summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/controller/rpi/awb.hpp
blob: 021aafa9771c623f5605d34ce4fcf3096b0e6008 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi (Trading) Limited
 *
 * awb.hpp - AWB control algorithm
 */
#pragma once

#include <mutex>
#include <condition_variable>
#include <thread>

#include "../awb_algorithm.hpp"
#include "../pwl.hpp"
#include "../awb_status.h"

namespace RPiController {

// Control algorithm to perform AWB calculations.

struct AwbMode {
	void read(boost::property_tree::ptree const &params);
	double ctLo; // low CT value for search
	double ctHi; // high CT value for search
};

struct AwbPrior {
	void read(boost::property_tree::ptree const &params);
	double lux; // lux level
	Pwl prior; // maps CT to prior log likelihood for this lux level
};

struct AwbConfig {
	AwbConfig() : defaultMode(nullptr) {}
	void read(boost::property_tree::ptree const &params);
	// Only repeat the AWB calculation every "this many" frames
	uint16_t framePeriod;
	// number of initial frames for which speed taken as 1.0 (maximum)
	uint16_t startupFrames;
	unsigned int convergenceFrames; // approx number of frames to converge
	double speed; // IIR filter speed applied to algorithm results
	bool fast; // "fast" mode uses a 16x16 rather than 32x32 grid
	Pwl ctR; // function maps CT to r (= R/G)
	Pwl ctB; // function maps CT to b (= B/G)
	// table of illuminant priors at different lux levels
	std::vector<AwbPrior> priors;
	// AWB "modes" (determines the search range)
	std::map<std::string, AwbMode> modes;
	AwbMode *defaultMode; // mode used if no mode selected
	// minimum proportion of pixels counted within AWB region for it to be
	// "useful"
	double minPixels;
	// minimum G value of those pixels, to be regarded a "useful"
	uint16_t minG;
	// number of AWB regions that must be "useful" in order to do the AWB
	// calculation
	uint32_t minRegions;
	// clamp on colour error term (so as not to penalise non-grey excessively)
	double deltaLimit;
	// step size control in coarse search
	double coarseStep;
	// how far to wander off CT curve towards "more purple"
	double transversePos;
	// how far to wander off CT curve towards "more green"
	double transverseNeg;
	// red sensitivity ratio (set to canonical sensor's R/G divided by this
	// sensor's R/G)
	double sensitivityR;
	// blue sensitivity ratio (set to canonical sensor's B/G divided by this
	// sensor's B/G)
	double sensitivityB;
	// The whitepoint (which we normally "aim" for) can be moved.
	double whitepointR;
	double whitepointB;
	bool bayes; // use Bayesian algorithm
};

class Awb : public AwbAlgorithm
{
public:
	Awb(Controller *controller = NULL);
	~Awb();
	char const *name() const override;
	void initialise() override;
	void read(boost::property_tree::ptree const &params) override;
	// AWB handles "pausing" for itself.
	bool isPaused() const override;
	void pause() override;
	void resume() override;
	unsigned int getConvergenceFrames() const override;
	void setMode(std::string const &name) override;
	void setManualGains(double manualR, double manualB) override;
	void switchMode(CameraMode const &cameraMode, Metadata *metadata) override;
	void prepare(Metadata *imageMetadata) override;
	void process(StatisticsPtr &stats, Metadata *imageMetadata) override;
	struct RGB {
		RGB(double r = 0, double g = 0, double b = 0)
			: R(r), G(g), B(b)
		{
		}
		double R, G, B;
		RGB &operator+=(RGB const &other)
		{
			R += other.R, G += other.G, B += other.B;
			return *this;
		}
	};

private:
	bool isAutoEnabled() const;
	// configuration is read-only, and available to both threads
	AwbConfig config_;
	std::thread asyncThread_;
	void asyncFunc(); // asynchronous thread function
	std::mutex mutex_;
	// condvar for async thread to wait on
	std::condition_variable asyncSignal_;
	// condvar for synchronous thread to wait on
	std::condition_variable syncSignal_;
	// for sync thread to check  if async thread finished (requires mutex)
	bool asyncFinished_;
	// for async thread to check if it's been told to run (requires mutex)
	bool asyncStart_;
	// for async thread to check if it's been told to quit (requires mutex)
	bool asyncAbort_;

	// The following are only for the synchronous thread to use:
	// for sync thread to note its has asked async thread to run
	bool asyncStarted_;
	// counts up to framePeriod before restarting the async thread
	int framePhase_;
	int frameCount_; // counts up to startup_frames
	AwbStatus syncResults_;
	AwbStatus prevSyncResults_;
	std::string modeName_;
	// The following are for the asynchronous thread to use, though the main
	// thread can set/reset them if the async thread is known to be idle:
	void restartAsync(StatisticsPtr &stats, double lux);
	// copy out the results from the async thread so that it can be restarted
	void fetchAsyncResults();
	StatisticsPtr statistics_;
	AwbMode *mode_;
	double lux_;
	AwbStatus asyncResults_;
	void doAwb();
	void awbBayes();
	void awbGrey();
	void prepareStats();
	double computeDelta2Sum(double gainR, double gainB);
	Pwl interpolatePrior();
	double coarseSearch(Pwl const &prior);
	void fineSearch(double &t, double &r, double &b, Pwl const &prior);
	std::vector<RGB> zones_;
	std::vector<Pwl::Point> points_;
	// manual r setting
	double manualR_;
	// manual b setting
	double manualB_;
	bool firstSwitchMode_; // is this the first call to SwitchMode?
};

static inline Awb::RGB operator+(Awb::RGB const &a, Awb::RGB const &b)
{
	return Awb::RGB(a.R + b.R, a.G + b.G, a.B + b.B);
}
static inline Awb::RGB operator-(Awb::RGB const &a, Awb::RGB const &b)
{
	return Awb::RGB(a.R - b.R, a.G - b.G, a.B - b.B);
}
static inline Awb::RGB operator*(double d, Awb::RGB const &rgb)
{
	return Awb::RGB(d * rgb.R, d * rgb.G, d * rgb.B);
}
static inline Awb::RGB operator*(Awb::RGB const &rgb, double d)
{
	return d * rgb;
}

} // namespace RPiController