1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021, Ideas On Board
*
* ipu3_awb.cpp - AWB control algorithm
*/
#include "ipu3_awb.h"
#include <cmath>
#include <numeric>
#include <unordered_map>
#include "libcamera/internal/log.h"
namespace libcamera {
namespace ipa::ipu3 {
LOG_DEFINE_CATEGORY(IPU3Awb)
static constexpr uint32_t kMinZonesCounted = 16;
static constexpr uint32_t kMinGreenLevelInZone = 32;
/**
* \struct IspStatsRegion
* \brief RGB statistics for a given region
*
* The IspStatsRegion structure is intended to abstract the ISP specific
* statistics and use an agnostic algorithm to compute AWB.
*
* \var IspStatsRegion::counted
* \brief Number of pixels used to calculate the sums
*
* \var IspStatsRegion::uncounted
* \brief Remaining number of pixels in the region
*
* \var IspStatsRegion::rSum
* \brief Sum of the red values in the region
*
* \var IspStatsRegion::gSum
* \brief Sum of the green values in the region
*
* \var IspStatsRegion::bSum
* \brief Sum of the blue values in the region
*/
/**
* \struct AwbStatus
* \brief AWB parameters calculated
*
* The AwbStatus structure is intended to store the AWB
* parameters calculated by the algorithm
*
* \var AwbStatus::temperatureK
* \brief Color temperature calculated
*
* \var AwbStatus::redGain
* \brief Gain calculated for the red channel
*
* \var AwbStatus::greenGain
* \brief Gain calculated for the green channel
*
* \var AwbStatus::blueGain
* \brief Gain calculated for the blue channel
*/
/**
* \struct Ipu3AwbCell
* \brief Memory layout for each cell in AWB metadata
*
* The Ipu3AwbCell structure is used to get individual values
* such as red average or saturation ratio in a particular cell.
*
* \var Ipu3AwbCell::greenRedAvg
* \brief Green average for red lines in the cell
*
* \var Ipu3AwbCell::redAvg
* \brief Red average in the cell
*
* \var Ipu3AwbCell::blueAvg
* \brief blue average in the cell
*
* \var Ipu3AwbCell::greenBlueAvg
* \brief Green average for blue lines
*
* \var Ipu3AwbCell::satRatio
* \brief Saturation ratio in the cell
*
* \var Ipu3AwbCell::padding
* \brief array of unused bytes for padding
*/
/* Default settings for Bayer noise reduction replicated from the Kernel */
static const struct ipu3_uapi_bnr_static_config imguCssBnrDefaults = {
.wb_gains = { 16, 16, 16, 16 },
.wb_gains_thr = { 255, 255, 255, 255 },
.thr_coeffs = { 1700, 0, 31, 31, 0, 16 },
.thr_ctrl_shd = { 26, 26, 26, 26 },
.opt_center{ -648, 0, -366, 0 },
.lut = {
{ 17, 23, 28, 32, 36, 39, 42, 45,
48, 51, 53, 55, 58, 60, 62, 64,
66, 68, 70, 72, 73, 75, 77, 78,
80, 82, 83, 85, 86, 88, 89, 90 } },
.bp_ctrl = { 20, 0, 1, 40, 0, 6, 0, 6, 0 },
.dn_detect_ctrl{ 9, 3, 4, 0, 8, 0, 1, 1, 1, 1, 0 },
.column_size = 1296,
.opt_center_sqr = { 419904, 133956 },
};
/* Default settings for Auto White Balance replicated from the Kernel*/
static const struct ipu3_uapi_awb_config_s imguCssAwbDefaults = {
.rgbs_thr_gr = 8191,
.rgbs_thr_r = 8191,
.rgbs_thr_gb = 8191,
.rgbs_thr_b = 8191 | IPU3_UAPI_AWB_RGBS_THR_B_EN | IPU3_UAPI_AWB_RGBS_THR_B_INCL_SAT,
.grid = {
.width = 160,
.height = 36,
.block_width_log2 = 3,
.block_height_log2 = 4,
.height_per_slice = 1, /* Overridden by kernel. */
.x_start = 0,
.y_start = 0,
.x_end = 0,
.y_end = 0,
},
};
/* Default color correction matrix defined as an identity matrix */
static const struct ipu3_uapi_ccm_mat_config imguCssCcmDefault = {
8191, 0, 0, 0,
0, 8191, 0, 0,
0, 0, 8191, 0
};
IPU3Awb::IPU3Awb()
: Algorithm()
{
asyncResults_.blueGain = 1.0;
asyncResults_.greenGain = 1.0;
asyncResults_.redGain = 1.0;
asyncResults_.temperatureK = 4500;
}
IPU3Awb::~IPU3Awb()
{
}
void IPU3Awb::initialise(ipu3_uapi_params ¶ms, const Size &bdsOutputSize, struct ipu3_uapi_grid_config &bdsGrid)
{
params.use.acc_awb = 1;
params.acc_param.awb.config = imguCssAwbDefaults;
awbGrid_ = bdsGrid;
params.acc_param.awb.config.grid = awbGrid_;
params.use.acc_bnr = 1;
params.acc_param.bnr = imguCssBnrDefaults;
/**
* Optical center is column (respectively row) startminus X (respectively Y) center.
* For the moment use BDS as a first approximation, but it should
* be calculated based on Shading (SHD) parameters.
*/
params.acc_param.bnr.column_size = bdsOutputSize.width;
params.acc_param.bnr.opt_center.x_reset = awbGrid_.x_start - (bdsOutputSize.width / 2);
params.acc_param.bnr.opt_center.y_reset = awbGrid_.y_start - (bdsOutputSize.height / 2);
params.acc_param.bnr.opt_center_sqr.x_sqr_reset = params.acc_param.bnr.opt_center.x_reset
* params.acc_param.bnr.opt_center.x_reset;
params.acc_param.bnr.opt_center_sqr.y_sqr_reset = params.acc_param.bnr.opt_center.y_reset
* params.acc_param.bnr.opt_center.y_reset;
params.use.acc_ccm = 1;
params.acc_param.ccm = imguCssCcmDefault;
params.use.acc_gamma = 1;
params.acc_param.gamma.gc_ctrl.enable = 1;
zones_.reserve(kAwbStatsSizeX * kAwbStatsSizeY);
}
/**
* The function estimates the correlated color temperature using
* from RGB color space input.
* In physics and color science, the Planckian locus or black body locus is
* the path or locus that the color of an incandescent black body would take
* in a particular chromaticity space as the blackbody temperature changes.
*
* If a narrow range of color temperatures is considered (those encapsulating
* daylight being the most practical case) one can approximate the Planckian
* locus in order to calculate the CCT in terms of chromaticity coordinates.
*
* More detailed information can be found in:
* https://en.wikipedia.org/wiki/Color_temperature#Approximation
*/
uint32_t IPU3Awb::estimateCCT(double red, double green, double blue)
{
/* Convert the RGB values to CIE tristimulus values (XYZ) */
double X = (-0.14282) * (red) + (1.54924) * (green) + (-0.95641) * (blue);
double Y = (-0.32466) * (red) + (1.57837) * (green) + (-0.73191) * (blue);
double Z = (-0.68202) * (red) + (0.77073) * (green) + (0.56332) * (blue);
/* Calculate the normalized chromaticity values */
double x = X / (X + Y + Z);
double y = Y / (X + Y + Z);
/* Calculate CCT */
double n = (x - 0.3320) / (0.1858 - y);
return 449 * n * n * n + 3525 * n * n + 6823.3 * n + 5520.33;
}
/* Generate an RGB vector with the average values for each region */
void IPU3Awb::generateZones(std::vector<RGB> &zones)
{
for (unsigned int i = 0; i < kAwbStatsSizeX * kAwbStatsSizeY; i++) {
RGB zone;
double counted = awbStats_[i].counted;
if (counted >= kMinZonesCounted) {
zone.G = awbStats_[i].gSum / counted;
if (zone.G >= kMinGreenLevelInZone) {
zone.R = awbStats_[i].rSum / counted;
zone.B = awbStats_[i].bSum / counted;
zones.push_back(zone);
}
}
}
}
/* Translate the IPU3 statistics into the default statistics region array */
void IPU3Awb::generateAwbStats(const ipu3_uapi_stats_3a *stats)
{
uint32_t regionWidth = round(awbGrid_.width / static_cast<double>(kAwbStatsSizeX));
uint32_t regionHeight = round(awbGrid_.height / static_cast<double>(kAwbStatsSizeY));
/*
* Generate a (kAwbStatsSizeX x kAwbStatsSizeY) array from the IPU3 grid which is
* (awbGrid_.width x awbGrid_.height).
*/
for (unsigned int j = 0; j < kAwbStatsSizeY * regionHeight; j++) {
for (unsigned int i = 0; i < kAwbStatsSizeX * regionWidth; i++) {
uint32_t cellPosition = j * awbGrid_.width + i;
uint32_t cellX = (cellPosition / regionWidth) % kAwbStatsSizeX;
uint32_t cellY = ((cellPosition / awbGrid_.width) / regionHeight) % kAwbStatsSizeY;
uint32_t awbRegionPosition = cellY * kAwbStatsSizeX + cellX;
cellPosition *= 8;
/* Cast the initial IPU3 structure to simplify the reading */
Ipu3AwbCell *currentCell = reinterpret_cast<Ipu3AwbCell *>(const_cast<uint8_t *>(&stats->awb_raw_buffer.meta_data[cellPosition]));
if (currentCell->satRatio == 0) {
/* The cell is not saturated, use the current cell */
awbStats_[awbRegionPosition].counted++;
uint32_t greenValue = currentCell->greenRedAvg + currentCell->greenBlueAvg;
awbStats_[awbRegionPosition].gSum += greenValue / 2;
awbStats_[awbRegionPosition].rSum += currentCell->redAvg;
awbStats_[awbRegionPosition].bSum += currentCell->blueAvg;
}
}
}
}
void IPU3Awb::clearAwbStats()
{
for (unsigned int i = 0; i < kAwbStatsSizeX * kAwbStatsSizeY; i++) {
awbStats_[i].bSum = 0;
awbStats_[i].rSum = 0;
awbStats_[i].gSum = 0;
awbStats_[i].counted = 0;
awbStats_[i].uncounted = 0;
}
}
void IPU3Awb::awbGreyWorld()
{
LOG(IPU3Awb, Debug) << "Grey world AWB";
/*
* Make a separate list of the derivatives for each of red and blue, so
* that we can sort them to exclude the extreme gains. We could
* consider some variations, such as normalising all the zones first, or
* doing an L2 average etc.
*/
std::vector<RGB> &redDerivative(zones_);
std::vector<RGB> blueDerivative(redDerivative);
std::sort(redDerivative.begin(), redDerivative.end(),
[](RGB const &a, RGB const &b) {
return a.G * b.R < b.G * a.R;
});
std::sort(blueDerivative.begin(), blueDerivative.end(),
[](RGB const &a, RGB const &b) {
return a.G * b.B < b.G * a.B;
});
/* Average the middle half of the values. */
int discard = redDerivative.size() / 4;
RGB sumRed(0, 0, 0);
RGB sumBlue(0, 0, 0);
for (auto ri = redDerivative.begin() + discard,
bi = blueDerivative.begin() + discard;
ri != redDerivative.end() - discard; ri++, bi++)
sumRed += *ri, sumBlue += *bi;
double redGain = sumRed.G / (sumRed.R + 1),
blueGain = sumBlue.G / (sumBlue.B + 1);
/* Color temperature is not relevant in Grey world but still useful to estimate it :-) */
asyncResults_.temperatureK = estimateCCT(sumRed.R, sumRed.G, sumBlue.B);
asyncResults_.redGain = redGain;
asyncResults_.greenGain = 1.0;
asyncResults_.blueGain = blueGain;
}
void IPU3Awb::calculateWBGains(const ipu3_uapi_stats_3a *stats)
{
ASSERT(stats->stats_3a_status.awb_en);
zones_.clear();
clearAwbStats();
generateAwbStats(stats);
generateZones(zones_);
LOG(IPU3Awb, Debug) << "Valid zones: " << zones_.size();
if (zones_.size() > 10) {
awbGreyWorld();
LOG(IPU3Awb, Debug) << "Gain found for red: " << asyncResults_.redGain
<< " and for blue: " << asyncResults_.blueGain;
}
}
void IPU3Awb::updateWbParameters(ipu3_uapi_params ¶ms, double agcGamma)
{
/*
* Green gains should not be touched and considered 1.
* Default is 16, so do not change it at all.
* 4096 is the value for a gain of 1.0
*/
params.acc_param.bnr.wb_gains.gr = 16;
params.acc_param.bnr.wb_gains.r = 4096 * asyncResults_.redGain;
params.acc_param.bnr.wb_gains.b = 4096 * asyncResults_.blueGain;
params.acc_param.bnr.wb_gains.gb = 16;
LOG(IPU3Awb, Debug) << "Color temperature estimated: " << asyncResults_.temperatureK
<< " and gamma calculated: " << agcGamma;
/* The CCM matrix may change when color temperature will be used */
params.acc_param.ccm = imguCssCcmDefault;
for (uint32_t i = 0; i < 256; i++) {
double j = i / 255.0;
double gamma = std::pow(j, 1.0 / agcGamma);
/* The maximum value 255 is represented on 13 bits in the IPU3 */
params.acc_param.gamma.gc_lut.lut[i] = gamma * 8191;
}
}
} /* namespace ipa::ipu3 */
} /* namespace libcamera */
|