summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/controller/pwl.hpp
blob: 484672f640954bb080479f1fb4ddca2523438a12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi (Trading) Limited
 *
 * pwl.hpp - piecewise linear functions interface
 */
#pragma once

#include <math.h>
#include <vector>

#include <boost/property_tree/ptree.hpp>

namespace RPiController {

class Pwl
{
public:
	struct Interval {
		Interval(double _start, double _end) : start(_start), end(_end)
		{
		}
		double start, end;
		bool Contains(double value)
		{
			return value >= start && value <= end;
		}
		double Clip(double value)
		{
			return value < start ? start
					     : (value > end ? end : value);
		}
		double Len() const { return end - start; }
	};
	struct Point {
		Point() : x(0), y(0) {}
		Point(double _x, double _y) : x(_x), y(_y) {}
		double x, y;
		Point operator-(Point const &p) const
		{
			return Point(x - p.x, y - p.y);
		}
		Point operator+(Point const &p) const
		{
			return Point(x + p.x, y + p.y);
		}
		double operator%(Point const &p) const
		{
			return x * p.x + y * p.y;
		}
		Point operator*(double f) const { return Point(x * f, y * f); }
		Point operator/(double f) const { return Point(x / f, y / f); }
		double Len2() const { return x * x + y * y; }
		double Len() const { return sqrt(Len2()); }
	};
	Pwl() {}
	Pwl(std::vector<Point> const &points) : points_(points) {}
	void Read(boost::property_tree::ptree const &params);
	void Append(double x, double y, const double eps = 1e-6);
	void Prepend(double x, double y, const double eps = 1e-6);
	Interval Domain() const;
	Interval Range() const;
	bool Empty() const;
	// Evaluate Pwl, optionally supplying an initial guess for the
	// "span". The "span" may be optionally be updated.  If you want to know
	// the "span" value but don't have an initial guess you can set it to
	// -1.
	double Eval(double x, int *span_ptr = nullptr,
		    bool update_span = true) const;
	// Find perpendicular closest to xy, starting from span+1 so you can
	// call it repeatedly to check for multiple closest points (set span to
	// -1 on the first call). Also returns "pseudo" perpendiculars; see
	// PerpType enum.
	enum class PerpType {
		None, // no perpendicular found
		Start, // start of Pwl is closest point
		End, // end of Pwl is closest point
		Vertex, // vertex of Pwl is closest point
		Perpendicular // true perpendicular found
	};
	PerpType Invert(Point const &xy, Point &perp, int &span,
			const double eps = 1e-6) const;
	// Compute the inverse function. Indicate if it is a proper (true)
	// inverse, or only a best effort (e.g. input was non-monotonic).
	Pwl Inverse(bool *true_inverse = nullptr, const double eps = 1e-6) const;
	// Compose two Pwls together, doing "this" first and "other" after.
	Pwl Compose(Pwl const &other, const double eps = 1e-6) const;
	// Apply function to (x,y) values at every control point.
	void Map(std::function<void(double x, double y)> f) const;
	// Apply function to (x, y0, y1) values wherever either Pwl has a
	// control point.
	static void Map2(Pwl const &pwl0, Pwl const &pwl1,
			 std::function<void(double x, double y0, double y1)> f);
	// Combine two Pwls, meaning we create a new Pwl where the y values are
	// given by running f wherever either has a knot.
	static Pwl
	Combine(Pwl const &pwl0, Pwl const &pwl1,
		std::function<double(double x, double y0, double y1)> f,
		const double eps = 1e-6);
	// Make "this" match (at least) the given domain. Any extension my be
	// clipped or linear.
	void MatchDomain(Interval const &domain, bool clip = true,
			 const double eps = 1e-6);
	Pwl &operator*=(double d);
	void Debug(FILE *fp = stdout) const;

private:
	int findSpan(double x, int span) const;
	std::vector<Point> points_;
};

} // namespace RPiController
fd.reset(numFd); if (!fd.isValid() || fd.get() != fd_) { std::cout << "Failed fd check (reset assignment)" << std::endl; return TestFail; } if (!isValidFd(fd_)) { std::cout << "Failed fd validity (reset assignment)" << std::endl; return TestFail; } /* Test reset destruction. */ fd.reset(); if (fd.isValid() || fd.get() != -1) { std::cout << "Failed fd check (reset destruction)" << std::endl; return TestFail; } if (isValidFd(fd_)) { std::cout << "Failed fd validity (reset destruction)" << std::endl; return TestFail; } /* Test destruction. */ if (createFd() == TestFail) { std::cout << "Failed to recreate test fd" << std::endl; return TestFail; } { UniqueFD fd4(fd_); } if (isValidFd(fd_)) { std::cout << "Failed fd validity (destruction)" << std::endl; return TestFail; } return TestPass; } void cleanup() override { if (fd_ > 0) close(fd_); } private: int createFd() { fd_ = open("/tmp", O_TMPFILE | O_RDWR, S_IRUSR | S_IWUSR); if (fd_ < 0) return TestFail; /* Cache inode number of temp file. */ struct stat s; if (fstat(fd_, &s)) return TestFail; inodeNr_ = s.st_ino; return 0; } bool isValidFd(int fd) { struct stat s; if (fstat(fd, &s)) return false; /* Check that inode number matches cached temp file. */ return s.st_ino == inodeNr_; } int fd_; ino_t inodeNr_; }; TEST_REGISTER(UniqueFDTest)