summaryrefslogtreecommitdiff
path: root/src/android/mm/cros_camera_buffer.cpp
blob: 2ac3dc4a88486f6b0f34416c2565520a82d6e012 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021, Google Inc.
 *
 * cros_camera_buffer.cpp - Chromium OS buffer backend using CameraBufferManager
 */

#include "../camera_buffer.h"

#include <libcamera/base/log.h>

#include "cros-camera/camera_buffer_manager.h"

using namespace libcamera;

LOG_DECLARE_CATEGORY(HAL)

class CameraBuffer::Private : public Extensible::Private
{
	LIBCAMERA_DECLARE_PUBLIC(CameraBuffer)

public:
	Private(CameraBuffer *cameraBuffer, buffer_handle_t camera3Buffer,
		PixelFormat pixelFormat, const Size &size,
		int flags);
	~Private();

	bool isValid() const { return registered_; }

	unsigned int numPlanes() const;

	Span<uint8_t> plane(unsigned int plane);

	unsigned int stride(unsigned int plane) const;
	unsigned int offset(unsigned int plane) const;
	unsigned int size(unsigned int plane) const;

	size_t jpegBufferSize(size_t maxJpegBufferSize) const;

private:
	void map();

	cros::CameraBufferManager *bufferManager_;
	buffer_handle_t handle_;
	unsigned int numPlanes_;
	bool mapped_;
	bool registered_;
	union {
		void *addr;
		android_ycbcr ycbcr;
	} mem;
};

CameraBuffer::Private::Private([[maybe_unused]] CameraBuffer *cameraBuffer,
			       buffer_handle_t camera3Buffer,
			       [[maybe_unused]] PixelFormat pixelFormat,
			       [[maybe_unused]] const Size &size,
			       [[maybe_unused]] int flags)
	: handle_(camera3Buffer), numPlanes_(0), mapped_(false),
	  registered_(false)
{
	bufferManager_ = cros::CameraBufferManager::GetInstance();
	if (!bufferManager_) {
		LOG(HAL, Fatal)
			<< "Failed to get cros CameraBufferManager instance";
		return;
	}

	int ret = bufferManager_->Register(camera3Buffer);
	if (ret) {
		LOG(HAL, Error) << "Failed registering a buffer: " << ret;
		return;
	}

	registered_ = true;
	numPlanes_ = bufferManager_->GetNumPlanes(camera3Buffer);
}

CameraBuffer::Private::~Private()
{
	int ret;
	if (mapped_) {
		ret = bufferManager_->Unlock(handle_);
		if (ret != 0)
			LOG(HAL, Error) << "Failed to unlock buffer: "
					<< strerror(-ret);
	}

	if (registered_) {
		ret = bufferManager_->Deregister(handle_);
		if (ret != 0)
			LOG(HAL, Error) << "Failed to deregister buffer: "
					<< strerror(-ret);
	}
}

unsigned int CameraBuffer::Private::numPlanes() const
{
	return bufferManager_->GetNumPlanes(handle_);
}

Span<uint8_t> CameraBuffer::Private::plane(unsigned int plane)
{
	if (!mapped_)
		map();
	if (!mapped_)
		return {};

	void *addr;

	switch (numPlanes()) {
	case 1:
		addr = mem.addr;
		break;
	default:
		switch (plane) {
		case 0:
			addr = mem.ycbcr.y;
			break;
		case 1:
			addr = mem.ycbcr.cb;
			break;
		case 2:
			addr = mem.ycbcr.cr;
			break;
		}
	}

	return { static_cast<uint8_t *>(addr),
		 bufferManager_->GetPlaneSize(handle_, plane) };
}

unsigned int CameraBuffer::Private::stride(unsigned int plane) const
{
	return cros::CameraBufferManager::GetPlaneStride(handle_, plane);
}

unsigned int CameraBuffer::Private::offset(unsigned int plane) const
{
	return cros::CameraBufferManager::GetPlaneOffset(handle_, plane);
}

unsigned int CameraBuffer::Private::size(unsigned int plane) const
{
	return cros::CameraBufferManager::GetPlaneSize(handle_, plane);
}

size_t CameraBuffer::Private::jpegBufferSize([[maybe_unused]] size_t maxJpegBufferSize) const
{
	return bufferManager_->GetPlaneSize(handle_, 0);
}

void CameraBuffer::Private::map()
{
	int ret;
	switch (numPlanes_) {
	case 1: {
		ret = bufferManager_->Lock(handle_, 0, 0, 0, 0, 0, &mem.addr);
		if (ret) {
			LOG(HAL, Error) << "Single plane buffer mapping failed";
			return;
		}
		break;
	}
	case 2:
	case 3: {
		ret = bufferManager_->LockYCbCr(handle_, 0, 0, 0, 0, 0,
						&mem.ycbcr);
		if (ret) {
			LOG(HAL, Error) << "YCbCr buffer mapping failed";
			return;
		}
		break;
	}
	default:
		LOG(HAL, Error) << "Invalid number of planes: " << numPlanes_;
		return;
	}

	mapped_ = true;
	return;
}

PUBLIC_CAMERA_BUFFER_IMPLEMENTATION
href='#n764'>764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
#!/usr/bin/env python3
#
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
#
# ctt.py - camera tuning tool

import os
import sys
from ctt_image_load import *
from ctt_ccm import *
from ctt_awb import *
from ctt_alsc import *
from ctt_lux import *
from ctt_noise import *
from ctt_geq import *
from ctt_pretty_print_json import *
import random
import json
import re

"""
This file houses the camera object, which is used to perform the calibrations.
The camera object houses all the calibration images as attributes in two lists:
    - imgs (macbeth charts)
    - imgs_alsc (alsc correction images)
Various calibrations are methods of the camera object, and the output is stored
in a dictionary called self.json.
Once all the caibration has been completed, the Camera.json is written into a
json file.
The camera object initialises its json dictionary by reading from a pre-written
blank json file. This has been done to avoid reproducing the entire json file
in the code here, thereby avoiding unecessary clutter.
"""


"""
Get the colour and lux values from the strings of each inidvidual image
"""
def get_col_lux(string):
    """
    Extract colour and lux values from filename
    """
    col = re.search('([0-9]+)[kK](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
    lux = re.search('([0-9]+)[lL](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
    try:
        col = col.group(1)
    except AttributeError:
        """
        Catch error if images labelled incorrectly and pass reasonable defaults
        """
        return None, None
    try:
        lux = lux.group(1)
    except AttributeError:
        """
        Catch error if images labelled incorrectly and pass reasonable defaults
        Still returns colour if that has been found.
        """
        return col, None
    return int(col), int(lux)


"""
Camera object that is the backbone of the tuning tool.
Input is the desired path of the output json.
"""
class Camera:
    def __init__(self, jfile):
        self.path = os.path.dirname(os.path.expanduser(__file__)) + '/'
        if self.path == '/':
            self.path = ''
        self.imgs = []
        self.imgs_alsc = []
        self.log = 'Log created : ' + time.asctime(time.localtime(time.time()))
        self.log_separator = '\n'+'-'*70+'\n'
        self.jf = jfile
        """
        initial json dict populated by uncalibrated values
        """
        self.json = {
            "rpi.black_level": {
                "black_level": 4096
            },
            "rpi.dpc": {
            },
            "rpi.lux": {
                "reference_shutter_speed": 10000,
                "reference_gain": 1,
                "reference_aperture": 1.0
            },
            "rpi.noise": {
            },
            "rpi.geq": {
            },
            "rpi.sdn": {
            },
            "rpi.awb": {
                "priors": [
                    {"lux": 0, "prior": [2000, 1.0, 3000, 0.0, 13000, 0.0]},
                    {"lux": 800, "prior": [2000, 0.0, 6000, 2.0, 13000, 2.0]},
                    {"lux": 1500, "prior": [2000, 0.0, 4000, 1.0, 6000, 6.0, 6500, 7.0, 7000, 1.0, 13000, 1.0]}
                ],
                "modes": {
                    "auto": {"lo": 2500, "hi": 8000},
                    "incandescent": {"lo": 2500, "hi": 3000},
                    "tungsten": {"lo": 3000, "hi": 3500},
                    "fluorescent": {"lo": 4000, "hi": 4700},
                    "indoor": {"lo": 3000, "hi": 5000},
                    "daylight": {"lo": 5500, "hi": 6500},
                    "cloudy": {"lo": 7000, "hi": 8600}
                },
                "bayes": 1
            },
            "rpi.agc": {
                "metering_modes": {
                    "centre-weighted": {
                        "weights": [3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0]
                    },
                    "spot": {
                        "weights": [2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
                    },
                    "matrix": {
                        "weights": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
                    }
                },
                "exposure_modes": {
                    "normal": {
                        "shutter": [100, 10000, 30000, 60000, 120000],
                        "gain": [1.0, 2.0, 4.0, 6.0, 6.0]
                    },
                    "sport": {
                        "shutter": [100, 5000, 10000, 20000, 120000],
                        "gain": [1.0, 2.0, 4.0, 6.0, 6.0]
                    }
                },
                "constraint_modes": {
                    "normal": [
                        {"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]}
                    ],
                    "highlight": [
                        {"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]},
                        {"bound": "UPPER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.8, 1000, 0.8]}
                    ]
                },
                "y_target": [0, 0.16, 1000, 0.165, 10000, 0.17]
            },
            "rpi.alsc": {
                'omega': 1.3,
                'n_iter': 100,
                'luminance_strength': 0.7,
            },
            "rpi.contrast": {
                "ce_enable": 1,
                "gamma_curve": [
                    0,     0,
                    1024,  5040,
                    2048,  9338,
                    3072,  12356,
                    4096,  15312,
                    5120,  18051,
                    6144,  20790,
                    7168,  23193,
                    8192,  25744,
                    9216,  27942,
                    10240, 30035,
                    11264, 32005,
                    12288, 33975,
                    13312, 35815,
                    14336, 37600,
                    15360, 39168,
                    16384, 40642,
                    18432, 43379,
                    20480, 45749,
                    22528, 47753,
                    24576, 49621,
                    26624, 51253,
                    28672, 52698,
                    30720, 53796,
                    32768, 54876,
                    36864, 57012,
                    40960, 58656,
                    45056, 59954,
                    49152, 61183,
                    53248, 62355,
                    57344, 63419,
                    61440, 64476,
                    65535, 65535
                ]
            },
            "rpi.ccm": {
            },
            "rpi.sharpen": {
            }
        }

    """
    Perform colour correction calibrations by comparing macbeth patch colours
    to standard macbeth chart colours.
    """
    def ccm_cal(self, do_alsc_colour):
        if 'rpi.ccm' in self.disable:
            return 1
        print('\nStarting CCM calibration')
        self.log_new_sec('CCM')
        """
        if image is greyscale then CCm makes no sense
        """
        if self.grey:
            print('\nERROR: Can\'t do CCM on greyscale image!')
            self.log += '\nERROR: Cannot perform CCM calibration '
            self.log += 'on greyscale image!\nCCM aborted!'
            del self.json['rpi.ccm']
            return 0
        a = time.time()
        """
        Check if alsc tables have been generated, if not then do ccm without
        alsc
        """
        if ("rpi.alsc" not in self.disable) and do_alsc_colour:
            """
            case where ALSC colour has been done, so no errors should be
            expected...
            """
            try:
                cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
                cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
                self.log += '\nALSC tables found successfully'
            except KeyError:
                cal_cr_list, cal_cb_list = None, None
                print('WARNING! No ALSC tables found for CCM!')
                print('Performing CCM calibrations without ALSC correction...')
                self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
                self.log += 'performed without ALSC correction...'
        else:
            """
            case where config options result in CCM done without ALSC colour tables
            """
            cal_cr_list, cal_cb_list = None, None
            self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
            self.log += 'performed without ALSC correction...'

        """
        Do CCM calibration
        """
        try:
            ccms = ccm(self, cal_cr_list, cal_cb_list)
        except ArithmeticError:
            print('ERROR: Matrix is singular!\nTake new pictures and try again...')
            self.log += '\nERROR: Singular matrix encountered during fit!'
            self.log += '\nCCM aborted!'
            return 1
        """
        Write output to json
        """
        self.json['rpi.ccm']['ccms'] = ccms
        self.log += '\nCCM calibration written to json file'
        print('Finished CCM calibration')

    """
    Auto white balance calibration produces a colour curve for
    various colour temperatures, as well as providing a maximum 'wiggle room'
    distance from this curve (transverse_neg/pos).
    """