGain * 100, 0.0f), 65535.0f);
		TIFFSetField(tif, EXIFTAG_ISOSPEEDRATINGS, 1, &iso);
	}

	const auto &exposureTime = metadata.get(controls::ExposureTime);
	if (exposureTime)
		TIFFSetField(tif, EXIFTAG_EXPOSURETIME, *exposureTime / 1e6);

	TIFFWriteCustomDirectory(tif, &exifIFDOffset);

	/* Update the IFD offsets and close the file. */
	TIFFSetDirectory(tif, 0);
	TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset);
	TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset);
	TIFFWriteDirectory(tif);

	TIFFClose(tif);

	return 0;
}