1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
|
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019-2020, Raspberry Pi (Trading) Ltd.
*
* rpi.cpp - Raspberry Pi Image Processing Algorithms
*/
#include <algorithm>
#include <fcntl.h>
#include <math.h>
#include <stdint.h>
#include <string.h>
#include <sys/mman.h>
#include <libcamera/buffer.h>
#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/ipa/ipa_interface.h>
#include <libcamera/ipa/ipa_module_info.h>
#include <libcamera/ipa/raspberrypi.h>
#include <libcamera/request.h>
#include <libcamera/span.h>
#include <libipa/ipa_interface_wrapper.h>
#include "libcamera/internal/camera_sensor.h"
#include "libcamera/internal/log.h"
#include "libcamera/internal/utils.h"
#include <linux/bcm2835-isp.h>
#include "agc_algorithm.hpp"
#include "agc_status.h"
#include "alsc_status.h"
#include "awb_algorithm.hpp"
#include "awb_status.h"
#include "black_level_status.h"
#include "cam_helper.hpp"
#include "ccm_algorithm.hpp"
#include "ccm_status.h"
#include "contrast_algorithm.hpp"
#include "contrast_status.h"
#include "controller.hpp"
#include "dpc_status.h"
#include "focus_status.h"
#include "geq_status.h"
#include "lux_status.h"
#include "metadata.hpp"
#include "noise_status.h"
#include "sdn_status.h"
#include "sharpen_algorithm.hpp"
#include "sharpen_status.h"
namespace libcamera {
/* Configure the sensor with these values initially. */
#define DEFAULT_ANALOGUE_GAIN 1.0
#define DEFAULT_EXPOSURE_TIME 20000
LOG_DEFINE_CATEGORY(IPARPI)
class IPARPi : public IPAInterface
{
public:
IPARPi()
: lastMode_({}), controller_(), controllerInit_(false),
frame_count_(0), check_count_(0), hide_count_(0),
mistrust_count_(0), lsTableHandle_(0), lsTable_(nullptr)
{
}
~IPARPi()
{
}
int init(const IPASettings &settings) override;
int start() override { return 0; }
void stop() override {}
void configure(const CameraSensorInfo &sensorInfo,
const std::map<unsigned int, IPAStream> &streamConfig,
const std::map<unsigned int, const ControlInfoMap &> &entityControls,
const IPAOperationData &data,
IPAOperationData *response) override;
void mapBuffers(const std::vector<IPABuffer> &buffers) override;
void unmapBuffers(const std::vector<unsigned int> &ids) override;
void processEvent(const IPAOperationData &event) override;
private:
void setMode(const CameraSensorInfo &sensorInfo);
void queueRequest(const ControlList &controls);
void returnEmbeddedBuffer(unsigned int bufferId);
void prepareISP(unsigned int bufferId);
void reportMetadata();
bool parseEmbeddedData(unsigned int bufferId, struct DeviceStatus &deviceStatus);
void processStats(unsigned int bufferId);
void applyAGC(const struct AgcStatus *agcStatus);
void applyAWB(const struct AwbStatus *awbStatus, ControlList &ctrls);
void applyDG(const struct AgcStatus *dgStatus, ControlList &ctrls);
void applyCCM(const struct CcmStatus *ccmStatus, ControlList &ctrls);
void applyBlackLevel(const struct BlackLevelStatus *blackLevelStatus, ControlList &ctrls);
void applyGamma(const struct ContrastStatus *contrastStatus, ControlList &ctrls);
void applyGEQ(const struct GeqStatus *geqStatus, ControlList &ctrls);
void applyDenoise(const struct SdnStatus *denoiseStatus, ControlList &ctrls);
void applySharpen(const struct SharpenStatus *sharpenStatus, ControlList &ctrls);
void applyDPC(const struct DpcStatus *dpcStatus, ControlList &ctrls);
void applyLS(const struct AlscStatus *lsStatus, ControlList &ctrls);
void resampleTable(uint16_t dest[], double const src[12][16], int dest_w, int dest_h);
std::map<unsigned int, FrameBuffer> buffers_;
std::map<unsigned int, void *> buffersMemory_;
ControlInfoMap unicam_ctrls_;
ControlInfoMap isp_ctrls_;
ControlList libcameraMetadata_;
/* IPA configuration. */
std::string tuningFile_;
/* Camera sensor params. */
CameraMode mode_;
CameraMode lastMode_;
/* Raspberry Pi controller specific defines. */
std::unique_ptr<RPi::CamHelper> helper_;
RPi::Controller controller_;
bool controllerInit_;
RPi::Metadata rpiMetadata_;
/*
* We count frames to decide if the frame must be hidden (e.g. from
* display) or mistrusted (i.e. not given to the control algos).
*/
uint64_t frame_count_;
/* For checking the sequencing of Prepare/Process calls. */
uint64_t check_count_;
/* How many frames the pipeline handler should hide, or "drop". */
unsigned int hide_count_;
/* How many frames we should avoid running control algos on. */
unsigned int mistrust_count_;
/* LS table allocation passed in from the pipeline handler. */
uint32_t lsTableHandle_;
void *lsTable_;
};
int IPARPi::init(const IPASettings &settings)
{
tuningFile_ = settings.configurationFile;
return 0;
}
void IPARPi::setMode(const CameraSensorInfo &sensorInfo)
{
mode_.bitdepth = sensorInfo.bitsPerPixel;
mode_.width = sensorInfo.outputSize.width;
mode_.height = sensorInfo.outputSize.height;
mode_.sensor_width = sensorInfo.activeAreaSize.width;
mode_.sensor_height = sensorInfo.activeAreaSize.height;
mode_.crop_x = sensorInfo.analogCrop.x;
mode_.crop_y = sensorInfo.analogCrop.y;
/*
* Calculate scaling parameters. The scale_[xy] factors are determined
* by the ratio between the crop rectangle size and the output size.
*/
mode_.scale_x = sensorInfo.analogCrop.width / sensorInfo.outputSize.width;
mode_.scale_y = sensorInfo.analogCrop.height / sensorInfo.outputSize.height;
/*
* We're not told by the pipeline handler how scaling is split between
* binning and digital scaling. For now, as a heuristic, assume that
* downscaling up to 2 is achieved through binning, and that any
* additional scaling is achieved through digital scaling.
*
* \todo Get the pipeline handle to provide the full data
*/
mode_.bin_y = std::min(2, static_cast<int>(mode_.scale_x));
mode_.bin_y = std::min(2, static_cast<int>(mode_.scale_y));
/* The noise factor is the square root of the total binning factor. */
mode_.noise_factor = sqrt(mode_.bin_x * mode_.bin_y);
/*
* Calculate the line length in nanoseconds as the ratio between
* the line length in pixels and the pixel rate.
*/
mode_.line_length = 1e9 * sensorInfo.lineLength / sensorInfo.pixelRate;
}
void IPARPi::configure(const CameraSensorInfo &sensorInfo,
const std::map<unsigned int, IPAStream> &streamConfig,
const std::map<unsigned int, const ControlInfoMap &> &entityControls,
const IPAOperationData &ipaConfig,
IPAOperationData *result)
{
if (entityControls.empty())
return;
unicam_ctrls_ = entityControls.at(0);
isp_ctrls_ = entityControls.at(1);
/* Setup a metadata ControlList to output metadata. */
libcameraMetadata_ = ControlList(controls::controls);
/*
* Load the "helper" for this sensor. This tells us all the device specific stuff
* that the kernel driver doesn't. We only do this the first time; we don't need
* to re-parse the metadata after a simple mode-switch for no reason.
*/
std::string cameraName(sensorInfo.model);
if (!helper_) {
helper_ = std::unique_ptr<RPi::CamHelper>(RPi::CamHelper::Create(cameraName));
/*
* Pass out the sensor config to the pipeline handler in order
* to setup the staggered writer class.
*/
int gainDelay, exposureDelay, sensorMetadata;
helper_->GetDelays(exposureDelay, gainDelay);
sensorMetadata = helper_->SensorEmbeddedDataPresent();
IPAOperationData op;
op.operation = RPI_IPA_ACTION_SET_SENSOR_CONFIG;
op.data.push_back(gainDelay);
op.data.push_back(exposureDelay);
op.data.push_back(sensorMetadata);
queueFrameAction.emit(0, op);
}
/* Re-assemble camera mode using the sensor info. */
setMode(sensorInfo);
/* Pass the camera mode to the CamHelper to setup algorithms. */
helper_->SetCameraMode(mode_);
/*
* Initialise frame counts, and decide how many frames must be hidden or
*"mistrusted", which depends on whether this is a startup from cold,
* or merely a mode switch in a running system.
*/
frame_count_ = 0;
check_count_ = 0;
if (controllerInit_) {
hide_count_ = helper_->HideFramesModeSwitch();
mistrust_count_ = helper_->MistrustFramesModeSwitch();
} else {
hide_count_ = helper_->HideFramesStartup();
mistrust_count_ = helper_->MistrustFramesStartup();
}
struct AgcStatus agcStatus;
/* These zero values mean not program anything (unless overwritten). */
agcStatus.shutter_time = 0.0;
agcStatus.analogue_gain = 0.0;
if (!controllerInit_) {
/* Load the tuning file for this sensor. */
controller_.Read(tuningFile_.c_str());
controller_.Initialise();
controllerInit_ = true;
/* Supply initial values for gain and exposure. */
agcStatus.shutter_time = DEFAULT_EXPOSURE_TIME;
agcStatus.analogue_gain = DEFAULT_ANALOGUE_GAIN;
}
RPi::Metadata metadata;
controller_.SwitchMode(mode_, &metadata);
/* SwitchMode may supply updated exposure/gain values to use. */
metadata.Get("agc.status", agcStatus);
if (agcStatus.shutter_time != 0.0 && agcStatus.analogue_gain != 0.0)
applyAGC(&agcStatus);
lastMode_ = mode_;
}
void IPARPi::mapBuffers(const std::vector<IPABuffer> &buffers)
{
for (const IPABuffer &buffer : buffers) {
auto elem = buffers_.emplace(std::piecewise_construct,
std::forward_as_tuple(buffer.id),
std::forward_as_tuple(buffer.planes));
const FrameBuffer &fb = elem.first->second;
buffersMemory_[buffer.id] = mmap(nullptr, fb.planes()[0].length,
PROT_READ | PROT_WRITE, MAP_SHARED,
fb.planes()[0].fd.fd(), 0);
if (buffersMemory_[buffer.id] == MAP_FAILED) {
int ret = -errno;
LOG(IPARPI, Fatal) << "Failed to mmap buffer: " << strerror(-ret);
}
}
}
void IPARPi::unmapBuffers(const std::vector<unsigned int> &ids)
{
for (unsigned int id : ids) {
const auto fb = buffers_.find(id);
if (fb == buffers_.end())
continue;
munmap(buffersMemory_[id], fb->second.planes()[0].length);
buffersMemory_.erase(id);
buffers_.erase(id);
}
}
void IPARPi::processEvent(const IPAOperationData &event)
{
switch (event.operation) {
case RPI_IPA_EVENT_SIGNAL_STAT_READY: {
unsigned int bufferId = event.data[0];
if (++check_count_ != frame_count_) /* assert here? */
LOG(IPARPI, Error) << "WARNING: Prepare/Process mismatch!!!";
if (frame_count_ > mistrust_count_)
processStats(bufferId);
reportMetadata();
IPAOperationData op;
op.operation = RPI_IPA_ACTION_STATS_METADATA_COMPLETE;
op.data = { bufferId & RPiIpaMask::ID };
op.controls = { libcameraMetadata_ };
queueFrameAction.emit(0, op);
break;
}
case RPI_IPA_EVENT_SIGNAL_ISP_PREPARE: {
unsigned int embeddedbufferId = event.data[0];
unsigned int bayerbufferId = event.data[1];
/*
* At start-up, or after a mode-switch, we may want to
* avoid running the control algos for a few frames in case
* they are "unreliable".
*/
prepareISP(embeddedbufferId);
/* Ready to push the input buffer into the ISP. */
IPAOperationData op;
if (++frame_count_ > hide_count_)
op.operation = RPI_IPA_ACTION_RUN_ISP;
else
op.operation = RPI_IPA_ACTION_RUN_ISP_AND_DROP_FRAME;
op.data = { bayerbufferId & RPiIpaMask::ID };
queueFrameAction.emit(0, op);
break;
}
case RPI_IPA_EVENT_QUEUE_REQUEST: {
queueRequest(event.controls[0]);
break;
}
case RPI_IPA_EVENT_LS_TABLE_ALLOCATION: {
lsTable_ = reinterpret_cast<void *>(event.data[0]);
lsTableHandle_ = event.data[1];
break;
}
default:
LOG(IPARPI, Error) << "Unknown event " << event.operation;
break;
}
}
void IPARPi::reportMetadata()
{
std::unique_lock<RPi::Metadata> lock(rpiMetadata_);
/*
* Certain information about the current frame and how it will be
* processed can be extracted and placed into the libcamera metadata
* buffer, where an application could query it.
*/
DeviceStatus *deviceStatus = rpiMetadata_.GetLocked<DeviceStatus>("device.status");
if (deviceStatus) {
libcameraMetadata_.set(controls::ExposureTime, deviceStatus->shutter_speed);
libcameraMetadata_.set(controls::AnalogueGain, deviceStatus->analogue_gain);
}
AgcStatus *agcStatus = rpiMetadata_.GetLocked<AgcStatus>("agc.status");
if (agcStatus)
libcameraMetadata_.set(controls::AeLocked, agcStatus->locked);
LuxStatus *luxStatus = rpiMetadata_.GetLocked<LuxStatus>("lux.status");
if (luxStatus)
libcameraMetadata_.set(controls::Lux, luxStatus->lux);
AwbStatus *awbStatus = rpiMetadata_.GetLocked<AwbStatus>("awb.status");
if (awbStatus) {
libcameraMetadata_.set(controls::ColourGains, { static_cast<float>(awbStatus->gain_r),
static_cast<float>(awbStatus->gain_b) });
libcameraMetadata_.set(controls::ColourTemperature, awbStatus->temperature_K);
}
BlackLevelStatus *blackLevelStatus = rpiMetadata_.GetLocked<BlackLevelStatus>("black_level.status");
if (blackLevelStatus)
libcameraMetadata_.set(controls::SensorBlackLevels,
{ static_cast<int32_t>(blackLevelStatus->black_level_r),
static_cast<int32_t>(blackLevelStatus->black_level_g),
static_cast<int32_t>(blackLevelStatus->black_level_g),
static_cast<int32_t>(blackLevelStatus->black_level_b) });
FocusStatus *focusStatus = rpiMetadata_.GetLocked<FocusStatus>("focus.status");
if (focusStatus && focusStatus->num == 12) {
/*
* We get a 4x3 grid of regions by default. Calculate the average
* FoM over the central two positions to give an overall scene FoM.
* This can change later if it is not deemed suitable.
*/
int32_t focusFoM = (focusStatus->focus_measures[5] + focusStatus->focus_measures[6]) / 2;
libcameraMetadata_.set(controls::FocusFoM, focusFoM);
}
}
/*
* Converting between enums (used in the libcamera API) and the names that
* we use to identify different modes. Unfortunately, the conversion tables
* must be kept up-to-date by hand.
*/
static const std::map<int32_t, std::string> MeteringModeTable = {
{ controls::MeteringCentreWeighted, "centre-weighted" },
{ controls::MeteringSpot, "spot" },
{ controls::MeteringMatrix, "matrix" },
{ controls::MeteringCustom, "custom" },
};
static const std::map<int32_t, std::string> ConstraintModeTable = {
{ controls::ConstraintNormal, "normal" },
{ controls::ConstraintHighlight, "highlight" },
{ controls::ConstraintCustom, "custom" },
};
static const std::map<int32_t, std::string> ExposureModeTable = {
{ controls::ExposureNormal, "normal" },
{ controls::ExposureShort, "short" },
{ controls::ExposureLong, "long" },
{ controls::ExposureCustom, "custom" },
};
static const std::map<int32_t, std::string> AwbModeTable = {
{ controls::AwbAuto, "normal" },
{ controls::AwbIncandescent, "incandescent" },
{ controls::AwbTungsten, "tungsten" },
{ controls::AwbFluorescent, "fluorescent" },
{ controls::AwbIndoor, "indoor" },
{ controls::AwbDaylight, "daylight" },
{ controls::AwbCustom, "custom" },
};
void IPARPi::queueRequest(const ControlList &controls)
{
/* Clear the return metadata buffer. */
libcameraMetadata_.clear();
for (auto const &ctrl : controls) {
LOG(IPARPI, Info) << "Request ctrl: "
<< controls::controls.at(ctrl.first)->name()
<< " = " << ctrl.second.toString();
switch (ctrl.first) {
case controls::AE_ENABLE: {
RPi::Algorithm *agc = controller_.GetAlgorithm("agc");
ASSERT(agc);
if (ctrl.second.get<bool>() == false)
agc->Pause();
else
agc->Resume();
libcameraMetadata_.set(controls::AeEnable, ctrl.second.get<bool>());
break;
}
case controls::EXPOSURE_TIME: {
RPi::AgcAlgorithm *agc = dynamic_cast<RPi::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
ASSERT(agc);
/* This expects units of micro-seconds. */
agc->SetFixedShutter(ctrl.second.get<int32_t>());
/* For the manual values to take effect, AGC must be unpaused. */
if (agc->IsPaused())
agc->Resume();
libcameraMetadata_.set(controls::ExposureTime, ctrl.second.get<int32_t>());
break;
}
case controls::ANALOGUE_GAIN: {
RPi::AgcAlgorithm *agc = dynamic_cast<RPi::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
ASSERT(agc);
agc->SetFixedAnalogueGain(ctrl.second.get<float>());
/* For the manual values to take effect, AGC must be unpaused. */
if (agc->IsPaused())
agc->Resume();
libcameraMetadata_.set(controls::AnalogueGain,
ctrl.second.get<float>());
break;
}
case controls::AE_METERING_MODE: {
RPi::AgcAlgorithm *agc = dynamic_cast<RPi::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
ASSERT(agc);
int32_t idx = ctrl.second.get<int32_t>();
if (MeteringModeTable.count(idx)) {
agc->SetMeteringMode(MeteringModeTable.at(idx));
libcameraMetadata_.set(controls::AeMeteringMode, idx);
} else {
LOG(IPARPI, Error) << "Metering mode " << idx
<< " not recognised";
}
break;
}
case controls::AE_CONSTRAINT_MODE: {
RPi::AgcAlgorithm *agc = dynamic_cast<RPi::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
ASSERT(agc);
int32_t idx = ctrl.second.get<int32_t>();
if (ConstraintModeTable.count(idx)) {
agc->SetConstraintMode(ConstraintModeTable.at(idx));
libcameraMetadata_.set(controls::AeConstraintMode, idx);
} else {
LOG(IPARPI, Error) << "Constraint mode " << idx
<< " not recognised";
}
break;
}
case controls::AE_EXPOSURE_MODE: {
RPi::AgcAlgorithm *agc = dynamic_cast<RPi::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
ASSERT(agc);
int32_t idx = ctrl.second.get<int32_t>();
if (ExposureModeTable.count(idx)) {
agc->SetExposureMode(ExposureModeTable.at(idx));
libcameraMetadata_.set(controls::AeExposureMode, idx);
} else {
LOG(IPARPI, Error) << "Exposure mode " << idx
<< " not recognised";
}
break;
}
case controls::EXPOSURE_VALUE: {
RPi::AgcAlgorithm *agc = dynamic_cast<RPi::AgcAlgorithm *>(
controller_.GetAlgorithm("agc"));
ASSERT(agc);
/*
* The SetEv() method takes in a direct exposure multiplier.
* So convert to 2^EV
*/
double ev = pow(2.0, ctrl.second.get<float>());
agc->SetEv(ev);
libcameraMetadata_.set(controls::ExposureValue,
ctrl.second.get<float>());
break;
}
case controls::AWB_ENABLE: {
RPi::Algorithm *awb = controller_.GetAlgorithm("awb");
ASSERT(awb);
if (ctrl.second.get<bool>() == false)
awb->Pause();
else
awb->Resume();
libcameraMetadata_.set(controls::AwbEnable,
ctrl.second.get<bool>());
break;
}
case controls::AWB_MODE: {
RPi::AwbAlgorithm *awb = dynamic_cast<RPi::AwbAlgorithm *>(
controller_.GetAlgorithm("awb"));
ASSERT(awb);
int32_t idx = ctrl.second.get<int32_t>();
if (AwbModeTable.count(idx)) {
awb->SetMode(AwbModeTable.at(idx));
libcameraMetadata_.set(controls::AwbMode, idx);
} else {
LOG(IPARPI, Error) << "AWB mode " << idx
<< " not recognised";
}
break;
}
case controls::COLOUR_GAINS: {
auto gains = ctrl.second.get<Span<const float>>();
RPi::AwbAlgorithm *awb = dynamic_cast<RPi::AwbAlgorithm *>(
controller_.GetAlgorithm("awb"));
ASSERT(awb);
awb->SetManualGains(gains[0], gains[1]);
if (gains[0] != 0.0f && gains[1] != 0.0f)
/* A gain of 0.0f will switch back to auto mode. */
libcameraMetadata_.set(controls::ColourGains,
{ gains[0], gains[1] });
break;
}
case controls::BRIGHTNESS: {
RPi::ContrastAlgorithm *contrast = dynamic_cast<RPi::ContrastAlgorithm *>(
controller_.GetAlgorithm("contrast"));
ASSERT(contrast);
contrast->SetBrightness(ctrl.second.get<float>() * 65536);
libcameraMetadata_.set(controls::Brightness,
ctrl.second.get<float>());
break;
}
case controls::CONTRAST: {
RPi::ContrastAlgorithm *contrast = dynamic_cast<RPi::ContrastAlgorithm *>(
controller_.GetAlgorithm("contrast"));
ASSERT(contrast);
contrast->SetContrast(ctrl.second.get<float>());
libcameraMetadata_.set(controls::Contrast,
ctrl.second.get<float>());
break;
}
case controls::SATURATION: {
RPi::CcmAlgorithm *ccm = dynamic_cast<RPi::CcmAlgorithm *>(
controller_.GetAlgorithm("ccm"));
ASSERT(ccm);
ccm->SetSaturation(ctrl.second.get<float>());
libcameraMetadata_.set(controls::Saturation,
ctrl.second.get<float>());
break;
}
case controls::SHARPNESS: {
RPi::SharpenAlgorithm *sharpen = dynamic_cast<RPi::SharpenAlgorithm *>(
controller_.GetAlgorithm("sharpen"));
ASSERT(sharpen);
sharpen->SetStrength(ctrl.second.get<float>());
libcameraMetadata_.set(controls::Sharpness,
ctrl.second.get<float>());
break;
}
default:
LOG(IPARPI, Warning)
<< "Ctrl " << controls::controls.at(ctrl.first)->name()
<< " is not handled.";
break;
}
}
}
void IPARPi::returnEmbeddedBuffer(unsigned int bufferId)
{
IPAOperationData op;
op.operation = RPI_IPA_ACTION_EMBEDDED_COMPLETE;
op.data = { bufferId & RPiIpaMask::ID };
queueFrameAction.emit(0, op);
}
void IPARPi::prepareISP(unsigned int bufferId)
{
struct DeviceStatus deviceStatus = {};
bool success = parseEmbeddedData(bufferId, deviceStatus);
/* Done with embedded data now, return to pipeline handler asap. */
returnEmbeddedBuffer(bufferId);
if (success) {
ControlList ctrls(isp_ctrls_);
rpiMetadata_.Clear();
rpiMetadata_.Set("device.status", deviceStatus);
controller_.Prepare(&rpiMetadata_);
/* Lock the metadata buffer to avoid constant locks/unlocks. */
std::unique_lock<RPi::Metadata> lock(rpiMetadata_);
AwbStatus *awbStatus = rpiMetadata_.GetLocked<AwbStatus>("awb.status");
if (awbStatus)
applyAWB(awbStatus, ctrls);
CcmStatus *ccmStatus = rpiMetadata_.GetLocked<CcmStatus>("ccm.status");
if (ccmStatus)
applyCCM(ccmStatus, ctrls);
AgcStatus *dgStatus = rpiMetadata_.GetLocked<AgcStatus>("agc.status");
if (dgStatus)
applyDG(dgStatus, ctrls);
AlscStatus *lsStatus = rpiMetadata_.GetLocked<AlscStatus>("alsc.status");
if (lsStatus)
applyLS(lsStatus, ctrls);
ContrastStatus *contrastStatus = rpiMetadata_.GetLocked<ContrastStatus>("contrast.status");
if (contrastStatus)
applyGamma(contrastStatus, ctrls);
BlackLevelStatus *blackLevelStatus = rpiMetadata_.GetLocked<BlackLevelStatus>("black_level.status");
if (blackLevelStatus)
applyBlackLevel(blackLevelStatus, ctrls);
GeqStatus *geqStatus = rpiMetadata_.GetLocked<GeqStatus>("geq.status");
if (geqStatus)
applyGEQ(geqStatus, ctrls);
SdnStatus *denoiseStatus = rpiMetadata_.GetLocked<SdnStatus>("sdn.status");
if (denoiseStatus)
applyDenoise(denoiseStatus, ctrls);
SharpenStatus *sharpenStatus = rpiMetadata_.GetLocked<SharpenStatus>("sharpen.status");
if (sharpenStatus)
applySharpen(sharpenStatus, ctrls);
DpcStatus *dpcStatus = rpiMetadata_.GetLocked<DpcStatus>("dpc.status");
if (dpcStatus)
applyDPC(dpcStatus, ctrls);
if (!ctrls.empty()) {
IPAOperationData op;
op.operation = RPI_IPA_ACTION_V4L2_SET_ISP;
op.controls.push_back(ctrls);
queueFrameAction.emit(0, op);
}
}
}
bool IPARPi::parseEmbeddedData(unsigned int bufferId, struct DeviceStatus &deviceStatus)
{
auto it = buffersMemory_.find(bufferId);
if (it == buffersMemory_.end()) {
LOG(IPARPI, Error) << "Could not find embedded buffer!";
return false;
}
int size = buffers_.find(bufferId)->second.planes()[0].length;
helper_->Parser().SetBufferSize(size);
RPi::MdParser::Status status = helper_->Parser().Parse(it->second);
if (status != RPi::MdParser::Status::OK) {
LOG(IPARPI, Error) << "Embedded Buffer parsing failed, error " << status;
} else {
uint32_t exposure_lines, gain_code;
if (helper_->Parser().GetExposureLines(exposure_lines) != RPi::MdParser::Status::OK) {
LOG(IPARPI, Error) << "Exposure time failed";
return false;
}
deviceStatus.shutter_speed = helper_->Exposure(exposure_lines);
if (helper_->Parser().GetGainCode(gain_code) != RPi::MdParser::Status::OK) {
LOG(IPARPI, Error) << "Gain failed";
return false;
}
deviceStatus.analogue_gain = helper_->Gain(gain_code);
LOG(IPARPI, Debug) << "Metadata - Exposure : "
<< deviceStatus.shutter_speed << " Gain : "
<< deviceStatus.analogue_gain;
}
return true;
}
void IPARPi::processStats(unsigned int bufferId)
{
auto it = buffersMemory_.find(bufferId);
if (it == buffersMemory_.end()) {
LOG(IPARPI, Error) << "Could not find stats buffer!";
return;
}
bcm2835_isp_stats *stats = static_cast<bcm2835_isp_stats *>(it->second);
RPi::StatisticsPtr statistics = std::make_shared<bcm2835_isp_stats>(*stats);
controller_.Process(statistics, &rpiMetadata_);
struct AgcStatus agcStatus;
if (rpiMetadata_.Get("agc.status", agcStatus) == 0)
applyAGC(&agcStatus);
}
void IPARPi::applyAWB(const struct AwbStatus *awbStatus, ControlList &ctrls)
{
const auto gainR = isp_ctrls_.find(V4L2_CID_RED_BALANCE);
if (gainR == isp_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find red gain control";
return;
}
const auto gainB = isp_ctrls_.find(V4L2_CID_BLUE_BALANCE);
if (gainB == isp_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find blue gain control";
return;
}
LOG(IPARPI, Debug) << "Applying WB R: " << awbStatus->gain_r << " B: "
<< awbStatus->gain_b;
ctrls.set(V4L2_CID_RED_BALANCE,
static_cast<int32_t>(awbStatus->gain_r * 1000));
ctrls.set(V4L2_CID_BLUE_BALANCE,
static_cast<int32_t>(awbStatus->gain_b * 1000));
}
void IPARPi::applyAGC(const struct AgcStatus *agcStatus)
{
IPAOperationData op;
op.operation = RPI_IPA_ACTION_V4L2_SET_STAGGERED;
int32_t gain_code = helper_->GainCode(agcStatus->analogue_gain);
int32_t exposure_lines = helper_->ExposureLines(agcStatus->shutter_time);
if (unicam_ctrls_.find(V4L2_CID_ANALOGUE_GAIN) == unicam_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find analogue gain control";
return;
}
if (unicam_ctrls_.find(V4L2_CID_EXPOSURE) == unicam_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find exposure control";
return;
}
LOG(IPARPI, Debug) << "Applying AGC Exposure: " << agcStatus->shutter_time
<< " (Shutter lines: " << exposure_lines << ") Gain: "
<< agcStatus->analogue_gain << " (Gain Code: "
<< gain_code << ")";
ControlList ctrls(unicam_ctrls_);
ctrls.set(V4L2_CID_ANALOGUE_GAIN, gain_code);
ctrls.set(V4L2_CID_EXPOSURE, exposure_lines);
op.controls.push_back(ctrls);
queueFrameAction.emit(0, op);
}
void IPARPi::applyDG(const struct AgcStatus *dgStatus, ControlList &ctrls)
{
if (isp_ctrls_.find(V4L2_CID_DIGITAL_GAIN) == isp_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find digital gain control";
return;
}
ctrls.set(V4L2_CID_DIGITAL_GAIN,
static_cast<int32_t>(dgStatus->digital_gain * 1000));
}
void IPARPi::applyCCM(const struct CcmStatus *ccmStatus, ControlList &ctrls)
{
if (isp_ctrls_.find(V4L2_CID_USER_BCM2835_ISP_CC_MATRIX) == isp_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find CCM control";
return;
}
bcm2835_isp_custom_ccm ccm;
for (int i = 0; i < 9; i++) {
ccm.ccm.ccm[i / 3][i % 3].den = 1000;
ccm.ccm.ccm[i / 3][i % 3].num = 1000 * ccmStatus->matrix[i];
}
ccm.enabled = 1;
ccm.ccm.offsets[0] = ccm.ccm.offsets[1] = ccm.ccm.offsets[2] = 0;
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&ccm),
sizeof(ccm) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_CC_MATRIX, c);
}
void IPARPi::applyGamma(const struct ContrastStatus *contrastStatus, ControlList &ctrls)
{
if (isp_ctrls_.find(V4L2_CID_USER_BCM2835_ISP_GAMMA) == isp_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find Gamma control";
return;
}
struct bcm2835_isp_gamma gamma;
gamma.enabled = 1;
for (int i = 0; i < CONTRAST_NUM_POINTS; i++) {
gamma.x[i] = contrastStatus->points[i].x;
gamma.y[i] = contrastStatus->points[i].y;
}
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&gamma),
sizeof(gamma) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_GAMMA, c);
}
void IPARPi::applyBlackLevel(const struct BlackLevelStatus *blackLevelStatus, ControlList &ctrls)
{
if (isp_ctrls_.find(V4L2_CID_USER_BCM2835_ISP_BLACK_LEVEL) == isp_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find black level control";
return;
}
bcm2835_isp_black_level blackLevel;
blackLevel.enabled = 1;
blackLevel.black_level_r = blackLevelStatus->black_level_r;
blackLevel.black_level_g = blackLevelStatus->black_level_g;
blackLevel.black_level_b = blackLevelStatus->black_level_b;
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&blackLevel),
sizeof(blackLevel) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_BLACK_LEVEL, c);
}
void IPARPi::applyGEQ(const struct GeqStatus *geqStatus, ControlList &ctrls)
{
if (isp_ctrls_.find(V4L2_CID_USER_BCM2835_ISP_GEQ) == isp_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find geq control";
return;
}
bcm2835_isp_geq geq;
geq.enabled = 1;
geq.offset = geqStatus->offset;
geq.slope.den = 1000;
geq.slope.num = 1000 * geqStatus->slope;
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&geq),
sizeof(geq) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_GEQ, c);
}
void IPARPi::applyDenoise(const struct SdnStatus *denoiseStatus, ControlList &ctrls)
{
if (isp_ctrls_.find(V4L2_CID_USER_BCM2835_ISP_DENOISE) == isp_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find denoise control";
return;
}
bcm2835_isp_denoise denoise;
denoise.enabled = 1;
denoise.constant = denoiseStatus->noise_constant;
denoise.slope.num = 1000 * denoiseStatus->noise_slope;
denoise.slope.den = 1000;
denoise.strength.num = 1000 * denoiseStatus->strength;
denoise.strength.den = 1000;
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&denoise),
sizeof(denoise) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_DENOISE, c);
}
void IPARPi::applySharpen(const struct SharpenStatus *sharpenStatus, ControlList &ctrls)
{
if (isp_ctrls_.find(V4L2_CID_USER_BCM2835_ISP_SHARPEN) == isp_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find sharpen control";
return;
}
bcm2835_isp_sharpen sharpen;
sharpen.enabled = 1;
sharpen.threshold.num = 1000 * sharpenStatus->threshold;
sharpen.threshold.den = 1000;
sharpen.strength.num = 1000 * sharpenStatus->strength;
sharpen.strength.den = 1000;
sharpen.limit.num = 1000 * sharpenStatus->limit;
sharpen.limit.den = 1000;
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&sharpen),
sizeof(sharpen) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_SHARPEN, c);
}
void IPARPi::applyDPC(const struct DpcStatus *dpcStatus, ControlList &ctrls)
{
if (isp_ctrls_.find(V4L2_CID_USER_BCM2835_ISP_DPC) == isp_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find DPC control";
return;
}
bcm2835_isp_dpc dpc;
dpc.enabled = 1;
dpc.strength = dpcStatus->strength;
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&dpc),
sizeof(dpc) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_DPC, c);
}
void IPARPi::applyLS(const struct AlscStatus *lsStatus, ControlList &ctrls)
{
if (isp_ctrls_.find(V4L2_CID_USER_BCM2835_ISP_LENS_SHADING) == isp_ctrls_.end()) {
LOG(IPARPI, Error) << "Can't find LS control";
return;
}
/*
* Program lens shading tables into pipeline.
* Choose smallest cell size that won't exceed 63x48 cells.
*/
const int cell_sizes[] = { 16, 32, 64, 128, 256 };
unsigned int num_cells = ARRAY_SIZE(cell_sizes);
unsigned int i, w, h, cell_size;
for (i = 0; i < num_cells; i++) {
cell_size = cell_sizes[i];
w = (mode_.width + cell_size - 1) / cell_size;
h = (mode_.height + cell_size - 1) / cell_size;
if (w < 64 && h <= 48)
break;
}
if (i == num_cells) {
LOG(IPARPI, Error) << "Cannot find cell size";
return;
}
/* We're going to supply corner sampled tables, 16 bit samples. */
w++, h++;
bcm2835_isp_lens_shading ls = {
.enabled = 1,
.grid_cell_size = cell_size,
.grid_width = w,
.grid_stride = w,
.grid_height = h,
.mem_handle_table = lsTableHandle_,
.ref_transform = 0,
.corner_sampled = 1,
.gain_format = GAIN_FORMAT_U4P10
};
if (!lsTable_ || w * h * 4 * sizeof(uint16_t) > MAX_LS_GRID_SIZE) {
LOG(IPARPI, Error) << "Do not have a correctly allocate lens shading table!";
return;
}
if (lsStatus) {
/* Format will be u4.10 */
uint16_t *grid = static_cast<uint16_t *>(lsTable_);
resampleTable(grid, lsStatus->r, w, h);
resampleTable(grid + w * h, lsStatus->g, w, h);
std::memcpy(grid + 2 * w * h, grid + w * h, w * h * sizeof(uint16_t));
resampleTable(grid + 3 * w * h, lsStatus->b, w, h);
}
ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&ls),
sizeof(ls) });
ctrls.set(V4L2_CID_USER_BCM2835_ISP_LENS_SHADING, c);
}
/*
* Resamples a 16x12 table with central sampling to dest_w x dest_h with corner
* sampling.
*/
void IPARPi::resampleTable(uint16_t dest[], double const src[12][16],
int dest_w, int dest_h)
{
/*
* Precalculate and cache the x sampling locations and phases to
* save recomputing them on every row.
*/
assert(dest_w > 1 && dest_h > 1 && dest_w <= 64);
int x_lo[64], x_hi[64];
double xf[64];
double x = -0.5, x_inc = 16.0 / (dest_w - 1);
for (int i = 0; i < dest_w; i++, x += x_inc) {
x_lo[i] = floor(x);
xf[i] = x - x_lo[i];
x_hi[i] = x_lo[i] < 15 ? x_lo[i] + 1 : 15;
x_lo[i] = x_lo[i] > 0 ? x_lo[i] : 0;
}
/* Now march over the output table generating the new values. */
double y = -0.5, y_inc = 12.0 / (dest_h - 1);
for (int j = 0; j < dest_h; j++, y += y_inc) {
int y_lo = floor(y);
double yf = y - y_lo;
int y_hi = y_lo < 11 ? y_lo + 1 : 11;
y_lo = y_lo > 0 ? y_lo : 0;
double const *row_above = src[y_lo];
double const *row_below = src[y_hi];
for (int i = 0; i < dest_w; i++) {
double above = row_above[x_lo[i]] * (1 - xf[i])
+ row_above[x_hi[i]] * xf[i];
double below = row_below[x_lo[i]] * (1 - xf[i])
+ row_below[x_hi[i]] * xf[i];
int result = floor(1024 * (above * (1 - yf) + below * yf) + .5);
*(dest++) = result > 16383 ? 16383 : result; /* want u4.10 */
}
}
}
/*
* External IPA module interface
*/
extern "C" {
const struct IPAModuleInfo ipaModuleInfo = {
IPA_MODULE_API_VERSION,
1,
"PipelineHandlerRPi",
"raspberrypi",
};
struct ipa_context *ipaCreate()
{
return new IPAInterfaceWrapper(std::make_unique<IPARPi>());
}
}; /* extern "C" */
} /* namespace libcamera */
|