summaryrefslogtreecommitdiff
path: root/src/ipa/rkisp1/algorithms/agc.cpp
blob: 10958a7e43fba1723a1dab4a866f5a09bee23c2e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021-2022, Ideas On Board
 *
 * agc.cpp - AGC/AEC mean-based control algorithm
 */

#include "agc.h"

#include <algorithm>
#include <chrono>
#include <cmath>

#include <libcamera/base/log.h>
#include <libcamera/base/utils.h>

#include <libcamera/ipa/core_ipa_interface.h>

#include "libipa/histogram.h"

/**
 * \file agc.h
 */

namespace libcamera {

using namespace std::literals::chrono_literals;

namespace ipa::rkisp1::algorithms {

/**
 * \class Agc
 * \brief A mean-based auto-exposure algorithm
 */

LOG_DEFINE_CATEGORY(RkISP1Agc)

/* Limits for analogue gain values */
static constexpr double kMinAnalogueGain = 1.0;
static constexpr double kMaxAnalogueGain = 8.0;

/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
static constexpr utils::Duration kMaxShutterSpeed = 60ms;

/* Number of frames to wait before calculating stats on minimum exposure */
static constexpr uint32_t kNumStartupFrames = 10;

/* Target value to reach for the top 2% of the histogram */
static constexpr double kEvGainTarget = 0.5;

/*
 * Relative luminance target.
 *
 * It's a number that's chosen so that, when the camera points at a grey
 * target, the resulting image brightness is considered right.
 *
 * \todo Why is the value different between IPU3 and RkISP1 ?
 */
static constexpr double kRelativeLuminanceTarget = 0.4;

Agc::Agc()
	: frameCount_(0), numCells_(0), numHistBins_(0), filteredExposure_(0s)
{
}

/**
 * \brief Configure the AGC given a configInfo
 * \param[in] context The shared IPA context
 * \param[in] configInfo The IPA configuration data
 *
 * \return 0
 */
int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo)
{
	/* Configure the default exposure and gain. */
	context.activeState.agc.gain = std::max(context.configuration.agc.minAnalogueGain, kMinAnalogueGain);
	context.activeState.agc.exposure = 10ms / context.configuration.sensor.lineDuration;

	/*
	 * According to the RkISP1 documentation:
	 * - versions < V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V10 entries,
	 * - versions >= V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V12 entries.
	 */
	if (context.configuration.hw.revision < RKISP1_V12) {
		numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V10;
		numHistBins_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V10;
	} else {
		numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V12;
		numHistBins_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V12;
	}

	/*
	 * Define the measurement window for AGC as a centered rectangle
	 * covering 3/4 of the image width and height.
	 */
	context.configuration.agc.measureWindow.h_offs = configInfo.outputSize.width / 8;
	context.configuration.agc.measureWindow.v_offs = configInfo.outputSize.height / 8;
	context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4;
	context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4;

	/*
	 * \todo Use the upcoming per-frame context API that will provide a
	 * frame index
	 */
	frameCount_ = 0;
	return 0;
}

/**
 * \brief Apply a filter on the exposure value to limit the speed of changes
 * \param[in] exposureValue The target exposure from the AGC algorithm
 *
 * The speed of the filter is adaptive, and will produce the target quicker
 * during startup, or when the target exposure is within 20% of the most recent
 * filter output.
 *
 * \return The filtered exposure
 */
utils::Duration Agc::filterExposure(utils::Duration exposureValue)
{
	double speed = 0.2;

	/* Adapt instantly if we are in startup phase. */
	if (frameCount_ < kNumStartupFrames)
		speed = 1.0;

	/*
	 * If we are close to the desired result, go faster to avoid making
	 * multiple micro-adjustments.
	 * \todo Make this customisable?
	 */
	if (filteredExposure_ < 1.2 * exposureValue &&
	    filteredExposure_ > 0.8 * exposureValue)
		speed = sqrt(speed);

	filteredExposure_ = speed * exposureValue +
			    filteredExposure_ * (1.0 - speed);

	LOG(RkISP1Agc, Debug) << "After filtering, exposure " << filteredExposure_;

	return filteredExposure_;
}

/**
 * \brief Estimate the new exposure and gain values
 * \param[inout] context The shared IPA Context
 * \param[in] yGain The gain calculated on the current brightness level
 * \param[in] iqMeanGain The gain calculated based on the relative luminance target
 */
void Agc::computeExposure(IPAContext &context, double yGain, double iqMeanGain)
{
	IPASessionConfiguration &configuration = context.configuration;
	IPAActiveState &activeState = context.activeState;

	/* Get the effective exposure and gain applied on the sensor. */
	uint32_t exposure = activeState.sensor.exposure;
	double analogueGain = activeState.sensor.gain;

	/* Use the highest of the two gain estimates. */
	double evGain = std::max(yGain, iqMeanGain);

	utils::Duration minShutterSpeed = configuration.agc.minShutterSpeed;
	utils::Duration maxShutterSpeed = std::min(configuration.agc.maxShutterSpeed,
						   kMaxShutterSpeed);

	double minAnalogueGain = std::max(configuration.agc.minAnalogueGain,
					  kMinAnalogueGain);
	double maxAnalogueGain = std::min(configuration.agc.maxAnalogueGain,
					  kMaxAnalogueGain);

	/* Consider within 1% of the target as correctly exposed. */
	if (utils::abs_diff(evGain, 1.0) < 0.01)
		return;

	/* extracted from Rpi::Agc::computeTargetExposure. */

	/* Calculate the shutter time in seconds. */
	utils::Duration currentShutter = exposure * configuration.sensor.lineDuration;

	/*
	 * Update the exposure value for the next computation using the values
	 * of exposure and gain really used by the sensor.
	 */
	utils::Duration effectiveExposureValue = currentShutter * analogueGain;

	LOG(RkISP1Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
			      << " Shutter speed " << currentShutter
			      << " Gain " << analogueGain
			      << " Needed ev gain " << evGain;

	/*
	 * Calculate the current exposure value for the scene as the latest
	 * exposure value applied multiplied by the new estimated gain.
	 */
	utils::Duration exposureValue = effectiveExposureValue * evGain;

	/* Clamp the exposure value to the min and max authorized. */
	utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain;
	exposureValue = std::min(exposureValue, maxTotalExposure);
	LOG(RkISP1Agc, Debug) << "Target total exposure " << exposureValue
			      << ", maximum is " << maxTotalExposure;

	/*
	 * Divide the exposure value as new exposure and gain values.
	 * \todo estimate if we need to desaturate
	 */
	exposureValue = filterExposure(exposureValue);

	/*
	 * Push the shutter time up to the maximum first, and only then
	 * increase the gain.
	 */
	utils::Duration shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain,
								  minShutterSpeed, maxShutterSpeed);
	double stepGain = std::clamp(exposureValue / shutterTime,
				     minAnalogueGain, maxAnalogueGain);
	LOG(RkISP1Agc, Debug) << "Divided up shutter and gain are "
			      << shutterTime << " and "
			      << stepGain;

	/* Update the estimated exposure and gain. */
	activeState.agc.exposure = shutterTime / configuration.sensor.lineDuration;
	activeState.agc.gain = stepGain;
}

/**
 * \brief Estimate the relative luminance of the frame with a given gain
 * \param[in] ae The RkISP1 statistics and ISP results
 * \param[in] gain The gain to apply to the frame
 *
 * This function estimates the average relative luminance of the frame that
 * would be output by the sensor if an additional \a gain was applied.
 *
 * The estimation is based on the AE statistics for the current frame. Y
 * averages for all cells are first multiplied by the gain, and then saturated
 * to approximate the sensor behaviour at high brightness values. The
 * approximation is quite rough, as it doesn't take into account non-linearities
 * when approaching saturation. In this case, saturating after the conversion to
 * YUV doesn't take into account the fact that the R, G and B components
 * contribute differently to the relative luminance.
 *
 * \todo Have a dedicated YUV algorithm ?
 *
 * The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a
 * theoretical perfect reflector of 100% reference white.
 *
 * More detailed information can be found in:
 * https://en.wikipedia.org/wiki/Relative_luminance
 *
 * \return The relative luminance
 */
double Agc::estimateLuminance(const rkisp1_cif_isp_ae_stat *ae,
			      double gain)
{
	double ySum = 0.0;

	/* Sum the averages, saturated to 255. */
	for (unsigned int aeCell = 0; aeCell < numCells_; aeCell++)
		ySum += std::min(ae->exp_mean[aeCell] * gain, 255.0);

	/* \todo Weight with the AWB gains */

	return ySum / numCells_ / 255;
}

/**
 * \brief Estimate the mean value of the top 2% of the histogram
 * \param[in] hist The histogram statistics computed by the ImgU
 * \return The mean value of the top 2% of the histogram
 */
double Agc::measureBrightness(const rkisp1_cif_isp_hist_stat *hist) const
{
	Histogram histogram{ Span<const uint32_t>(hist->hist_bins, numHistBins_) };
	/* Estimate the quantile mean of the top 2% of the histogram. */
	return histogram.interQuantileMean(0.98, 1.0);
}

/**
 * \brief Process RkISP1 statistics, and run AGC operations
 * \param[in] context The shared IPA context
 * \param[in] frame The frame context sequence number
 * \param[in] frameContext The current frame context
 * \param[in] stats The RKISP1 statistics and ISP results
 *
 * Identify the current image brightness, and use that to estimate the optimal
 * new exposure and gain for the scene.
 */
void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame,
		  [[maybe_unused]] IPAFrameContext &frameContext,
		  const rkisp1_stat_buffer *stats)
{
	const rkisp1_cif_isp_stat *params = &stats->params;
	ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP);

	const rkisp1_cif_isp_ae_stat *ae = &params->ae;
	const rkisp1_cif_isp_hist_stat *hist = &params->hist;

	double iqMean = measureBrightness(hist);
	double iqMeanGain = kEvGainTarget * numHistBins_ / iqMean;

	/*
	 * Estimate the gain needed to achieve a relative luminance target. To
	 * account for non-linearity caused by saturation, the value needs to be
	 * estimated in an iterative process, as multiplying by a gain will not
	 * increase the relative luminance by the same factor if some image
	 * regions are saturated.
	 */
	double yGain = 1.0;
	double yTarget = kRelativeLuminanceTarget;

	for (unsigned int i = 0; i < 8; i++) {
		double yValue = estimateLuminance(ae, yGain);
		double extra_gain = std::min(10.0, yTarget / (yValue + .001));

		yGain *= extra_gain;
		LOG(RkISP1Agc, Debug) << "Y value: " << yValue
				      << ", Y target: " << yTarget
				      << ", gives gain " << yGain;
		if (extra_gain < 1.01)
			break;
	}

	computeExposure(context, yGain, iqMeanGain);
	frameCount_++;
}

/**
 * \copydoc libcamera::ipa::Algorithm::prepare
 */
void Agc::prepare(IPAContext &context, const uint32_t frame,
		  [[maybe_unused]] IPAFrameContext &frameContext,
		  rkisp1_params_cfg *params)
{
	if (frame > 0)
		return;

	/* Configure the measurement window. */
	params->meas.aec_config.meas_window = context.configuration.agc.measureWindow;
	/* Use a continuous method for measure. */
	params->meas.aec_config.autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0;
	/* Estimate Y as (R + G + B) x (85/256). */
	params->meas.aec_config.mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1;

	params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_AEC;
	params->module_ens |= RKISP1_CIF_ISP_MODULE_AEC;
	params->module_en_update |= RKISP1_CIF_ISP_MODULE_AEC;

	/* Configure histogram. */
	params->meas.hst_config.meas_window = context.configuration.agc.measureWindow;
	/* Produce the luminance histogram. */
	params->meas.hst_config.mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM;
	/* Set an average weighted histogram. */
	for (unsigned int histBin = 0; histBin < numHistBins_; histBin++)
		params->meas.hst_config.hist_weight[histBin] = 1;
	/* Step size can't be less than 3. */
	params->meas.hst_config.histogram_predivider = 4;

	/* Update the configuration for histogram. */
	params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_HST;
	/* Enable the histogram measure unit. */
	params->module_ens |= RKISP1_CIF_ISP_MODULE_HST;
	params->module_en_update |= RKISP1_CIF_ISP_MODULE_HST;
}

REGISTER_IPA_ALGORITHM(Agc, "Agc")

} /* namespace ipa::rkisp1::algorithms */

} /* namespace libcamera */