summaryrefslogtreecommitdiff
path: root/src/ipa/ipu3/ipu3.cpp
blob: 08ee6eb30cc5ea3e16412bd1e2f66f1e02dab9e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * object-invoke.cpp - Cross-thread Object method invocation test
 */

#include <iostream>
#include <thread>

#include <libcamera/event_dispatcher.h>
#include <libcamera/object.h>

#include "test.h"
#include "thread.h"

using namespace std;
using namespace libcamera;

class InvokedObject : public Object
{
public:
	enum Status {
		NoCall,
		InvalidThread,
		CallReceived,
	};

	InvokedObject()
		: status_(NoCall)
	{
	}

	Status status() const { return status_; }
	int value() const { return value_; }
	void reset()
	{
		status_ = NoCall;
		value_ = 0;
	}

	void method(int value)
	{
		if (Thread::current() != thread())
			status_ = InvalidThread;
		else
			status_ = CallReceived;

		value_ = value;
	}

	void methodWithReference(const int &value)
	{
	}

	int methodWithReturn()
	{
		return 42;
	}

private:
	Status status_;
	int value_;
};

class ObjectInvokeTest : public Test
{
protected:
	int run()
	{
		EventDispatcher *dispatcher = Thread::current()->eventDispatcher();

		/*
		 * Test that queued method invocation in the same thread goes
		 * through the event dispatcher.
		 */
		object_.invokeMethod(&InvokedObject::method,
				     ConnectionTypeQueued, 42);

		if (object_.status() != InvokedObject::NoCall) {
			cerr << "Method not invoked asynchronously" << endl;
			return TestFail;
		}

		dispatcher->processEvents();

		switch (object_.status()) {
		case InvokedObject::NoCall:
			cout << "Method not invoked for main thread" << endl;
			return TestFail;
		case InvokedObject::InvalidThread:
			cout << "Method invoked in incorrect thread for main thread" << endl;
			return TestFail;
		default:
			break;
		}

		if (object_.value() != 42) {
			cout << "Method invoked with incorrect value for main thread" << endl;
			return TestFail;
		}

		/*
		 * Test that blocking invocation is delivered directly when the
		 * caller and callee live in the same thread.
		 */
		object_.reset();

		object_.invokeMethod(&InvokedObject::method,
				     ConnectionTypeBlocking, 42);

		switch (object_.status()) {
		case InvokedObject::NoCall:
			cout << "Method not invoked for main thread (blocking)" << endl;
			return TestFail;
		case InvokedObject::InvalidThread:
			cout << "Method invoked in incorrect thread for main thread (blocking)" << endl;
			return TestFail;
		default:
			break;
		}

		/*
		 * Move the object to a thread and verify that auto method
		 * invocation is delivered in the correct thread.
		 */
		object_.reset();
		object_.moveToThread(&thread_);

		thread_.start();

		object_.invokeMethod(&InvokedObject::method,
				     ConnectionTypeBlocking, 42);

		switch (object_.status()) {
		case InvokedObject::NoCall:
			cout << "Method not invoked for custom thread" << endl;
			return TestFail;
		case InvokedObject::InvalidThread:
			cout << "Method invoked in incorrect thread for custom thread" << endl;
			return TestFail;
		default:
			break;
		}

		if (object_.value() != 42) {
			cout << "Method invoked with incorrect value for custom thread" << endl;
			return TestFail;
		}

		/* Test that direct method invocation bypasses threads. */
		object_.reset();
		object_.invokeMethod(&InvokedObject::method,
				     ConnectionTypeDirect, 42);

		switch (object_.status()) {
		case InvokedObject::NoCall:
			cout << "Method not invoked for custom thread" << endl;
			return TestFail;
		case InvokedObject::CallReceived:
			cout << "Method invoked in incorrect thread for direct call" << endl;
			return TestFail;
		default:
			break;
		}

		if (object_.value() != 42) {
			cout << "Method invoked with incorrect value for direct call" << endl;
			return TestFail;
		}

		/*
		 * Test invoking a method that takes reference arguments. This
		 * targets compilation, there's no need to check runtime
		 * results.
		 */
		object_.invokeMethod(&InvokedObject::methodWithReference,
				     ConnectionTypeBlocking, 42);

		/* Test invoking a method that returns a value. */
		int ret = object_.invokeMethod(&InvokedObject::methodWithReturn,
					       ConnectionTypeBlocking);
		if (ret != 42) {
			cout << "Method invoked return incorrect value (" << ret
			     << ")" << endl;
			return TestFail;
		}

		return TestPass;
	}

	void cleanup()
	{
		thread_.exit(0);
		thread_.wait();
	}

private:
	Thread thread_;
	InvokedObject object_;
};

TEST_REGISTER(ObjectInvokeTest)
hl ppc">#include <cmath> #include <limits> #include <map> #include <memory> #include <stdint.h> #include <utility> #include <vector> #include <linux/intel-ipu3.h> #include <linux/v4l2-controls.h> #include <libcamera/base/file.h> #include <libcamera/base/log.h> #include <libcamera/base/utils.h> #include <libcamera/control_ids.h> #include <libcamera/framebuffer.h> #include <libcamera/ipa/ipa_interface.h> #include <libcamera/ipa/ipa_module_info.h> #include <libcamera/ipa/ipu3_ipa_interface.h> #include <libcamera/request.h> #include "libcamera/internal/mapped_framebuffer.h" #include "libcamera/internal/yaml_parser.h" #include "algorithms/af.h" #include "algorithms/agc.h" #include "algorithms/algorithm.h" #include "algorithms/awb.h" #include "algorithms/blc.h" #include "algorithms/tone_mapping.h" #include "libipa/camera_sensor_helper.h" #include "ipa_context.h" /* Minimum grid width, expressed as a number of cells */ static constexpr uint32_t kMinGridWidth = 16; /* Maximum grid width, expressed as a number of cells */ static constexpr uint32_t kMaxGridWidth = 80; /* Minimum grid height, expressed as a number of cells */ static constexpr uint32_t kMinGridHeight = 16; /* Maximum grid height, expressed as a number of cells */ static constexpr uint32_t kMaxGridHeight = 60; /* log2 of the minimum grid cell width and height, in pixels */ static constexpr uint32_t kMinCellSizeLog2 = 3; /* log2 of the maximum grid cell width and height, in pixels */ static constexpr uint32_t kMaxCellSizeLog2 = 6; /* Maximum number of frame contexts to be held */ static constexpr uint32_t kMaxFrameContexts = 16; namespace libcamera { LOG_DEFINE_CATEGORY(IPAIPU3) using namespace std::literals::chrono_literals; namespace ipa::ipu3 { /** * \brief The IPU3 IPA implementation * * The IPU3 Pipeline defines an IPU3-specific interface for communication * between the PipelineHandler and the IPA module. * * We extend the IPAIPU3Interface to implement our algorithms and handle * calls from the IPU3 PipelineHandler to satisfy requests from the * application. * * At initialisation time, a CameraSensorHelper is instantiated to support * camera-specific calculations, while the default controls are computed, and * the algorithms are instantiated from the tuning data file. * * The IPU3 ImgU operates with a grid layout to divide the overall frame into * rectangular cells of pixels. When the IPA is configured, we determine the * best grid for the statistics based on the pipeline handler Bayer Down Scaler * output size. * * Two main events are then handled to operate the IPU3 ImgU by populating its * parameter buffer, and adapting the settings of the sensor attached to the * IPU3 CIO2 through sensor-specific V4L2 controls. * * In fillParamsBuffer(), we populate the ImgU parameter buffer with * settings to configure the device in preparation for handling the frame * queued in the Request. * * When the frame has completed processing, the ImgU will generate a statistics * buffer which is given to the IPA with processStatsBuffer(). In this we run the * algorithms to parse the statistics and cache any results for the next * fillParamsBuffer() call. * * The individual algorithms are split into modular components that are called * iteratively to allow them to process statistics from the ImgU in the order * defined in the tuning data file. * * The current implementation supports five core algorithms: * * - Auto focus (AF) * - Automatic gain and exposure control (AGC) * - Automatic white balance (AWB) * - Black level correction (BLC) * - Tone mapping (Gamma) * * AWB is implemented using a Greyworld algorithm, and calculates the red and * blue gains to apply to generate a neutral grey frame overall. * * AGC is handled by calculating a histogram of the green channel to estimate an * analogue gain and shutter time which will provide a well exposed frame. A * low-pass IIR filter is used to smooth the changes to the sensor to reduce * perceivable steps. * * The tone mapping algorithm provides a gamma correction table to improve the * contrast of the scene. * * The black level compensation algorithm subtracts a hardcoded black level from * all pixels. * * The IPU3 ImgU has further processing blocks to support image quality * improvements through bayer and temporal noise reductions, however those are * not supported in the current implementation, and will use default settings as * provided by the kernel driver. * * Demosaicing is operating with the default parameters and could be further * optimised to provide improved sharpening coefficients, checker artifact * removal, and false color correction. * * Additional image enhancements can be made by providing lens and * sensor-specific tuning to adapt for Black Level compensation (BLC), Lens * shading correction (SHD) and Color correction (CCM). */ class IPAIPU3 : public IPAIPU3Interface, public Module { public: IPAIPU3(); int init(const IPASettings &settings, const IPACameraSensorInfo &sensorInfo, const ControlInfoMap &sensorControls, ControlInfoMap *ipaControls) override; int start() override; void stop() override; int configure(const IPAConfigInfo &configInfo, ControlInfoMap *ipaControls) override; void mapBuffers(const std::vector<IPABuffer> &buffers) override; void unmapBuffers(const std::vector<unsigned int> &ids) override; void queueRequest(const uint32_t frame, const ControlList &controls) override; void fillParamsBuffer(const uint32_t frame, const uint32_t bufferId) override; void processStatsBuffer(const uint32_t frame, const int64_t frameTimestamp, const uint32_t bufferId, const ControlList &sensorControls) override; protected: std::string logPrefix() const override; private: void updateControls(const IPACameraSensorInfo &sensorInfo, const ControlInfoMap &sensorControls, ControlInfoMap *ipaControls); void updateSessionConfiguration(const ControlInfoMap &sensorControls); void setControls(unsigned int frame); void calculateBdsGrid(const Size &bdsOutputSize); std::map<unsigned int, MappedFrameBuffer> buffers_; ControlInfoMap sensorCtrls_; ControlInfoMap lensCtrls_; IPACameraSensorInfo sensorInfo_; /* Interface to the Camera Helper */ std::unique_ptr<CameraSensorHelper> camHelper_; /* Local parameter storage */ struct IPAContext context_; }; IPAIPU3::IPAIPU3() : context_({ {}, {}, { kMaxFrameContexts } }) { } std::string IPAIPU3::logPrefix() const { return "ipu3"; } /** * \brief Compute IPASessionConfiguration using the sensor information and the * sensor V4L2 controls */ void IPAIPU3::updateSessionConfiguration(const ControlInfoMap &sensorControls) { const ControlInfo vBlank = sensorControls.find(V4L2_CID_VBLANK)->second; context_.configuration.sensor.defVBlank = vBlank.def().get<int32_t>(); const ControlInfo &v4l2Exposure = sensorControls.find(V4L2_CID_EXPOSURE)->second; int32_t minExposure = v4l2Exposure.min().get<int32_t>(); int32_t maxExposure = v4l2Exposure.max().get<int32_t>(); const ControlInfo &v4l2Gain = sensorControls.find(V4L2_CID_ANALOGUE_GAIN)->second; int32_t minGain = v4l2Gain.min().get<int32_t>(); int32_t maxGain = v4l2Gain.max().get<int32_t>(); /* * When the AGC computes the new exposure values for a frame, it needs * to know the limits for shutter speed and analogue gain. * As it depends on the sensor, update it with the controls. * * \todo take VBLANK into account for maximum shutter speed */ context_.configuration.agc.minShutterSpeed = minExposure * context_.configuration.sensor.lineDuration; context_.configuration.agc.maxShutterSpeed = maxExposure * context_.configuration.sensor.lineDuration; context_.configuration.agc.minAnalogueGain = camHelper_->gain(minGain); context_.configuration.agc.maxAnalogueGain = camHelper_->gain(maxGain); } /** * \brief Compute camera controls using the sensor information and the sensor * V4L2 controls * * Some of the camera controls are computed by the pipeline handler, some others * by the IPA module which is in charge of handling, for example, the exposure * time and the frame duration. * * This function computes: * - controls::ExposureTime * - controls::FrameDurationLimits */ void IPAIPU3::updateControls(const IPACameraSensorInfo &sensorInfo, const ControlInfoMap &sensorControls, ControlInfoMap *ipaControls) { ControlInfoMap::Map controls{}; double lineDuration = context_.configuration.sensor.lineDuration.get<std::micro>(); /* * Compute exposure time limits by using line length and pixel rate * converted to microseconds. Use the V4L2_CID_EXPOSURE control to get * exposure min, max and default and convert it from lines to * microseconds. */ const ControlInfo &v4l2Exposure = sensorControls.find(V4L2_CID_EXPOSURE)->second; int32_t minExposure = v4l2Exposure.min().get<int32_t>() * lineDuration; int32_t maxExposure = v4l2Exposure.max().get<int32_t>() * lineDuration; int32_t defExposure = v4l2Exposure.def().get<int32_t>() * lineDuration; controls[&controls::ExposureTime] = ControlInfo(minExposure, maxExposure, defExposure); /* * Compute the frame duration limits. * * The frame length is computed assuming a fixed line length combined * with the vertical frame sizes. */ const ControlInfo &v4l2HBlank = sensorControls.find(V4L2_CID_HBLANK)->second; uint32_t hblank = v4l2HBlank.def().get<int32_t>(); uint32_t lineLength = sensorInfo.outputSize.width + hblank; const ControlInfo &v4l2VBlank = sensorControls.find(V4L2_CID_VBLANK)->second; std::array<uint32_t, 3> frameHeights{ v4l2VBlank.min().get<int32_t>() + sensorInfo.outputSize.height, v4l2VBlank.max().get<int32_t>() + sensorInfo.outputSize.height, v4l2VBlank.def().get<int32_t>() + sensorInfo.outputSize.height, }; std::array<int64_t, 3> frameDurations; for (unsigned int i = 0; i < frameHeights.size(); ++i) { uint64_t frameSize = lineLength * frameHeights[i]; frameDurations[i] = frameSize / (sensorInfo.pixelRate / 1000000U); } controls[&controls::FrameDurationLimits] = ControlInfo(frameDurations[0], frameDurations[1], frameDurations[2]); *ipaControls = ControlInfoMap(std::move(controls), controls::controls); } /** * \brief Initialize the IPA module and its controls * * This function receives the camera sensor information from the pipeline * handler, computes the limits of the controls it handles and returns * them in the \a ipaControls output parameter. */ int IPAIPU3::init(const IPASettings &settings, const IPACameraSensorInfo &sensorInfo, const ControlInfoMap &sensorControls, ControlInfoMap *ipaControls) { camHelper_ = CameraSensorHelperFactoryBase::create(settings.sensorModel); if (camHelper_ == nullptr) { LOG(IPAIPU3, Error) << "Failed to create camera sensor helper for " << settings.sensorModel; return -ENODEV; } /* Clean context */ context_.configuration = {}; context_.configuration.sensor.lineDuration = sensorInfo.minLineLength * 1.0s / sensorInfo.pixelRate; /* Load the tuning data file. */ File file(settings.configurationFile); if (!file.open(File::OpenModeFlag::ReadOnly)) { int ret = file.error(); LOG(IPAIPU3, Error) << "Failed to open configuration file " << settings.configurationFile << ": " << strerror(-ret); return ret; } std::unique_ptr<libcamera::YamlObject> data = YamlParser::parse(file); if (!data) return -EINVAL; unsigned int version = (*data)["version"].get<uint32_t>(0); if (version != 1) { LOG(IPAIPU3, Error) << "Invalid tuning file version " << version; return -EINVAL; } if (!data->contains("algorithms")) { LOG(IPAIPU3, Error) << "Tuning file doesn't contain any algorithm"; return -EINVAL; } int ret = createAlgorithms(context_, (*data)["algorithms"]); if (ret) return ret; /* Initialize controls. */ updateControls(sensorInfo, sensorControls, ipaControls); return 0; } /** * \brief Perform any processing required before the first frame */ int IPAIPU3::start() { /* * Set the sensors V4L2 controls before the first frame to ensure that * we have an expected and known configuration from the start. */ setControls(0); return 0; } /** * \brief Ensure that all processing has completed */ void IPAIPU3::stop() { context_.frameContexts.clear(); } /** * \brief Calculate a grid for the AWB statistics * * This function calculates a grid for the AWB algorithm in the IPU3 firmware. * Its input is the BDS output size calculated in the ImgU. * It is limited for now to the simplest method: find the lesser error * with the width/height and respective log2 width/height of the cells. * * \todo The frame is divided into cells which can be 8x8 => 64x64. * As a smaller cell improves the algorithm precision, adapting the * x_start and y_start parameters of the grid would provoke a loss of * some pixels but would also result in more accurate algorithms. */ void IPAIPU3::calculateBdsGrid(const Size &bdsOutputSize) { Size best; Size bestLog2; /* Set the BDS output size in the IPAConfiguration structure */ context_.configuration.grid.bdsOutputSize = bdsOutputSize; uint32_t minError = std::numeric_limits<uint32_t>::max(); for (uint32_t shift = kMinCellSizeLog2; shift <= kMaxCellSizeLog2; ++shift) { uint32_t width = std::clamp(bdsOutputSize.width >> shift, kMinGridWidth, kMaxGridWidth); width = width << shift; uint32_t error = utils::abs_diff(width, bdsOutputSize.width); if (error >= minError) continue; minError = error; best.width = width; bestLog2.width = shift; } minError = std::numeric_limits<uint32_t>::max(); for (uint32_t shift = kMinCellSizeLog2; shift <= kMaxCellSizeLog2; ++shift) { uint32_t height = std::clamp(bdsOutputSize.height >> shift, kMinGridHeight, kMaxGridHeight); height = height << shift; uint32_t error = utils::abs_diff(height, bdsOutputSize.height); if (error >= minError) continue; minError = error; best.height = height; bestLog2.height = shift; } struct ipu3_uapi_grid_config &bdsGrid = context_.configuration.grid.bdsGrid; bdsGrid.x_start = 0; bdsGrid.y_start = 0; bdsGrid.width = best.width >> bestLog2.width; bdsGrid.block_width_log2 = bestLog2.width; bdsGrid.height = best.height >> bestLog2.height; bdsGrid.block_height_log2 = bestLog2.height; /* The ImgU pads the lines to a multiple of 4 cells. */ context_.configuration.grid.stride = utils::alignUp(bdsGrid.width, 4); LOG(IPAIPU3, Debug) << "Best grid found is: (" << (int)bdsGrid.width << " << " << (int)bdsGrid.block_width_log2 << ") x (" << (int)bdsGrid.height << " << " << (int)bdsGrid.block_height_log2 << ")"; } /** * \brief Configure the IPU3 IPA * \param[in] configInfo The IPA configuration data, received from the pipeline * handler * \param[in] ipaControls The IPA controls to update * * Calculate the best grid for the statistics based on the pipeline handler BDS * output, and parse the minimum and maximum exposure and analogue gain control * values. * * \todo Document what the BDS is, ideally in a block diagram of the ImgU. * * All algorithm modules are called to allow them to prepare the * \a IPASessionConfiguration structure for the \a IPAContext. */ int IPAIPU3::configure(const IPAConfigInfo &configInfo, ControlInfoMap *ipaControls) { if (configInfo.sensorControls.empty()) { LOG(IPAIPU3, Error) << "No sensor controls provided"; return -ENODATA; } sensorInfo_ = configInfo.sensorInfo; lensCtrls_ = configInfo.lensControls; /* Clear the IPA context for the new streaming session. */ context_.activeState = {}; context_.configuration = {}; context_.frameContexts.clear(); /* Initialise the sensor configuration. */ context_.configuration.sensor.lineDuration = sensorInfo_.minLineLength * 1.0s / sensorInfo_.pixelRate; context_.configuration.sensor.size = sensorInfo_.outputSize; /* * Compute the sensor V4L2 controls to be used by the algorithms and * to be set on the sensor. */ sensorCtrls_ = configInfo.sensorControls; calculateBdsGrid(configInfo.bdsOutputSize); /* Update the camera controls using the new sensor settings. */ updateControls(sensorInfo_, sensorCtrls_, ipaControls); /* Update the IPASessionConfiguration using the sensor settings. */ updateSessionConfiguration(sensorCtrls_); for (auto const &algo : algorithms()) { int ret = algo->configure(context_, configInfo); if (ret) return ret; } return 0; } /** * \brief Map the parameters and stats buffers allocated in the pipeline handler * \param[in] buffers The buffers to map */ void IPAIPU3::mapBuffers(const std::vector<IPABuffer> &buffers) { for (const IPABuffer &buffer : buffers) { const FrameBuffer fb(buffer.planes); buffers_.emplace(buffer.id, MappedFrameBuffer(&fb, MappedFrameBuffer::MapFlag::ReadWrite)); } } /** * \brief Unmap the parameters and stats buffers * \param[in] ids The IDs of the buffers to unmap */ void IPAIPU3::unmapBuffers(const std::vector<unsigned int> &ids) { for (unsigned int id : ids) { auto it = buffers_.find(id); if (it == buffers_.end()) continue; buffers_.erase(it); } } /** * \brief Fill and return a buffer with ISP processing parameters for a frame * \param[in] frame The frame number * \param[in] bufferId ID of the parameter buffer to fill * * Algorithms are expected to fill the IPU3 parameter buffer for the next * frame given their most recent processing of the ImgU statistics. */ void IPAIPU3::fillParamsBuffer(const uint32_t frame, const uint32_t bufferId) { auto it = buffers_.find(bufferId); if (it == buffers_.end()) { LOG(IPAIPU3, Error) << "Could not find param buffer!"; return; } Span<uint8_t> mem = it->second.planes()[0]; ipu3_uapi_params *params = reinterpret_cast<ipu3_uapi_params *>(mem.data()); /* * The incoming params buffer may contain uninitialised data, or the * parameters of previously queued frames. Clearing the entire buffer * may be an expensive operation, and the kernel will only read from * structures which have their associated use-flag set. * * It is the responsibility of the algorithms to set the use flags * accordingly for any data structure they update during prepare(). */ params->use = {}; IPAFrameContext &frameContext = context_.frameContexts.get(frame); for (auto const &algo : algorithms()) algo->prepare(context_, frame, frameContext, params); paramsBufferReady.emit(frame); } /** * \brief Process the statistics generated by the ImgU * \param[in] frame The frame number * \param[in] frameTimestamp Timestamp of the frame * \param[in] bufferId ID of the statistics buffer * \param[in] sensorControls Sensor controls * * Parse the most recently processed image statistics from the ImgU. The * statistics are passed to each algorithm module to run their calculations and * update their state accordingly. */ void IPAIPU3::processStatsBuffer(const uint32_t frame, [[maybe_unused]] const int64_t frameTimestamp, const uint32_t bufferId, const ControlList &sensorControls) { auto it = buffers_.find(bufferId); if (it == buffers_.end()) { LOG(IPAIPU3, Error) << "Could not find stats buffer!"; return; } Span<uint8_t> mem = it->second.planes()[0]; const ipu3_uapi_stats_3a *stats = reinterpret_cast<ipu3_uapi_stats_3a *>(mem.data()); IPAFrameContext &frameContext = context_.frameContexts.get(frame); frameContext.sensor.exposure = sensorControls.get(V4L2_CID_EXPOSURE).get<int32_t>(); frameContext.sensor.gain = camHelper_->gain(sensorControls.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>()); ControlList metadata(controls::controls); for (auto const &algo : algorithms()) algo->process(context_, frame, frameContext, stats, metadata); setControls(frame); /* * \todo The Metadata provides a path to getting extended data * out to the application. Further data such as a simplifed Histogram * might have value to be exposed, however such data may be * difficult to report in a generically parsable way and we * likely want to avoid putting platform specific metadata in. */ metadataReady.emit(frame, metadata); } /** * \brief Queue a request and process the control list from the application * \param[in] frame The number of the frame which will be processed next * \param[in] controls The controls for the \a frame * * Parse the request to handle any IPA-managed controls that were set from the * application such as manual sensor settings. */ void IPAIPU3::queueRequest(const uint32_t frame, const ControlList &controls) { IPAFrameContext &frameContext = context_.frameContexts.alloc(frame); for (auto const &algo : algorithms()) algo->queueRequest(context_, frame, frameContext, controls); } /** * \brief Handle sensor controls for a given \a frame number * \param[in] frame The frame on which the sensor controls should be set * * Send the desired sensor control values to the pipeline handler to request * that they are applied on the camera sensor. */ void IPAIPU3::setControls(unsigned int frame) { int32_t exposure = context_.activeState.agc.exposure; int32_t gain = camHelper_->gainCode(context_.activeState.agc.gain); ControlList ctrls(sensorCtrls_); ctrls.set(V4L2_CID_EXPOSURE, exposure); ctrls.set(V4L2_CID_ANALOGUE_GAIN, gain); ControlList lensCtrls(lensCtrls_); lensCtrls.set(V4L2_CID_FOCUS_ABSOLUTE, static_cast<int32_t>(context_.activeState.af.focus)); setSensorControls.emit(frame, ctrls, lensCtrls); } } /* namespace ipa::ipu3 */ /** * \brief External IPA module interface * * The IPAModuleInfo is required to match an IPA module construction against the * intented pipeline handler with the module. The API and pipeline handler * versions must match the corresponding IPA interface and pipeline handler. * * \sa struct IPAModuleInfo */ extern "C" { const struct IPAModuleInfo ipaModuleInfo = { IPA_MODULE_API_VERSION, 1, "PipelineHandlerIPU3", "ipu3", }; /** * \brief Create an instance of the IPA interface * * This function is the entry point of the IPA module. It is called by the IPA * manager to create an instance of the IPA interface for each camera. When * matched against with a pipeline handler, the IPAManager will construct an IPA * instance for each associated Camera. */ IPAInterface *ipaCreate() { return new ipa::ipu3::IPAIPU3(); } } } /* namespace libcamera */