summaryrefslogtreecommitdiff
path: root/src/ipa/libipa/camera_sensor_helper.cpp
blob: 0b0eb503d04388cc1a0d2975cd266450a6b552d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021, Google Inc.
 *
 * camera_sensor_helper.cpp - Helper class that performs sensor-specific
 * parameter computations
 */
#include "camera_sensor_helper.h"

#include <libcamera/base/log.h>

/**
 * \file camera_sensor_helper.h
 * \brief Helper class that performs sensor-specific parameter computations
 *
 * Computation of sensor configuration parameters is a sensor specific
 * operation. Each CameraHelper derived class computes the value of
 * configuration parameters, for example the analogue gain value, using
 * sensor-specific functions and constants.
 *
 * Every subclass of CameraSensorHelper shall be registered with libipa using
 * the REGISTER_CAMERA_SENSOR_HELPER() macro.
 */

namespace libcamera {

LOG_DEFINE_CATEGORY(CameraSensorHelper)

namespace ipa {

/**
 * \class CameraSensorHelper
 * \brief Base class for computing sensor tuning parameters using
 * sensor-specific constants
 *
 * Instances derived from CameraSensorHelper class are sensor-specific.
 * Each supported sensor will have an associated base class defined.
 */

/**
 * \brief Construct a CameraSensorHelper instance
 *
 * CameraSensorHelper derived class instances shall never be constructed
 * manually but always through the CameraSensorHelperFactory::create() function.
 */

/**
 * \brief Compute gain code from the analogue gain absolute value
 * \param[in] gain The real gain to pass
 *
 * This function aims to abstract the calculation of the gain letting the IPA
 * use the real gain for its estimations.
 *
 * The parameters come from the MIPI Alliance Camera Specification for
 * Camera Command Set (CCS).
 *
 * \return The gain code to pass to V4L2
 */
uint32_t CameraSensorHelper::gainCode(double gain) const
{
	ASSERT(analogueGainConstants_.m0 == 0 || analogueGainConstants_.m1 == 0);
	ASSERT(analogueGainConstants_.type == AnalogueGainLinear);

	return (analogueGainConstants_.c0 - analogueGainConstants_.c1 * gain) /
	       (analogueGainConstants_.m1 * gain - analogueGainConstants_.m0);
}

/**
 * \brief Compute the real gain from the V4L2 subdev control gain code
 * \param[in] gainCode The V4L2 subdev control gain
 *
 * This function aims to abstract the calculation of the gain letting the IPA
 * use the real gain for its estimations. It is the counterpart of the function
 * CameraSensorHelper::gainCode.
 *
 * The parameters come from the MIPI Alliance Camera Specification for
 * Camera Command Set (CCS).
 *
 * \return The real gain
 */
double CameraSensorHelper::gain(uint32_t gainCode) const
{
	ASSERT(analogueGainConstants_.m0 == 0 || analogueGainConstants_.m1 == 0);
	ASSERT(analogueGainConstants_.type == AnalogueGainLinear);

	return (analogueGainConstants_.m0 * static_cast<double>(gainCode) + analogueGainConstants_.c0) /
	       (analogueGainConstants_.m1 * static_cast<double>(gainCode) + analogueGainConstants_.c1);
}

/**
 * \enum CameraSensorHelper::AnalogueGainType
 * \brief The gain calculation modes as defined by the MIPI CCS
 *
 * Describes the image sensor analogue gain capabilities.
 * Two modes are possible, depending on the sensor: Linear and Exponential.
 */

/**
 * \var CameraSensorHelper::AnalogueGainLinear
 * \brief Gain is computed using linear gain estimation
 *
 * The relationship between the integer gain parameter and the resulting gain
 * multiplier is given by the following equation:
 *
 * \f$gain=\frac{m0x+c0}{m1x+c1}\f$
 *
 * Where 'x' is the gain control parameter, and m0, m1, c0 and c1 are
 * image-sensor-specific constants of the sensor.
 * These constants are static parameters, and for any given image sensor either
 * m0 or m1 shall be zero.
 *
 * The full Gain equation therefore reduces to either:
 *
 * \f$gain=\frac{c0}{m1x+c1}\f$ or \f$\frac{m0x+c0}{c1}\f$
 */

/**
 * \var CameraSensorHelper::AnalogueGainExponential
 * \brief Gain is computed using exponential gain estimation
 * (introduced in CCS v1.1)
 *
 * Starting with CCS v1.1, Alternate Global Analogue Gain is also available.
 * If the image sensor supports it, then the global analogue gain can be
 * controlled by linear and exponential gain formula:
 *
 * \f$gain = analogLinearGainGlobal * 2^{analogExponentialGainGlobal}\f$
 * \todo not implemented in libipa
 */

/**
 * \struct CameraSensorHelper::AnalogueGainConstants
 * \brief Analogue gain constants used for gain calculation
 */

/**
 * \var CameraSensorHelper::AnalogueGainConstants::type
 * \brief Analogue gain calculation mode
 */

/**
 * \var CameraSensorHelper::AnalogueGainConstants::m0
 * \brief Constant used in the analogue Gain coding/decoding
 *
 * \note Either m0 or m1 shall be zero.
 */

/**
 * \var CameraSensorHelper::AnalogueGainConstants::c0
 * \brief Constant used in the analogue gain coding/decoding
 */

/**
 * \var CameraSensorHelper::AnalogueGainConstants::m1
 * \brief Constant used in the analogue gain coding/decoding
 *
 * \note Either m0 or m1 shall be zero.
 */

/**
 * \var CameraSensorHelper::AnalogueGainConstants::c1
 * \brief Constant used in the analogue gain coding/decoding
 */

/**
 * \var CameraSensorHelper::analogueGainConstants_
 * \brief The analogue gain parameters used for calculation
 *
 * The analogue gain is calculated through a formula, and its parameters are
 * sensor specific. Use this variable to store the values at init time.
 */

/**
 * \class CameraSensorHelperFactory
 * \brief Registration of CameraSensorHelperFactory classes and creation of instances
 *
 * To facilitate discovery and instantiation of CameraSensorHelper classes, the
 * CameraSensorHelperFactory class maintains a registry of camera sensor helper
 * sub-classes. Each CameraSensorHelper subclass shall register itself using the
 * REGISTER_CAMERA_SENSOR_HELPER() macro, which will create a corresponding
 * instance of a CameraSensorHelperFactory subclass and register it with the
 * static list of factories.
 */

/**
 * \brief Construct a camera sensor helper factory
 * \param[in] name Name of the camera sensor helper class
 *
 * Creating an instance of the factory registers it with the global list of
 * factories, accessible through the factories() function.
 *
 * The factory \a name is used for debug purpose and shall be unique.
 */
CameraSensorHelperFactory::CameraSensorHelperFactory(const std::string name)
	: name_(name)
{
	registerType(this);
}

/**
 * \brief Create an instance of the CameraSensorHelper corresponding to
 * a named factory
 * \param[in] name Name of the factory
 *
 * \return A unique pointer to a new instance of the CameraSensorHelper subclass
 * corresponding to the named factory or a null pointer if no such factory
 * exists
 */
std::unique_ptr<CameraSensorHelper> CameraSensorHelperFactory::create(const std::string &name)
{
	std::vector<CameraSensorHelperFactory *> &factories =
		CameraSensorHelperFactory::factories();

	for (CameraSensorHelperFactory *factory : factories) {
		if (name != factory->name_)
			continue;

		CameraSensorHelper *helper = factory->createInstance();
		return std::unique_ptr<CameraSensorHelper>(helper);
	}

	return nullptr;
}

/**
 * \brief Add a camera sensor helper class to the registry
 * \param[in] factory Factory to use to construct the camera sensor helper
 *
 * The caller is responsible to guarantee the uniqueness of the camera sensor
 * helper name.
 */
void CameraSensorHelperFactory::registerType(CameraSensorHelperFactory *factory)
{
	std::vector<CameraSensorHelperFactory *> &factories =
		CameraSensorHelperFactory::factories();

	factories.push_back(factory);
}

/**
 * \brief Retrieve the list of all camera sensor helper factories
 * \return The list of camera sensor helper factories
 */
std::vector<CameraSensorHelperFactory *> &CameraSensorHelperFactory::factories()
{
	/*
	 * The static factories map is defined inside the function to ensure
	 * it gets initialized on first use, without any dependency on link
	 * order.
	 */
	static std::vector<CameraSensorHelperFactory *> factories;
	return factories;
}

/**
 * \fn CameraSensorHelperFactory::createInstance()
 * \brief Create an instance of the CameraSensorHelper corresponding to the
 * factory
 *
 * This virtual function is implemented by the REGISTER_CAMERA_SENSOR_HELPER()
 * macro. It creates a camera sensor helper instance associated with the camera
 * sensor model.
 *
 * \return A pointer to a newly constructed instance of the CameraSensorHelper
 * subclass corresponding to the factory
 */

/**
 * \var CameraSensorHelperFactory::name_
 * \brief The name of the factory
 */

/**
 * \def REGISTER_CAMERA_SENSOR_HELPER
 * \brief Register a camera sensor helper with the camera sensor helper factory
 * \param[in] name Sensor model name used to register the class
 * \param[in] helper Class name of CameraSensorHelper derived class to register
 *
 * Register a CameraSensorHelper subclass with the factory and make it available
 * to try and match sensors.
 */

/* -----------------------------------------------------------------------------
 * Sensor-specific subclasses
 */

#ifndef __DOXYGEN__

class CameraSensorHelperImx219 : public CameraSensorHelper
{
public:
	CameraSensorHelperImx219()
	{
		analogueGainConstants_ = { AnalogueGainLinear, 0, -1, 256, 256 };
	}
};
REGISTER_CAMERA_SENSOR_HELPER("imx219", CameraSensorHelperImx219)

class CameraSensorHelperImx258 : public CameraSensorHelper
{
public:
        CameraSensorHelperImx258()
        {
                analogueGainConstants_ = { AnalogueGainLinear, 0, 512, -1, 512 };
        }
};
REGISTER_CAMERA_SENSOR_HELPER("imx258", CameraSensorHelperImx258)

class CameraSensorHelperOv5670 : public CameraSensorHelper
{
public:
	CameraSensorHelperOv5670()
	{
		analogueGainConstants_ = { AnalogueGainLinear, 1, 0, 0, 128 };
	}
};
REGISTER_CAMERA_SENSOR_HELPER("ov5670", CameraSensorHelperOv5670)

class CameraSensorHelperOv5693 : public CameraSensorHelper
{
public:
	CameraSensorHelperOv5693()
	{
		analogueGainConstants_ = { AnalogueGainLinear, 1, 0, 0, 16 };
	}
};
REGISTER_CAMERA_SENSOR_HELPER("ov5693", CameraSensorHelperOv5693)

class CameraSensorHelperOv8865 : public CameraSensorHelper
{
public:
	CameraSensorHelperOv8865()
	{
		analogueGainConstants_ = { AnalogueGainLinear, 1, 0, 0, 128 };
	}
};
REGISTER_CAMERA_SENSOR_HELPER("ov8865", CameraSensorHelperOv8865)

class CameraSensorHelperOv13858 : public CameraSensorHelper
{
public:
	CameraSensorHelperOv13858()
	{
		analogueGainConstants_ = { AnalogueGainLinear, 1, 0, 0, 128 };
	}
};
REGISTER_CAMERA_SENSOR_HELPER("ov13858", CameraSensorHelperOv13858)

#endif /* __DOXYGEN__ */

} /* namespace ipa */

} /* namespace libcamera */
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021, Google Inc.
 *
 * camera_capabilities.cpp - Camera static properties manager
 */

#include "camera_capabilities.h"

#include <algorithm>
#include <array>
#include <cmath>
#include <map>
#include <type_traits>

#include <hardware/camera3.h>

#include <libcamera/base/log.h>

#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/property_ids.h>

#include "libcamera/internal/formats.h"

using namespace libcamera;

LOG_DECLARE_CATEGORY(HAL)

namespace {

/*
 * \var camera3Resolutions
 * \brief The list of image resolutions defined as mandatory to be supported by
 * the Android Camera3 specification
 */
const std::vector<Size> camera3Resolutions = {
	{ 320, 240 },
	{ 640, 480 },
	{ 1280, 720 },
	{ 1920, 1080 }
};

/*
 * \struct Camera3Format
 * \brief Data associated with an Android format identifier
 * \var libcameraFormats List of libcamera pixel formats compatible with the
 * Android format
 * \var name The human-readable representation of the Android format code
 */
struct Camera3Format {
	std::vector<PixelFormat> libcameraFormats;
	bool mandatory;
	const char *name;
};

/*
 * \var camera3FormatsMap
 * \brief Associate Android format code with ancillary data
 */
const std::map<int, const Camera3Format> camera3FormatsMap = {
	{
		HAL_PIXEL_FORMAT_BLOB, {
			{ formats::MJPEG },
			true,
			"BLOB"
		}
	}, {
		HAL_PIXEL_FORMAT_YCbCr_420_888, {
			{ formats::NV12, formats::NV21 },
			true,
			"YCbCr_420_888"
		}
	}, {
		/*
		 * \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
		 * usage flag. For now, copy the YCbCr_420 configuration.
		 */
		HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
			{ formats::NV12, formats::NV21 },
			true,
			"IMPLEMENTATION_DEFINED"
		}
	}, {
		HAL_PIXEL_FORMAT_RAW10, {
			{
				formats::SBGGR10_CSI2P,
				formats::SGBRG10_CSI2P,
				formats::SGRBG10_CSI2P,
				formats::SRGGB10_CSI2P
			},
			false,
			"RAW10"
		}
	}, {
		HAL_PIXEL_FORMAT_RAW12, {
			{
				formats::SBGGR12_CSI2P,
				formats::SGBRG12_CSI2P,
				formats::SGRBG12_CSI2P,
				formats::SRGGB12_CSI2P
			},
			false,
			"RAW12"
		}
	}, {
		HAL_PIXEL_FORMAT_RAW16, {
			{
				formats::SBGGR16,
				formats::SGBRG16,
				formats::SGRBG16,
				formats::SRGGB16
			},
			false,
			"RAW16"
		}
	},
};

const std::map<camera_metadata_enum_android_info_supported_hardware_level, std::string>
hwLevelStrings = {
	{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED,  "LIMITED" },
	{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL,     "FULL" },
	{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LEGACY,   "LEGACY" },
	{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_3,        "LEVEL_3" },
	{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_EXTERNAL, "EXTERNAL" },
};

enum class ControlRange {
	Min,
	Def,
	Max,
};

/**
 * \brief Set Android metadata from libcamera ControlInfo or a default value
 * \tparam T Type of the control in libcamera
 * \tparam U Type of the metadata in Android
 * \param[in] metadata Android metadata pack to add the control value to
 * \param[in] tag Android metadata tag
 * \param[in] controlsInfo libcamera ControlInfoMap from which to find the control info
 * \param[in] control libcamera ControlId to find from \a controlsInfo
 * \param[in] controlRange Whether to use the min, def, or max value from the control info
 * \param[in] defaultValue The value to set in \a metadata if \a control is not found
 *
 * Set the Android metadata entry in \a metadata with tag \a tag based on the
 * control info found for the libcamera control \a control in the libcamera
 * ControlInfoMap \a controlsInfo. If no libcamera ControlInfo is found, then
 * the Android metadata entry is set to \a defaultValue.
 *
 * This function is for scalar values.
 */
template<typename T, typename U>
U setMetadata(CameraMetadata *metadata, uint32_t tag,
	      const ControlInfoMap &controlsInfo, const Control<T> &control,
	      enum ControlRange controlRange, const U defaultValue)
{
	U value = defaultValue;

	const auto &info = controlsInfo.find(&control);
	if (info != controlsInfo.end()) {
		switch (controlRange) {
		case ControlRange::Min:
			value = static_cast<U>(info->second.min().template get<T>());
			break;
		case ControlRange::Def:
			value = static_cast<U>(info->second.def().template get<T>());
			break;
		case ControlRange::Max:
			value = static_cast<U>(info->second.max().template get<T>());
			break;
		}
	}

	metadata->addEntry(tag, value);
	return value;
}

/**
 * \brief Set Android metadata from libcamera ControlInfo or a default value
 * \tparam T Type of the control in libcamera
 * \tparam U Type of the metadata in Android
 * \param[in] metadata Android metadata pack to add the control value to
 * \param[in] tag Android metadata tag
 * \param[in] controlsInfo libcamera ControlInfoMap from which to find the control info
 * \param[in] control libcamera ControlId to find from \a controlsInfo
 * \param[in] defaultVector The value to set in \a metadata if \a control is not found
 *
 * Set the Android metadata entry in \a metadata with tag \a tag based on the
 * control info found for the libcamera control \a control in the libcamera
 * ControlInfoMap \a controlsInfo. If no libcamera ControlInfo is found, then
 * the Android metadata entry is set to \a defaultVector.
 *
 * This function is for vector values.
 */
template<typename T, typename U>
std::vector<U> setMetadata(CameraMetadata *metadata, uint32_t tag,
			   const ControlInfoMap &controlsInfo,
			   const Control<T> &control,
			   const std::vector<U> &defaultVector)
{
	const auto &info = controlsInfo.find(&control);
	if (info == controlsInfo.end()) {
		metadata->addEntry(tag, defaultVector);
		return defaultVector;
	}

	std::vector<U> values(info->second.values().size());
	for (const auto &value : info->second.values())
		values.push_back(static_cast<U>(value.template get<T>()));
	metadata->addEntry(tag, values);

	return values;
}

} /* namespace */

bool CameraCapabilities::validateManualSensorCapability()
{
	const char *noMode = "Manual sensor capability unavailable: ";

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_AVAILABLE_MODES,
						     ANDROID_CONTROL_AE_MODE_OFF)) {
		LOG(HAL, Info) << noMode << "missing AE mode off";
		return false;
	}

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
						     ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE)) {
		LOG(HAL, Info) << noMode << "missing AE lock";
		return false;
	}

	/*
	 * \todo Return true here after we satisfy all the requirements:
	 * https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR
	 * Manual frame duration control
	 *     android.sensor.frameDuration
	 *     android.sensor.info.maxFrameDuration
	 * Manual exposure control
	 *     android.sensor.exposureTime
	 *     android.sensor.info.exposureTimeRange
	 * Manual sensitivity control
	 *     android.sensor.sensitivity
	 *     android.sensor.info.sensitivityRange
	 * Manual lens control (if the lens is adjustable)
	 *     android.lens.*
	 * Manual flash control (if a flash unit is present)
	 *     android.flash.*
	 * Manual black level locking
	 *     android.blackLevel.lock
	 * Auto exposure lock
	 *     android.control.aeLock
	 */
	return false;
}

bool CameraCapabilities::validateManualPostProcessingCapability()
{
	const char *noMode = "Manual post processing capability unavailable: ";

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
						     ANDROID_CONTROL_AWB_MODE_OFF)) {
		LOG(HAL, Info) << noMode << "missing AWB mode off";
		return false;
	}

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
						     ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE)) {
		LOG(HAL, Info) << noMode << "missing AWB lock";
		return false;
	}

	/*
	 * \todo return true here after we satisfy all the requirements:
	 * https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING
	 * Manual tonemap control
	 *     android.tonemap.curve
	 *     android.tonemap.mode
	 *     android.tonemap.maxCurvePoints
	 *     android.tonemap.gamma
	 *     android.tonemap.presetCurve
	 * Manual white balance control
	 *     android.colorCorrection.transform
	 *     android.colorCorrection.gains
	 * Manual lens shading map control
	 *     android.shading.mode
	 *     android.statistics.lensShadingMapMode
	 *     android.statistics.lensShadingMap
	 *     android.lens.info.shadingMapSize
	 * Manual aberration correction control (if aberration correction is supported)
	 *     android.colorCorrection.aberrationMode
	 *     android.colorCorrection.availableAberrationModes
	 * Auto white balance lock
	 *     android.control.awbLock
	 */
	return false;
}

bool CameraCapabilities::validateBurstCaptureCapability()
{
	camera_metadata_ro_entry_t entry;
	bool found;

	const char *noMode = "Burst capture capability unavailable: ";

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
						     ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE)) {
		LOG(HAL, Info) << noMode << "missing AE lock";
		return false;
	}

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
						     ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE)) {
		LOG(HAL, Info) << noMode << "missing AWB lock";
		return false;
	}

	found = staticMetadata_->getEntry(ANDROID_SYNC_MAX_LATENCY, &entry);
	if (!found || *entry.data.i32 < 0 || 4 < *entry.data.i32) {
		LOG(HAL, Info)
			<< noMode << "max sync latency is "
			<< (found ? std::to_string(*entry.data.i32) : "not present");
		return false;
	}

	/*
	 * \todo return true here after we satisfy all the requirements
	 * https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE
	 */
	return false;
}

std::set<camera_metadata_enum_android_request_available_capabilities>
CameraCapabilities::computeCapabilities()
{
	std::set<camera_metadata_enum_android_request_available_capabilities>
		capabilities;

	capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE);

	if (validateManualSensorCapability())
		capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR);

	if (validateManualPostProcessingCapability())
		capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING);

	if (validateBurstCaptureCapability())
		capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE);

	if (rawStreamAvailable_)
		capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);

	return capabilities;
}

void CameraCapabilities::computeHwLevel(
	const std::set<camera_metadata_enum_android_request_available_capabilities> &caps)
{
	camera_metadata_ro_entry_t entry;
	bool found;
	camera_metadata_enum_android_info_supported_hardware_level
		hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL;

	if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR))
		hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;

	if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING))
		hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;

	if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE))
		hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;

	found = staticMetadata_->getEntry(ANDROID_SYNC_MAX_LATENCY, &entry);
	if (!found || *entry.data.i32 != 0)
		hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;

	hwLevel_ = hwLevel;
}

int CameraCapabilities::initialize(std::shared_ptr<Camera> camera,
				   int orientation, int facing)
{
	camera_ = camera;
	orientation_ = orientation;
	facing_ = facing;
	rawStreamAvailable_ = false;
	maxFrameDuration_ = 0;

	/* Acquire the camera and initialize available stream configurations. */
	int ret = camera_->acquire();
	if (ret) {
		LOG(HAL, Error) << "Failed to temporarily acquire the camera";
		return ret;
	}

	ret = initializeStreamConfigurations();
	if (ret) {
		camera_->release();
		return ret;
	}

	ret = initializeStaticMetadata();
	camera_->release();
	return ret;
}

std::vector<Size>
CameraCapabilities::initializeYUVResolutions(const PixelFormat &pixelFormat,
					     const std::vector<Size> &resolutions)
{
	std::vector<Size> supportedResolutions;
	std::unique_ptr<CameraConfiguration> cameraConfig =
		camera_->generateConfiguration({ StreamRole::Viewfinder });
	if (!cameraConfig) {
		LOG(HAL, Error) << "Failed to get supported YUV resolutions";
		return supportedResolutions;
	}

	StreamConfiguration &cfg = cameraConfig->at(0);

	for (const Size &res : resolutions) {
		cfg.pixelFormat = pixelFormat;
		cfg.size = res;

		CameraConfiguration::Status status = cameraConfig->validate();
		if (status != CameraConfiguration::Valid) {
			LOG(HAL, Debug) << cfg.toString() << " not supported";
			continue;
		}

		LOG(HAL, Debug) << cfg.toString() << " supported";

		supportedResolutions.push_back(res);
	}

	return supportedResolutions;
}

std::vector<Size>
CameraCapabilities::initializeRawResolutions(const PixelFormat &pixelFormat)
{
	std::vector<Size> supportedResolutions;
	std::unique_ptr<CameraConfiguration> cameraConfig =
		camera_->generateConfiguration({ StreamRole::Raw });
	if (!cameraConfig) {
		LOG(HAL, Error) << "Failed to get supported Raw resolutions";
		return supportedResolutions;
	}

	StreamConfiguration &cfg = cameraConfig->at(0);
	const StreamFormats &formats = cfg.formats();
	supportedResolutions = formats.sizes(pixelFormat);

	return supportedResolutions;
}

/*
 * Initialize the format conversion map to translate from Android format
 * identifier to libcamera pixel formats and fill in the list of supported
 * stream configurations to be reported to the Android camera framework through
 * the camera static metadata.
 */
int CameraCapabilities::initializeStreamConfigurations()
{
	/*
	 * Get the maximum output resolutions
	 * \todo Get this from the camera properties once defined
	 */
	std::unique_ptr<CameraConfiguration> cameraConfig =
		camera_->generateConfiguration({ StillCapture });
	if (!cameraConfig) {
		LOG(HAL, Error) << "Failed to get maximum resolution";
		return -EINVAL;
	}
	StreamConfiguration &cfg = cameraConfig->at(0);

	/*
	 * \todo JPEG - Adjust the maximum available resolution by taking the
	 * JPEG encoder requirements into account (alignment and aspect ratio).
	 */
	const Size maxRes = cfg.size;
	LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();

	/*
	 * Build the list of supported image resolutions.
	 *
	 * The resolutions listed in camera3Resolution are mandatory to be
	 * supported, up to the camera maximum resolution.
	 *
	 * Augment the list by adding resolutions calculated from the camera
	 * maximum one.
	 */
	std::vector<Size> cameraResolutions;
	std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
		     std::back_inserter(cameraResolutions),
		     [&](const Size &res) { return res < maxRes; });

	/*
	 * The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
	 * resolution.
	 */
	for (unsigned int divider = 2;; divider <<= 1) {
		Size derivedSize{
			maxRes.width / divider,
			maxRes.height / divider,
		};

		if (derivedSize.width < 320 ||
		    derivedSize.height < 240)
			break;

		cameraResolutions.push_back(derivedSize);
	}
	cameraResolutions.push_back(maxRes);

	/* Remove duplicated entries from the list of supported resolutions. */
	std::sort(cameraResolutions.begin(), cameraResolutions.end());
	auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
	cameraResolutions.erase(last, cameraResolutions.end());

	/*
	 * Build the list of supported camera formats.
	 *
	 * To each Android format a list of compatible libcamera formats is
	 * associated. The first libcamera format that tests successful is added
	 * to the format translation map used when configuring the streams.
	 * It is then tested against the list of supported camera resolutions to
	 * build the stream configuration map reported through the camera static
	 * metadata.
	 */
	Size maxJpegSize;
	for (const auto &format : camera3FormatsMap) {
		int androidFormat = format.first;
		const Camera3Format &camera3Format = format.second;
		const std::vector<PixelFormat> &libcameraFormats =
			camera3Format.libcameraFormats;

		LOG(HAL, Debug) << "Trying to map Android format "
				<< camera3Format.name;

		/*
		 * JPEG is always supported, either produced directly by the
		 * camera, or encoded in the HAL.
		 */
		if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
			formatsMap_[androidFormat] = formats::MJPEG;
			LOG(HAL, Debug) << "Mapped Android format "
					<< camera3Format.name << " to "
					<< formats::MJPEG.toString()
					<< " (fixed mapping)";
			continue;
		}

		/*
		 * Test the libcamera formats that can produce images
		 * compatible with the format defined by Android.
		 */
		PixelFormat mappedFormat;
		for (const PixelFormat &pixelFormat : libcameraFormats) {

			LOG(HAL, Debug) << "Testing " << pixelFormat.toString();

			/*
			 * The stream configuration size can be adjusted,
			 * not the pixel format.
			 *
			 * \todo This could be simplified once all pipeline
			 * handlers will report the StreamFormats list of
			 * supported formats.
			 */
			cfg.pixelFormat = pixelFormat;

			CameraConfiguration::Status status = cameraConfig->validate();
			if (status != CameraConfiguration::Invalid &&
			    cfg.pixelFormat == pixelFormat) {
				mappedFormat = pixelFormat;
				break;
			}
		}

		if (!mappedFormat.isValid()) {
			/* If the format is not mandatory, skip it. */
			if (!camera3Format.mandatory)
				continue;

			LOG(HAL, Error)
				<< "Failed to map mandatory Android format "
				<< camera3Format.name << " ("
				<< utils::hex(androidFormat) << "): aborting";
			return -EINVAL;
		}

		/*
		 * Record the mapping and then proceed to generate the
		 * stream configurations map, by testing the image resolutions.
		 */
		formatsMap_[androidFormat] = mappedFormat;
		LOG(HAL, Debug) << "Mapped Android format "
				<< camera3Format.name << " to "
				<< mappedFormat.toString();

		std::vector<Size> resolutions;
		const PixelFormatInfo &info = PixelFormatInfo::info(mappedFormat);
		switch (info.colourEncoding) {
		case PixelFormatInfo::ColourEncodingRAW:
			if (info.bitsPerPixel != 16)
				continue;

			rawStreamAvailable_ = true;
			resolutions = initializeRawResolutions(mappedFormat);
			break;

		case PixelFormatInfo::ColourEncodingYUV:
		case PixelFormatInfo::ColourEncodingRGB:
			/*
			 * We support enumerating RGB streams here to allow
			 * mapping IMPLEMENTATION_DEFINED format to RGB.
			 */
			resolutions = initializeYUVResolutions(mappedFormat,
							       cameraResolutions);
			break;
		}

		for (const Size &res : resolutions) {
			/*
			 * Configure the Camera with the collected format and
			 * resolution to get an updated list of controls.
			 *
			 * \todo Avoid the need to configure the camera when
			 * redesigning the configuration API.
			 */
			cfg.size = res;
			int ret = camera_->configure(cameraConfig.get());
			if (ret)
				return ret;

			const ControlInfoMap &controls = camera_->controls();
			const auto frameDurations = controls.find(
				&controls::FrameDurationLimits);
			if (frameDurations == controls.end()) {
				LOG(HAL, Error)
					<< "Camera does not report frame durations";
				return -EINVAL;
			}

			int64_t minFrameDuration = frameDurations->second.min().get<int64_t>() * 1000;
			int64_t maxFrameDuration = frameDurations->second.max().get<int64_t>() * 1000;

			/*
			 * Cap min frame duration to 30 FPS.
			 *
			 * 30 frames per second has been validated as the most
			 * opportune frame rate for quality tuning, and power
			 * vs performances budget on Intel IPU3-based
			 * Chromebooks.
			 *
			 * \todo This is a platform-specific decision that needs
			 * to be abstracted and delegated to the configuration
			 * file.
			 *
			 * \todo libcamera only allows to control frame duration
			 * through the per-request controls::FrameDuration
			 * control. If we cap the durations here, we should be
			 * capable of configuring the camera to operate at such
			 * duration without requiring to have the FrameDuration
			 * control to be specified for each Request. Defer this
			 * to the in-development configuration API rework.
			 */
			if (minFrameDuration < 1e9 / 30.0)
				minFrameDuration = 1e9 / 30.0;

			streamConfigurations_.push_back({
				res, androidFormat, minFrameDuration, maxFrameDuration,
			});

			/*
			 * If the format is HAL_PIXEL_FORMAT_YCbCr_420_888
			 * from which JPEG is produced, add an entry for
			 * the JPEG stream.
			 *
			 * \todo Wire the JPEG encoder to query the supported
			 * sizes provided a list of formats it can encode.
			 *
			 * \todo Support JPEG streams produced by the camera
			 * natively.
			 *
			 * \todo HAL_PIXEL_FORMAT_BLOB is a 'stalling' format,
			 * its duration should take into account the time
			 * required for the YUV to JPEG encoding. For now
			 * use the same frame durations as collected for
			 * the YUV/RGB streams.
			 */
			if (androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888) {
				streamConfigurations_.push_back({
					res, HAL_PIXEL_FORMAT_BLOB,
					minFrameDuration, maxFrameDuration,
				});
				maxJpegSize = std::max(maxJpegSize, res);
			}

			maxFrameDuration_ = std::max(maxFrameDuration_,
						     maxFrameDuration);
		}

		/*
		 * \todo Calculate the maximum JPEG buffer size by asking the
		 * encoder giving the maximum frame size required.
		 */
		maxJpegBufferSize_ = maxJpegSize.width * maxJpegSize.height * 1.5;
	}

	LOG(HAL, Debug) << "Collected stream configuration map: ";
	for (const auto &entry : streamConfigurations_)
		LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
				<< utils::hex(entry.androidFormat) << " }";

	return 0;
}

int CameraCapabilities::initializeStaticMetadata()
{
	staticMetadata_ = std::make_unique<CameraMetadata>(64, 1024);
	if (!staticMetadata_->isValid()) {
		LOG(HAL, Error) << "Failed to allocate static metadata";
		staticMetadata_.reset();
		return -EINVAL;
	}

	/*
	 * Generate and apply a new configuration for the Viewfinder role to
	 * collect control limits and properties from a known state.
	 */
	std::unique_ptr<CameraConfiguration> cameraConfig =
		camera_->generateConfiguration({ StreamRole::Viewfinder });
	if (!cameraConfig) {
		LOG(HAL, Error) << "Failed to generate camera configuration";
		staticMetadata_.reset();
		return -ENODEV;
	}

	int ret = camera_->configure(cameraConfig.get());
	if (ret) {
		LOG(HAL, Error) << "Failed to initialize the camera state";
		staticMetadata_.reset();
		return ret;
	}

	const ControlInfoMap &controlsInfo = camera_->controls();
	const ControlList &properties = camera_->properties();

	availableCharacteristicsKeys_ = {
		ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
		ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
		ANDROID_CONTROL_AE_AVAILABLE_MODES,
		ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
		ANDROID_CONTROL_AE_COMPENSATION_RANGE,
		ANDROID_CONTROL_AE_COMPENSATION_STEP,
		ANDROID_CONTROL_AE_LOCK_AVAILABLE,
		ANDROID_CONTROL_AF_AVAILABLE_MODES,
		ANDROID_CONTROL_AVAILABLE_EFFECTS,
		ANDROID_CONTROL_AVAILABLE_MODES,
		ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
		ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
		ANDROID_CONTROL_AWB_AVAILABLE_MODES,
		ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
		ANDROID_CONTROL_MAX_REGIONS,
		ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
		ANDROID_FLASH_INFO_AVAILABLE,
		ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
		ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
		ANDROID_JPEG_MAX_SIZE,
		ANDROID_LENS_FACING,
		ANDROID_LENS_INFO_AVAILABLE_APERTURES,
		ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
		ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
		ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
		ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
		ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
		ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
		ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
		ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
		ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
		ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
		ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
		ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
		ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
		ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
		ANDROID_SCALER_CROPPING_TYPE,
		ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
		ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
		ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
		ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
		ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
		ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
		ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
		ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
		ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
		ANDROID_SENSOR_ORIENTATION,
		ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
		ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
		ANDROID_SYNC_MAX_LATENCY,
	};

	availableRequestKeys_ = {
		ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE,
		ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
		ANDROID_CONTROL_AE_LOCK,
		ANDROID_CONTROL_AE_MODE,
		ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
		ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
		ANDROID_CONTROL_AF_MODE,
		ANDROID_CONTROL_AF_TRIGGER,
		ANDROID_CONTROL_AWB_LOCK,
		ANDROID_CONTROL_AWB_MODE,
		ANDROID_CONTROL_CAPTURE_INTENT,
		ANDROID_CONTROL_EFFECT_MODE,
		ANDROID_CONTROL_MODE,
		ANDROID_CONTROL_SCENE_MODE,
		ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
		ANDROID_FLASH_MODE,
		ANDROID_JPEG_ORIENTATION,
		ANDROID_JPEG_QUALITY,
		ANDROID_JPEG_THUMBNAIL_QUALITY,
		ANDROID_JPEG_THUMBNAIL_SIZE,
		ANDROID_LENS_APERTURE,
		ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
		ANDROID_NOISE_REDUCTION_MODE,
		ANDROID_SCALER_CROP_REGION,
		ANDROID_STATISTICS_FACE_DETECT_MODE
	};

	availableResultKeys_ = {
		ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE,
		ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
		ANDROID_CONTROL_AE_LOCK,
		ANDROID_CONTROL_AE_MODE,
		ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
		ANDROID_CONTROL_AE_STATE,
		ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
		ANDROID_CONTROL_AF_MODE,
		ANDROID_CONTROL_AF_STATE,
		ANDROID_CONTROL_AF_TRIGGER,
		ANDROID_CONTROL_AWB_LOCK,
		ANDROID_CONTROL_AWB_MODE,
		ANDROID_CONTROL_AWB_STATE,
		ANDROID_CONTROL_CAPTURE_INTENT,
		ANDROID_CONTROL_EFFECT_MODE,
		ANDROID_CONTROL_MODE,
		ANDROID_CONTROL_SCENE_MODE,
		ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
		ANDROID_FLASH_MODE,
		ANDROID_FLASH_STATE,
		ANDROID_JPEG_GPS_COORDINATES,
		ANDROID_JPEG_GPS_PROCESSING_METHOD,
		ANDROID_JPEG_GPS_TIMESTAMP,
		ANDROID_JPEG_ORIENTATION,
		ANDROID_JPEG_QUALITY,
		ANDROID_JPEG_SIZE,
		ANDROID_JPEG_THUMBNAIL_QUALITY,
		ANDROID_JPEG_THUMBNAIL_SIZE,
		ANDROID_LENS_APERTURE,
		ANDROID_LENS_FOCAL_LENGTH,
		ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
		ANDROID_LENS_STATE,
		ANDROID_NOISE_REDUCTION_MODE,
		ANDROID_REQUEST_PIPELINE_DEPTH,
		ANDROID_SCALER_CROP_REGION,
		ANDROID_SENSOR_EXPOSURE_TIME,
		ANDROID_SENSOR_FRAME_DURATION,
		ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
		ANDROID_SENSOR_TEST_PATTERN_MODE,
		ANDROID_SENSOR_TIMESTAMP,
		ANDROID_STATISTICS_FACE_DETECT_MODE,
		ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
		ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE,
		ANDROID_STATISTICS_SCENE_FLICKER,
	};

	/* Color correction static metadata. */
	{
		std::vector<uint8_t> data;
		data.reserve(3);
		const auto &infoMap = controlsInfo.find(&controls::draft::ColorCorrectionAberrationMode);
		if (infoMap != controlsInfo.end()) {
			for (const auto &value : infoMap->second.values())
				data.push_back(value.get<int32_t>());
		} else {
			data.push_back(ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF);
		}
		staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
					  data);
	}

	/* Control static metadata. */
	std::vector<uint8_t> aeAvailableAntiBandingModes = {
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
				  aeAvailableAntiBandingModes);

	std::vector<uint8_t> aeAvailableModes = {
		ANDROID_CONTROL_AE_MODE_ON,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
				  aeAvailableModes);

	std::vector<int32_t> aeCompensationRange = {
		0, 0,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
				  aeCompensationRange);

	const camera_metadata_rational_t aeCompensationStep[] = {
		{ 0, 1 }
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
				  aeCompensationStep);

	std::vector<uint8_t> availableAfModes = {
		ANDROID_CONTROL_AF_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
				  availableAfModes);

	std::vector<uint8_t> availableEffects = {
		ANDROID_CONTROL_EFFECT_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
				  availableEffects);

	std::vector<uint8_t> availableSceneModes = {
		ANDROID_CONTROL_SCENE_MODE_DISABLED,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
				  availableSceneModes);

	std::vector<uint8_t> availableStabilizationModes = {
		ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
				  availableStabilizationModes);

	/*
	 * \todo Inspect the camera capabilities to report the available
	 * AWB modes. Default to AUTO as CTS tests require it.
	 */
	std::vector<uint8_t> availableAwbModes = {
		ANDROID_CONTROL_AWB_MODE_AUTO,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
				  availableAwbModes);

	std::vector<int32_t> availableMaxRegions = {
		0, 0, 0,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
				  availableMaxRegions);

	std::vector<uint8_t> sceneModesOverride = {
		ANDROID_CONTROL_AE_MODE_ON,
		ANDROID_CONTROL_AWB_MODE_AUTO,
		ANDROID_CONTROL_AF_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
				  sceneModesOverride);

	uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
				  aeLockAvailable);

	uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
	staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
				  awbLockAvailable);

	char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
				  availableControlModes);

	/* JPEG static metadata. */

	/*
	 * Create the list of supported thumbnail sizes by inspecting the
	 * available JPEG resolutions collected in streamConfigurations_ and
	 * generate one entry for each aspect ratio.
	 *
	 * The JPEG thumbnailer can freely scale, so pick an arbitrary
	 * (160, 160) size as the bounding rectangle, which is then cropped to
	 * the different supported aspect ratios.
	 */
	constexpr Size maxJpegThumbnail(160, 160);
	std::vector<Size> thumbnailSizes;
	thumbnailSizes.push_back({ 0, 0 });
	for (const auto &entry : streamConfigurations_) {
		if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
			continue;

		Size thumbnailSize = maxJpegThumbnail
				     .boundedToAspectRatio({ entry.resolution.width,
							     entry.resolution.height });
		thumbnailSizes.push_back(thumbnailSize);
	}

	std::sort(thumbnailSizes.begin(), thumbnailSizes.end());
	auto last = std::unique(thumbnailSizes.begin(), thumbnailSizes.end());
	thumbnailSizes.erase(last, thumbnailSizes.end());

	/* Transform sizes in to a list of integers that can be consumed. */
	std::vector<int32_t> thumbnailEntries;
	thumbnailEntries.reserve(thumbnailSizes.size() * 2);
	for (const auto &size : thumbnailSizes) {
		thumbnailEntries.push_back(size.width);
		thumbnailEntries.push_back(size.height);
	}
	staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
				  thumbnailEntries);

	staticMetadata_->addEntry(ANDROID_JPEG_MAX_SIZE, maxJpegBufferSize_);

	/* Sensor static metadata. */
	std::array<int32_t, 2> pixelArraySize;
	{
		const Size &size = properties.get(properties::PixelArraySize);
		pixelArraySize[0] = size.width;
		pixelArraySize[1] = size.height;
		staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
					  pixelArraySize);
	}

	if (properties.contains(properties::UnitCellSize)) {
		const Size &cellSize = properties.get<Size>(properties::UnitCellSize);
		std::array<float, 2> physicalSize{
			cellSize.width * pixelArraySize[0] / 1e6f,
			cellSize.height * pixelArraySize[1] / 1e6f
		};
		staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
					  physicalSize);
	}

	{
		const Span<const Rectangle> &rects =
			properties.get(properties::PixelArrayActiveAreas);
		std::vector<int32_t> data{
			static_cast<int32_t>(rects[0].x),
			static_cast<int32_t>(rects[0].y),
			static_cast<int32_t>(rects[0].width),
			static_cast<int32_t>(rects[0].height),
		};
		staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
					  data);
	}

	int32_t sensitivityRange[] = {
		32, 2400,
	};
	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
				  sensitivityRange);

	/* Report the color filter arrangement if the camera reports it. */
	if (properties.contains(properties::draft::ColorFilterArrangement)) {
		uint8_t filterArr = properties.get(properties::draft::ColorFilterArrangement);
		staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
					  filterArr);
	}

	const auto &exposureInfo = controlsInfo.find(&controls::ExposureTime);
	if (exposureInfo != controlsInfo.end()) {
		int64_t exposureTimeRange[2] = {
			exposureInfo->second.min().get<int32_t>() * 1000LL,
			exposureInfo->second.max().get<int32_t>() * 1000LL,
		};
		staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
					  exposureTimeRange, 2);
	}

	staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, orientation_);

	std::vector<int32_t> testPatternModes = {
		ANDROID_SENSOR_TEST_PATTERN_MODE_OFF
	};
	const auto &testPatternsInfo =
		controlsInfo.find(&controls::draft::TestPatternMode);
	if (testPatternsInfo != controlsInfo.end()) {
		const auto &values = testPatternsInfo->second.values();
		ASSERT(!values.empty());
		for (const auto &value : values) {
			switch (value.get<int32_t>()) {
			case controls::draft::TestPatternModeOff:
				/*
				 * ANDROID_SENSOR_TEST_PATTERN_MODE_OFF is
				 * already in testPatternModes.
				 */
				break;

			case controls::draft::TestPatternModeSolidColor:
				testPatternModes.push_back(
					ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR);
				break;

			case controls::draft::TestPatternModeColorBars:
				testPatternModes.push_back(
					ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS);
				break;

			case controls::draft::TestPatternModeColorBarsFadeToGray:
				testPatternModes.push_back(
					ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY);
				break;

			case controls::draft::TestPatternModePn9:
				testPatternModes.push_back(
					ANDROID_SENSOR_TEST_PATTERN_MODE_PN9);
				break;

			case controls::draft::TestPatternModeCustom1:
				/* We don't support this yet. */
				break;

			default:
				LOG(HAL, Error) << "Unknown test pattern mode: "
						<< value.get<int32_t>();
				continue;
			}
		}
	}
	staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
				  testPatternModes);

	uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
				  timestampSource);

	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
				  maxFrameDuration_);

	/* Statistics static metadata. */
	uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
	staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
				  faceDetectMode);

	int32_t maxFaceCount = 0;
	staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
				  maxFaceCount);

	{
		std::vector<uint8_t> data;
		data.reserve(2);
		const auto &infoMap = controlsInfo.find(&controls::draft::LensShadingMapMode);
		if (infoMap != controlsInfo.end()) {
			for (const auto &value : infoMap->second.values())
				data.push_back(value.get<int32_t>());
		} else {
			data.push_back(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF);
		}
		staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
					  data);
	}

	/* Sync static metadata. */
	setMetadata(staticMetadata_.get(), ANDROID_SYNC_MAX_LATENCY,
		    controlsInfo, controls::draft::MaxLatency,
		    ControlRange::Def,
		    ANDROID_SYNC_MAX_LATENCY_UNKNOWN);

	/* Flash static metadata. */
	char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
	staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
				  flashAvailable);

	/* Lens static metadata. */
	std::vector<float> lensApertures = {
		2.53 / 100,
	};
	staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
				  lensApertures);

	uint8_t lensFacing;
	switch (facing_) {
	default:
	case CAMERA_FACING_FRONT:
		lensFacing = ANDROID_LENS_FACING_FRONT;
		break;
	case CAMERA_FACING_BACK:
		lensFacing = ANDROID_LENS_FACING_BACK;
		break;
	case CAMERA_FACING_EXTERNAL:
		lensFacing = ANDROID_LENS_FACING_EXTERNAL;
		break;
	}
	staticMetadata_->addEntry(ANDROID_LENS_FACING, lensFacing);

	std::vector<float> lensFocalLengths = {
		1,
	};
	staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
				  lensFocalLengths);

	std::vector<uint8_t> opticalStabilizations = {
		ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
				  opticalStabilizations);

	float hypeFocalDistance = 0;
	staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
				  hypeFocalDistance);

	float minFocusDistance = 0;
	staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
				  minFocusDistance);

	/* Noise reduction modes. */
	{
		std::vector<uint8_t> data;
		data.reserve(5);
		const auto &infoMap = controlsInfo.find(&controls::draft::NoiseReductionMode);
		if (infoMap != controlsInfo.end()) {
			for (const auto &value : infoMap->second.values())
				data.push_back(value.get<int32_t>());
		} else {
			data.push_back(ANDROID_NOISE_REDUCTION_MODE_OFF);
		}
		staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
					  data);
	}

	/* Scaler static metadata. */

	/*
	 * \todo The digital zoom factor is a property that depends on the
	 * desired output configuration and the sensor frame size input to the
	 * ISP. This information is not available to the Android HAL, not at
	 * initialization time at least.
	 *
	 * As a workaround rely on pipeline handlers initializing the
	 * ScalerCrop control with the camera default configuration and use the
	 * maximum and minimum crop rectangles to calculate the digital zoom
	 * factor.
	 */
	float maxZoom = 1.0f;
	const auto scalerCrop = controlsInfo.find(&controls::ScalerCrop);
	if (scalerCrop != controlsInfo.end()) {
		Rectangle min = scalerCrop->second.min().get<Rectangle>();
		Rectangle max = scalerCrop->second.max().get<Rectangle>();
		maxZoom = std::min(1.0f * max.width / min.width,
				   1.0f * max.height / min.height);
	}
	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
				  maxZoom);

	std::vector<uint32_t> availableStreamConfigurations;
	std::vector<int64_t> minFrameDurations;
	int maxYUVFps = 0;
	Size maxYUVSize;

	availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
	minFrameDurations.reserve(streamConfigurations_.size() * 4);

	for (const auto &entry : streamConfigurations_) {
		/*
		 * Filter out YUV streams not capable of running at 30 FPS.
		 *
		 * This requirement comes from CTS RecordingTest failures most
		 * probably related to a requirement of the camcoder video
		 * recording profile. Inspecting the Intel IPU3 HAL
		 * implementation confirms this but no reference has been found
		 * in the metadata documentation.
		 *
		 * Calculate FPS as CTS does: see
		 * Camera2SurfaceViewTestCase.java:getSuitableFpsRangeForDuration()
		 */
		unsigned int fps = static_cast<unsigned int>
				   (floor(1e9 / entry.minFrameDurationNsec + 0.05f));
		if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB && fps < 30)
			continue;

		/*
		 * Collect the FPS of the maximum YUV output size to populate
		 * AE_AVAILABLE_TARGET_FPS_RANGE
		 */
		if (entry.androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888 &&
		    entry.resolution > maxYUVSize) {
			maxYUVSize = entry.resolution;
			maxYUVFps = fps;
		}

		/* Stream configuration map. */
		availableStreamConfigurations.push_back(entry.androidFormat);
		availableStreamConfigurations.push_back(entry.resolution.width);
		availableStreamConfigurations.push_back(entry.resolution.height);
		availableStreamConfigurations.push_back(
			ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);

		/* Per-stream durations. */
		minFrameDurations.push_back(entry.androidFormat);
		minFrameDurations.push_back(entry.resolution.width);
		minFrameDurations.push_back(entry.resolution.height);
		minFrameDurations.push_back(entry.minFrameDurationNsec);

		LOG(HAL, Debug)
			<< "Output Stream: " << utils::hex(entry.androidFormat)
			<< " (" << entry.resolution.toString() << ")["
			<< entry.minFrameDurationNsec << "]"
			<< "@" << fps;
	}
	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
				  availableStreamConfigurations);

	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
				  minFrameDurations);

	/*
	 * Register to the camera service {min, max} and {max, max} with
	 * 'max' being the larger YUV stream maximum frame rate and 'min' being
	 * the globally minimum frame rate rounded to the next largest integer
	 * as the camera service expects the camera maximum frame duration to be
	 * smaller than 10^9 / minFps.
	 */
	int32_t minFps = std::ceil(1e9 / maxFrameDuration_);
	int32_t availableAeFpsTarget[] = {
		minFps, maxYUVFps, maxYUVFps, maxYUVFps,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
				  availableAeFpsTarget);

	std::vector<int64_t> availableStallDurations;
	for (const auto &entry : streamConfigurations_) {
		if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
			continue;

		availableStallDurations.push_back(entry.androidFormat);
		availableStallDurations.push_back(entry.resolution.width);
		availableStallDurations.push_back(entry.resolution.height);
		availableStallDurations.push_back(entry.minFrameDurationNsec);
	}
	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
				  availableStallDurations);

	uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
	staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, croppingType);

	/* Request static metadata. */
	int32_t partialResultCount = 1;
	staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
				  partialResultCount);

	{
		/* Default the value to 2 if not reported by the camera. */
		uint8_t maxPipelineDepth = 2;
		const auto &infoMap = controlsInfo.find(&controls::draft::PipelineDepth);
		if (infoMap != controlsInfo.end())
			maxPipelineDepth = infoMap->second.max().get<int32_t>();
		staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
					  maxPipelineDepth);
	}

	/* LIMITED does not support reprocessing. */
	uint32_t maxNumInputStreams = 0;
	staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
				  maxNumInputStreams);

	/* Number of { RAW, YUV, JPEG } supported output streams */
	int32_t numOutStreams[] = { rawStreamAvailable_, 2, 1 };
	staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
				  numOutStreams);

	/* Check capabilities */
	capabilities_ = computeCapabilities();
	std::vector<camera_metadata_enum_android_request_available_capabilities>
		capsVec(capabilities_.begin(), capabilities_.end());
	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES, capsVec);

	computeHwLevel(capabilities_);
	staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL, hwLevel_);

	LOG(HAL, Info)
		<< "Hardware level: " << hwLevelStrings.find(hwLevel_)->second;

	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
				  std::vector<int32_t>(availableCharacteristicsKeys_.begin(),
						       availableCharacteristicsKeys_.end()));

	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
				  std::vector<int32_t>(availableRequestKeys_.begin(),
						       availableRequestKeys_.end()));

	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
				  std::vector<int32_t>(availableResultKeys_.begin(),
						       availableResultKeys_.end()));

	if (!staticMetadata_->isValid()) {
		LOG(HAL, Error) << "Failed to construct static metadata";
		staticMetadata_.reset();
		return -EINVAL;
	}

	if (staticMetadata_->resized()) {
		auto [entryCount, dataCount] = staticMetadata_->usage();
		LOG(HAL, Info)
			<< "Static metadata resized: " << entryCount
			<< " entries and " << dataCount << " bytes used";
	}

	return 0;
}

/* Translate Android format code to libcamera pixel format. */
PixelFormat CameraCapabilities::toPixelFormat(int format) const
{
	auto it = formatsMap_.find(format);
	if (it == formatsMap_.end()) {
		LOG(HAL, Error) << "Requested format " << utils::hex(format)
				<< " not supported";
		return PixelFormat();
	}

	return it->second;
}

std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateManual() const
{
	if (!capabilities_.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR)) {
		LOG(HAL, Error) << "Manual template not supported";
		return nullptr;
	}

	std::unique_ptr<CameraMetadata> manualTemplate = requestTemplatePreview();
	if (!manualTemplate)
		return nullptr;

	return manualTemplate;
}

std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplatePreview() const
{
	/*
	 * Give initial hint of entries and number of bytes to be allocated.
	 * It is deliberate that the hint is slightly larger than required, to
	 * avoid resizing the container.
	 *
	 * CameraMetadata is capable of resizing the container on the fly, if
	 * adding a new entry will exceed its capacity.
	 */
	auto requestTemplate = std::make_unique<CameraMetadata>(22, 38);
	if (!requestTemplate->isValid()) {
		return nullptr;
	}

	/* Get the FPS range registered in the static metadata. */
	camera_metadata_ro_entry_t entry;
	bool found = staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
					       &entry);
	if (!found) {
		LOG(HAL, Error) << "Cannot create capture template without FPS range";
		return nullptr;
	}

	/*
	 * Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
	 * has been assembled as {{min, max} {max, max}}.
	 */
	requestTemplate->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
				  entry.data.i32, 2);

	/*
	 * Get thumbnail sizes from static metadata and add the first non-zero
	 * size to the template.
	 */
	found = staticMetadata_->getEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
					  &entry);
	ASSERT(found && entry.count >= 4);
	requestTemplate->addEntry(ANDROID_JPEG_THUMBNAIL_SIZE,
				  entry.data.i32 + 2, 2);

	uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE, aeMode);

	int32_t aeExposureCompensation = 0;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
				  aeExposureCompensation);

	uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
				  aePrecaptureTrigger);

	uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK, aeLock);

	uint8_t aeAntibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
				  aeAntibandingMode);

	uint8_t afMode = ANDROID_CONTROL_AF_MODE_OFF;
	requestTemplate->addEntry(ANDROID_CONTROL_AF_MODE, afMode);

	uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
	requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER, afTrigger);

	uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
	requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE, awbMode);

	uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
	requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK, awbLock);

	uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
	requestTemplate->addEntry(ANDROID_FLASH_MODE, flashMode);

	uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
	requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
				  faceDetectMode);

	uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
	requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
				  noiseReduction);

	uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
	requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
				  aberrationMode);

	uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
	requestTemplate->addEntry(ANDROID_CONTROL_MODE, controlMode);

	float lensAperture = 2.53 / 100;
	requestTemplate->addEntry(ANDROID_LENS_APERTURE, lensAperture);

	uint8_t opticalStabilization = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
	requestTemplate->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
				  opticalStabilization);

	uint8_t captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
	requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
				  captureIntent);

	return requestTemplate;
}

std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateStill() const
{
	std::unique_ptr<CameraMetadata> stillTemplate = requestTemplatePreview();
	if (!stillTemplate)
		return nullptr;

	return stillTemplate;
}

std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateVideo() const
{
	std::unique_ptr<CameraMetadata> previewTemplate = requestTemplatePreview();
	if (!previewTemplate)
		return nullptr;

	/*
	 * The video template requires a fixed FPS range. Everything else
	 * stays the same as the preview template.
	 */
	camera_metadata_ro_entry_t entry;
	staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
				  &entry);

	/*
	 * Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
	 * has been assembled as {{min, max} {max, max}}.
	 */
	previewTemplate->updateEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
				     entry.data.i32 + 2, 2);

	return previewTemplate;
}